July 2012		doc.: IEEE 802.11-12/0711r1
IEEE P802.11
Wireless LANs
	Adding Support for Suite B

	Date: 2012-07-17

	Author(s):

	Name
	Affiliation
	Address
	Phone
	email

	Dan Harkins
	Aruba Networks
	1322 Crossman ave, Sunnyvale, CA
	+1 408 227 4500
	dharkins at arubanetworks dot com

	Joe Salowey
	Cisco Systems
	2901 3rd ave, Seattle, WA
	+1 408 256 3380
	jsalowey at cisco dot com

 (
Abstract
This document defines the text modifications necessary to add support for Suite B, which includes GCM-256, to the draft and proposes resolution of CID 6513 from LB188, as well as CID 4261 from
LB187 which
 invited text and a discussion on the topic of GCM-256 and Suite B (here is that text).
)
[bookmark: _GoBack]
Instruct the editor to modify Tables 8-99 and 8-100 as indicated:
· [bookmark: RTF37303837393a2048352c312e]Cipher suites

	· [bookmark: RTF33343738323a205461626c65]Table 8-99 Cipher suite selectors

	OUI
	Suite type
	Meaning

	00-0F-AC
	8
	GCMP-128 – default for a DMG STA

	00-0F-AC
	<ANA-1>
	GCMP-256

	00-0F-AC
	<ANA-2>
	CCMP-256

	00-0F-AC
	<ANA-3>
	BIP-GMAC-128

	00-0F-AC
	<ANA-4>
	BIP-GMAC-256

	· [bookmark: RTF5f5265663234303134303637]Table 8-100 Cipher suite usage

	Cipher suite selector
	GTK
	PTK
	IGTK

	GCMP-128
	Yes
	Yes
	No

	GCMP-256
	Yes
	Yes
	No

	CCMP-256
	Yes
	Yes
	No

	BIP-GMAC-128
	No
	No
	Yes

	BIP-GMAC-256
	No
	No
	Yes

Instruct the editor to modify section 8.4.2.27.3 as indicated:
· [bookmark: RTF36303438313a2048352c312e]AKM suites

	· [bookmark: RTF34313034303a205461626c65]Table 8-101 AKM suite selectors

	OUI
	Suite type
	Meaning

	
	
	Authentication type
	Key management type
	Key derivation type

	00-0F-AC
	<ANA-5>
	Authentication negotiated over IEEE 802.1X or using PMKSA caching as defined in 11.5.9.3 (Cached PMKSAs and RSNA key management) using a Suite B compliant EAP method supporting EC of GF(p=256)
	RSNA key management as defined in 11.6 (Keys and key distribution) or using PMKSA caching as defined in 11.5.9.3 (Cached PMKSAs and RSNA key management) with HMAC-SHA256
	Defined in 11.6.1.7.2 using HMAC-SHA256

	00-0F-AC
	<ANA-6>
	Authentication negotiated over IEEE 802.1X or using PMKSA caching as defined in 11.5.9.3 (Cached PMKSAs and RSNA key management) using a Suite B compliant EAP method supporting EC of GP(p=384)
	RSNA key management as defined in 11.6 (Keys and key distribution) or using PMKSA caching as defined in 11.5.9.3 (Cached PMKSAs and RSNA key management) with HMAC-SHA384
	Defined in 11.6.1.7.2 using HMAC-SHA384

.
The AKM suite selector value 00-0F-AC:<ANA-5> shall only be used with Cipher suite selector values 00-0F-AC:8 (GCMP-128) and 00-0F-AC:<ANA-3> (BIP-GMAC-128); and AKM suite selector value 00-0F-AC:<ANA-6> shall only be used with Cipher suite selector values 00-0F-AC:<ANA-1> (GCMP-256), 00-0F-AC:<ANA-2>, and 00-0F-AC:<ANA-4> (BIP-GMAC-256).

Instruct the editor to modify section 8.4.2.57 as indicated:

8.4.2.57 Management MIC element

The Management MIC element (MME) provides message integrity and protects group addressed robust management frames from forgery and replay. Figure 8-247 shows the MME format.

	Element ID
	Length
	KeyID
	IPN
	MIC

	1
	1
	2
	6
	8 or 16

Figure 8-247—Management MIC element format

The value of the Element ID field is 76 decimal (4c hex). The Length field is set to 16.

The Key ID field identifies the IGTK used to compute the MIC. Bits 0–11 define a value in the range 0– 4095. Bits 12–15 are reserved. The IGTK Key ID is either 4 or 5. The remaining Key IDs are reserved.

The IPN field contains a 6 octet value, interpreted as a 48-bit unsigned integer and used to detect replay of protected group addressed robust management frames.

The MIC field contains a message integrity code calculated over the robust management frame as specified in 11.4.4.5 and 11.4.4.6. The length of the MIC field depends on the specific cipher negotiated, either BIP (8 octets) or BIP-GMAC-128 (16 octets), or BIP-GMAC-256 (16 octets).

Instruct the editor to modify the following sub-sections of 11.4.3 as indicated:
· [bookmark: RTF5f546f633635323339383438]CTR with CBC-MAC Protocol (CCMP)
· [bookmark: RTF35393233383a2048342c312e]General
Subclause CTR with CBC-MAC Protocol (CCMP) specifies the CCMP, which provides data confidentiality, authentication, integrity, and replay protection. CCMP is mandatory for RSN compliance.
CCMP is based on the CCM of the AES encryption algorithm. CCM combines CTR for data confidentiality and CBC-MAC for authentication and integrity. CCM protects the integrity of both the MPDU Data field and selected portions of the IEEE 802.11 MPDU header.
The AES algorithm is defined in FIPS PUB 197-2001. All AES processing used within CCMP uses AES with either a 128-bit key or a 256-bit key and a 128-bit block size.
CCM is defined in IETF RFC 3610. CCM is a generic mode that can be used with any block-oriented encryption algorithm. CCM has two parameters (M and L)., and CCMP with a 128-bit key uses the following values for the CCM parameters:
· M = 8; indicating that the MIC is 8 octets.
· L = 2; indicating that the Length field is 2 octets, which is sufficient to hold the length of the largest possible IEEE 802.11 MPDU, expressed in octets.
And CCMP with a 256-bit key uses the following values for the CCM parameters:
· M = 16; indicating that the MIC is 16 octets.
· L = 2; indicating that the Length field is 2 octets, which is sufficient to hold the length of the largest possible IEEE 802.11 MPDU, expressed in octets.
CCM requires a fresh temporal key for every session. CCM also requires a unique nonce value for each frame protected by a given temporal key, and CCMP uses a 48-bit packet number (PN) for this purpose. Reuse of a PN with the same temporal key voids all security guarantees.

· [bookmark: RTF36393933333a2048342c312e]CCMP MPDU format
[bookmark: RTF5f5265663135303936343737]Change the length of the MIC field in figure 11-16 from “8 octets” to “variable”
When used with a 128-bit key, CCMP processing expands the original MPDU size by 16 octets, 8 octets for the CCMP Header field and 8 octets for the MIC field. When used with a 256-bit key, CCMP processing expands the original MPDU size by 24 octets, 8 octets for the CCMP Header field and 16 octets for the MIC field. The CCMP Header field is constructed from the PN, ExtIV, and Key ID subfields. PN is a 48-bit PN represented as an array of 6 octets. PN5 is the most significant octet of the PN, and PN0 is the least significant. Note that CCMP does not use the WEP ICV.

· [bookmark: RTF37323332353a2048352c312e]CCM originator processing
CCM is a generic authenticate-and-encrypt block cipher mode, and in this standard, CCM is used with the AES block cipher.
There are four inputs to CCM originator processing:
· Key: the temporal key (16 octets).
· Nonce: the nonce (13 octets) constructed as described in 11.4.3.3.4.
· Frame body: the frame body of the MPDU.
· AAD: the AAD (22–30 octets) constructed from the MPDU header as described in 11.4.3.3.3.
The CCM originator processing provides authentication and integrity of the frame body and the AAD as well as data confidentiality of the frame body. The output from the CCM originator processing consists of the encrypted data and 8 additional octets of encrypted MIC (see Figure 11-16).

· [bookmark: RTF34343431343a2048352c312e]CCM recipient processing
CCM recipient processing uses the same parameters as CCM originator processing. A CCMP protected individually addressed robust management frame shall use the same TK as a Data MPDU.
There are four inputs to CCM recipient processing:
· Key: the temporal key (16 octets).
· Nonce: the nonce (13 octets) constructed as described in 11.4.3.3.4.
· Encrypted frame body: the encrypted frame body from the received MPDU. The encrypted frame body includes the an 8-octet MIC.
· AAD: the AAD (22–30 octets) that is the canonical MPDU header as described in 11.4.3.3.3.

Instruct the editor to modify section 11.4.4 (and its subsections) as indicated:
· [bookmark: RTF32363639373a2048332c312e]Broadcast/Multicast Integrity Protocol (BIP)
· BIP overview
BIP provides data integrity and replay protection for group addressed robust management frames after successful establishment of an IGTKSA (see 11.5.1.1.9 (IGTKSA).).
BIP provides data integrity and replay protection, using AES-128 in CMAC Mode, AES-128 in GMAC mode, and AES-256 in GMAC mode. NIST SP 800-38B defines the CMAC algorithm and NIST SP 800-38D defines the GMAC algorithm. All BIP processing uses AES with a 128-bit integrity key and a 128-bit block size, and a CMAC TLen value of 128 (16 octets). The CMAC output is truncated to 64 bits:
	MIC = L(CMAC Output, 0, 64)
Where L is defined in 11.6.1 (Key Hierarchy).
BIP-GCMP-128 uses AES with a 128-bit integrity key and BIP-GCMP-256 uses AES with a 256-bit integrity key. The authentication tag for both BIG-GCMP-128 and BIG-GCMP-256 shall be 128 bits (16 octets).

BIP uses the IGTK to compute the MMPDU MIC. The authenticator shall distribute one new IGTK and IGTK PN (IPN) whenever it distributes a new GTK. The IGTK is identified by the MAC address of the transmitting STA plus an IGTK identifier that is encoded in the MME Key ID field.

· [bookmark: RTF36353734323a2048342c312e]BIP transmission
When a STA transmits a protected group addressed robust management frame, it shall
· Select the IGTK currently active for transmission of frames to the intended group of recipients and construct the MME (see 8.4.2.57 (Management MIC element)) with the MIC field masked to 0 and the KeyID field set to the corresponding IGTK KeyID value. The transmitter shall insert a monotonically increasing non-negative integer into the MME IPN field.
· Compute AAD as specified in 11.4.4.3 (BIP AAD construction).
· Compute an integrity value AES-128-CMAC over the concatenation of (AAD || Management Frame Body including MME), and insert the 64-bit output into the MME MIC field. For BIP, the integrity value is 64-bits and is computed using AES-128-CMAC; for BIP-GMAC-128, the integrity value is 128-bits and is computed using AES-128-GMAC; and, for BIP-GMAC-256, the integrity value is 256-bits and is computed using AES-256-GMAC.
· Compose the frame as the IEEE 802.11 header, management frame body, including MME, and FCS. The MME shall appear last in the frame body.
· Transmit the frame.
· [bookmark: RTF31333134383a2048342c312e]BIP reception
When a STA with management frame protection negotiated receives a group addressed robust management frame protected by BIP, BIP-GMAC-128 or BIP-GMAC-256, it shall
· Identify the appropriate IGTK key and associated state based on the MME KeyID field. If no such IGTK exists, silently drop the frame.

b) Perform replay protection on the received frame. The receiver shall interpret the MME IPN field as a 48-bit unsigned integer. It shall compare this MME IPN integer value to the value of the receive replay counter for the IGTK identified by the MME Key ID field. If the integer value from the received MME IPN field is less than or equal to the replay counter value for this IGTK, the receiver shall discard the frame and increment the dot11RSNAStatsCMACReplays counter by 1. The receiver shall extract and save the received MIC value, and compute the AES-128-CMAC over the concatenation of (AAD || Management Frame Body including MME) with the MIC field masked to 0 in the MME. If the result does not match the received MIC value, then the receiver shall discard the frame and increment the dot11RSNAStatsCMACICVErrors
· If the replay protection succeeds, compute AAD for this management frame, as specified in 11.4.4.3 (BIP AAD construction).
· Extract and save the received MIC value, and compute a verifier the AES-128-CMAC over the concatenation of (AAD || Management Frame Body || MME) with the MIC field masked to 0 in the MME. For BIP, the verifier is AES-128-CMAC; for BIP-GMAC-128, the verifier is AES-128-GMAC; and, for BIP-GMAC-256, the verifier is AES-256-GMAC. If the result does not match the received MIC value, then the receiver shall discard the frame and increment the dot11RSNAStatsCMACICVErrors counter by 1.
· Update the replay counter for the IGTK identified by the MME Key ID field with the integer value of the MME IPN field.
If management frame protection is negotiated, group addressed robust management frames that are received without BIP protection shall be discarded.

Instruct the editor to modify section 11.4.5.1 as indicated:
11.4.5.1 GCMP overview
Subclause 11.4.5. specifies the GCMP, which provides data confidentiality, authentication, integrity, and replay protection.

GCMP is based on the GCM of the AES encryption algorithm. GCM combines Galois/Counter Mode for data confidentiality and GMAC for authentication and integrity. GCM protects the integrity of both the MPDU Data field and selected portions of the MPDU header.

The AES algorithm is defined in FIPS PUB 197-2001. All AES processing used within GCMP uses AES with a 128-bit key (GCMP-128) or a 256-bit key (GCMP-256) and a 128-bit block size.

Instruct the editor to modify section 11.6.1.2 as indicated:
· [bookmark: RTF36353231353a2048342c312e]PRF
A PRF is used in a number of places in this standard. Depending on its use, it may need to output 128 bits, 192 bits, 256 bits, 384 bits, or 512 bits, or 704 bits. This subclause defines sixfive functions:
· PRF-128, which outputs 128 bits
· PRF-192, which outputs 192 bits
· PRF-256, which outputs 256 bits
· PRF-384, which outputs 384 bits
· PRF-512, which outputs 512 bits
· PRF-704, which outputs 704 bits
In the following, K is a key; A is a unique label for each different purpose of the PRF; B is a variable-length string; Y is a single octet containing 0; X is a single octet containing the loop parameter i; and || denotes concatenation:
	H-SHA-1(K, A, B, X)  HMAC-SHA-1(K, A || Y || B || X)
	PRF(K, A, B, Len)
		for i  0 to (Len+159)/160 do
			R  R || H-SHA-1(K, A, B, i)
		return L(R, 0, Len)
	PRF-128(K, A, B) = PRF(K, A, B, 128)
	PRF-192(K, A, B) = PRF(K, A, B, 192)
	PRF-256(K, A, B) = PRF(K, A, B, 256)
	PRF-384(K, A, B) = PRF(K, A, B, 384)
	PRF-512(K, A, B) = PRF(K, A, B, 512)
When the negotiated AKM is 00-0F-AC:5, or 00-0F-AC:6, or 00-0F-AC:<ANA-5>, the KDF specified in 11.6.1.7.2 (Key derivation function (KDF)) shall be used instead of the PRF construction defined here. In this case, A is used as the KDF label and B as the KDF Context and the PRF functions are defined as follows:
	PRF-128(K, A, B) = KDF-SHA256-128(K, A, B)
	PRF-192(K, A, B) = KDF-SHA256-192(K, A, B)
	PRF-256(K, A, B) = KDF-SHA256-256(K, A, B)
	PRF-384(K, A, B) = KDF-SHA256-384(K, A, B)
	PRF-512(K, A, B) = KDF-SHA256-512(K, A, B)

When the negotiated AKM is 00-0F-AC:<ANA-6> the KDF specified in 11.6.1.7.2 (Key derivation function (KDF)) shall be used instead of the PRF construction defined here. In this case, A is used as the KDF label and B as the KDF Context and the PRF function is defined as follows:
	PRF-704(K, A, B) = KDF-SHA384-704(K, A, B)

Instruct the editor to modify section 11.6.1.3 as indicated:
· Pairwise key hierarchy
Except when preauthentication is used, the pairwise key hierarchy utilizes PRF-384, or PRF-512 or PRF-704 to derive session-specific keys from a PMK, as depicted in Figure 11-24 (Pairwise key hierarchy). TWhen using AKM suite selector 00-0F-AC:<ANA-6>, the length of the PMK, PMK_bits, shall be 384 bits. With all other AKM suite selectors, the length of the PMK, PMK_bits, shall be 256 bits. The pairwise key hierarchy takes a PMK and generates a PTK. The PTK is partitioned into KCK, KEK, and temporal keys, which are used by the MAC to protect individually addressed communication between the Authenticator’s and Supplicant’s respective STAs. PTKs are used between a single Supplicant and a single Authenticator.
Instruct the editor to modify figure 11-4 to replace “L(PTK, 0, 128) (KCK)” with “L(PTK, 0, KCK_bits) (KCK)”, “L(PTK, 128, 128) (KEK)” with “L(PTK, KCK_bits, KEK_bits) (KEK)” and “L(PTK,256,TK_bits) (TK)” with “L(PTK, KCK_bits+KEK_bits, TK_bits) (TK)”

When not using a PSK, the PMK is derived from the MSK. The PMK shall be computed as the first PMK_bits256 bits (bits 0–PMK_bits255) of the MSK: PMK  L(MSK, 0, PMK_bits256). When this derivation is used, the MSK needs to consist of at least 256 bits.
The PTK shall not be used longer than the PMK lifetime as determined by the minimum of the PMK lifetime indicated by the AS, e.g., Session-Timeout + dot1xAuthTxPeriod or from dot11RSNAConfigPMK--Lifetime. When RADIUS is used and the Session-Timeout attribute is not in the RADIUS Accept message, and if the key lifetime is not otherwise specified, then the PMK lifetime is -infinite.
NOTE 1—If the protocol between the Authenticator (or AP) and AS is RADIUS, then the MS-MPPE-Recv-Key attribute (-vendor-id = 17; see Section 2.4.3 in IETF RFC 2548-1999 [B30]) is available to be used to transport the first 32 octets of the MSKPMK to the AP, and the MS-MPPE-Send-Key attribute (vendor-id = 16; see Section 2.4.2 in IETF RFC 2548-1999 [B30]) is available to be used to transport the remaining 32 octets of the MSK.
NOTE 2—When reauthenticating and changing the pairwise key, a race condition might occur. If a frame is received while MLME-SETKEYS.request primitive is being processed, the received frame might be decrypted with one key and the MIC checked with a different key. Two possible options to avoid this race condition are as follows: the frame might be checked against the old MIC key, and the received frames might be queued while the keys are changed.
NOTE 3—If the AKMP is RSNA-PSK, then a 256-bit PSK might be configured into the STA and AP or a pass-phrase might be configured into the Supplicant or Authenticator. The method used to configure the PSK is outside this standard, but one method is via user interaction. If a pass-phrase is configured, then a 256-bit key is derived and used as the PSK. In any RSNA-PSK method, the PSK is used directly as the PMK. Implementations might support different PSKs for each pair of communicating STAs.
Here, the following assumptions apply:
· SNonce is a random or pseudorandom value contributed by the Supplicant; its value is taken when a PTK is instantiated and is sent to the PTK Authenticator.
· ANonce is a random or pseudorandom value contributed by the Authenticator.
· The PTK shall be derived from the PMK by
PTK  PRF-X(PMK, “Pairwise key expansion”, Min(AA,SPA) || Max(AA,SPA) || Min(ANonce,SNonce) || Max(ANonce,SNonce))
where X = KCK_bits + KEK_bits256 + TK_bits. The values of KCK_bits and KEK bits are AKM suite dependent and are listed in Table 11-9 (Integrity and key wrap algorithms). The value of TK_bits is cipher-suite dependent and is defined in Table 11-4 (Cipher suite key lengths). The Min and Max operations for IEEE 802 addresses are with the address converted to a positive integer treating the first transmitted octet as the most significant octet of the integer. The Min and Max operations for nonces are with the nonces treated as positive integers converted as specified in 8.2.2 (Conventions).
NOTE—The Authenticator and Supplicant normally derive a PTK only once per association. A Supplicant or an Authenticator use the 4-Way Handshake to derive a new PTK. Both the Authenticator and Supplicant create a new nonce value for each 4-Way Handshake instance.
· The KCK shall be computed as the first KCK_bits128 bits (bits 0–KCK_bits127) of the PTK:
KCK  L(PTK, 0, KCK_bits128)
The KCK is used by IEEE Std 802.1X-2004 to provided data origin authenticity in the 4-Way Handshake and Group Key Handshake messages.
· The KEK shall be computed as the next KEK_bits bits 128–255 of the PTK:
KEK  L(PTK, KCK_bits128, KEK_bits128)
The KEK is used by the EAPOL-Key frames to provide data confidentiality in the 4-Way Handshake and Group Key Handshake messages.
· The temporal key (TK) shall be computed as the next bits 256 to (255 + TK_bits) of the PTK:
TK  L(PTK, KCK_bits + KEK_bits256, TK_bits)
The EAPOL-Key state machines (see 11.6.10 (RSNA Supplicant key management state machine) and 11.6.11 (RSNA Authenticator key management state machine)) use the MLME-SETKEYS.request primitive to configure the temporal key into the STA. The STA uses the temporal key with the pairwise cipher suite; interpretation of this value is cipher-suite-specific.
A PMK identifier is defined as
PMKID = HMAC-SHA1-128(PMK, "PMK Name" || AA || SPA)
Here, HMAC-SHA1-128 is the first 128 bits of the HMAC-SHA1 of its argument list.
When the negotiated AKM is 00-0F-AC:5 or 00-0F-AC:6, HMAC-SHA-256 is used to calculate the PMKID, and the PMK identifier is defined as
PMKID = Truncate-128(HMAC-SHA-256(PMK, "PMK Name" || AA || SPA))
When the negotiated AKM is 00-0F-AC:<ANA-5>, HMAC-SHA-256 is used to calculate the PMKID, and the PMK identifier is defined as
PMKID = Truncate-128(HMAC-SHA-256(KCK, "PMK Name" || AA || SPA))
When the negotiated AKM is 00-0F-AC:<ANA-6>, HMAC-SHA-384 is used to calculate the PMKID, and the PMK identifier is defined as
PMKID = Truncate-128(HMAC-SHA-384(KCK, "PMK Name" || AA || SPA))
NOTE—When the PMKID is calculated for the PMKSA as part of RSN preauthentication, the AKM has not yet been negotiated. In this case, the HMAC-SHA1-128 based derivation is used for the PMKID calculation..

Instruct the editor to modify section 11.6.1.7.2 as indicated:
· [bookmark: RTF38353031393a2048332c312e]Key derivation function (KDF)
The KDF for the FT key hierarchy, and for AKMs 00-0F-AC:<ANA-5> and 00-0F-AC:<ANA-6>, is a variant of the pseudorandom function (PRF) defined in 11.6.1.2 (PRF) and is defined as follows:

Output  KDF-Hash-Length (K, label, Context) where
Input:		K, a 256-bit key derivation key whose length equals the block size of the hash function
		Hash, a cryptographically strong hash function
		label, a string identifying the purpose of the keys derived using this KDF
		Context, a bit string that provides context to identify the derived key
		Length, the length of the derived key in bits
Output:		a Length-bit derived key

result  ""
iterations  (Length+255)/256
do i = 1 to iterations
		result  result || HMAC-HashSHA256(K, i || label || Context || Length)
od
return first Length bits of result, and securely delete all unused bits
In this algorithm, i and Length are encoded as 16-bit unsigned integers, represented using the bit ordering conventions of 8.2.2 (Conventions). K, label, and Context are bit strings and are represented using the ordering conventions of 8.2.2 (Conventions).

Instruct the editor to modify table 11-4 in section 11.6.2 as indicated:

	· [bookmark: RTF35343738313a205461626c65]Table 11-4 Cipher suite key lengths

	Cipher suite
	Key length
(octets)
	TK_bits
(bits)

	WEP-40
	5
	40

	WEP-104
	13
	104

	TKIP
	32
	256

	CCMP
	16
	128

	BIP
	16
	128

	GCMP-128
	16
	128

	GCMP-256
	32
	256

	CCMP-256
	32
	256

	BIP-GMAC-128
	16
	128

	BIP-GMAC-256
	32
	256

Instruct the editor to modify table 11-9 in section 11.6.3 as indicated:

	
	· [bookmark: RTF37383830383a205461626c65]Table 11-9 Integrity and key-wrap algorithms
	

	AKM
	Integrity algorithm
	KCK_bits
	Size of MIC
	Key-wrap algorithm
	KEK_bits

	Deprecated
	HMAC-MD5
	128
	16
	ARC4
	128

	00-0F-AC:1
	HMAC-SHA1-128
	128
	16
	NIST AES Key Wrap
	128

	00-0F-AC:2
	HMAC-SHA1-128
	128
	16
	NIST AES Key Wrap
	128

	00-0F-AC:3
	AES-128-CMAC
	128
	16
	NIST AES Key Wrap
	128

	00-0F-AC:4
	AES-128-CMAC
	128
	16
	NIST AES Key Wrap
	128

	00-0F-AC:5
	AES-128-CMAC
	128
	16
	NIST AES Key Wrap
	128

	00-0F-AC:6
	AES-128-CMAC
	128
	16
	NIST AES Key Wrap
	128

	00-0F-AC:<ANA-5>
	HMAC-SHA256
	128
	16
	NIST AES Key Wrap
	128

	00-0F-AC:<ANA-6>
	HMAC-SHA384
	192
	24
	NIST AES Key Wrap
	256

Instruct the editor to modify section 11.7.7 as indicated:

· Mapping IGTK to BIP keys
See 11.6.1.5 (Integrity group key hierarchy) for the definition of the IGTK key. A STA shall use bits 0–127 of the IGTK as the AES-128-CMAC key, bits 0-127 of the IGTK as the AES-128-GMAC key, and bits 0-255 of the IGTK as the AES-256-GMAC key.

References:

· Special Publication 800-56A, National Institute of Standards and Technology
· Suite B Implementer’s Guide to NIST SP 800-56A, National Security Agency (USA)
GCM-256 and Suite B		Dan Harkins, Aruba Networks
