March 2011

doc.: IEEE 802.11-11/0284r1

IEEE P802.11
Wireless LANs

	802.11 TGmb Proposed Resolution of CID 11023

	Date: 2011-03-16

	Author(s):

	Name
	Company
	Address
	Phone
	email

	Adrian Stephens
	Intel Corporation
	
	
	Adrian.p.stephens@intel.com

	
	
	
	
	

The comment:
	CID
	Page
	Clause
	Duplicate of CID
	Resn Status
	Comment
	Proposed Change

	11023
	
	General
	
	
	In discussions following the .11p roll-in, I believe we came to an improved understanding of the .request/.confirm/.indication/.response mechanism.

Excluding those primitives that have a purely local effect, I think there are two types of service: asynchronous and synchronous. In the asynchronous case, the originator has no knowlege of whether the primitive reached the peer, and whether it had any effect on that peer. In the synchronous case, the originator knows whether the primitive reached the peer or not, and, in the successful case, that the peer has taken any necessary action and returned some kind of response.

We have a number of services that try and provide a half-way house. These provide a "transmit status", but don't close the loop with the remote peer. In my opinion such .confirms are useless. They tell you something, but that something is not useful. They don't tell you whether the peer SME received the request (it could be discarded in the MLME for a number of reasons), or if it received it, whether any action taken by the peer has completed.

Another issue is that of "Invalid Parameters". Given that the SME and MLME both equally know what is valid and what is not, there are no circumstances under which the SME should generate a request that results in locally-generated "Invalid parameters".
	Remove any .confirms that are always locally generated and containing nothing more than a transmit status or "invalid parameters".
Remove from other .confirms any locally generated "invalid parameters" status values.

Discussion

Intro

There is much misunderstanding about the role of the SAP interfaces.

They are there to support operation of the protocol defined in 802.11, and no more. They are abstract in the sense that they do not provide features that any concrete instantiation of the interface would necessarily need to deal with.

The biggest misunderstanding is to think “OK, if I was implementing this interface, what would it look like”. That is exactly the wrong approach and results in the wrong outcome.

The correct approach should be, what does the protocol described in 802.11 necessary need from this interface. And that immediately brings us to a problem where the SME is the “client” of a SAP. The 802.11 protocol only describes a subset of the necessary normative behaviour of the SME. So it is not possible to reliably know exactly what events from the management SAPs it needs to have exposed.
Invalid parameters and resource-constraint exceeded result codes
The MAC is not in possesion of any facts about validity of the parameters that the SME is not also in possesion of. This is a protocol interface, not an implementation interface.

In an implementation it is entirely reasonable to corral knowledge about specific concepts within entities, and have an interface that allows that knowledge to be interrogated.

In a protocol, that knowledge is equally well known to both entities each side of the SAP, and the SAP has not role in validating the SME’s compliant behaviour.

Note, I’m not arguing about hidden state, but about protocol compliance here. If there is state local to the MAC that could cause a .request to fail, then it may be reasonable to provide the outcome via a .confirm.

Note that it is perfectly legitimate, even necessary, to describe any constraints on the primitive as part of the text of the definition. These constraints need to be appropriate for an abstract interface, of course, and not an implementation detail, but if there are such “rules” they are good to list. For example, a MACAddress parameter might have to refer to a currently associated STA, and that’s a good thing to state clearly.
Conclusion: any locally-generated result code that says “failure because you asked me to do something the protocol does not allow” should be removed. Conclusion: any locally-generated result code that says: “won’t do/can’t do/won’t tell why” needs to be removed.
A related topic is a result code that says “you asked me to do too much” based on a local resource limit.

An example is “TOO_MANY_SIMULTANEOUS_REQUESTS” in AUTHENTICATE.confirm, which is locally generated.

Either this local resource is managed by the protocol – i.e. there is a MIB variable, or an MLME primitive parameter that communicates the value of the resource limit. Or the resource is not managed by the protocol.

· If the resource is managed by the protocol, the SME is behaving non-compliantly if it attempts to ask the MLME to do more than the resource limit – i.e., the SME is aware of the value of the resource constraint and must comply.

· If the resource is not managed by the protocol, the existence of a resource limit, what that limit is, how the limit is communicated to the SME, and what happens if the limit is transgressed are all implementation-specific details.

In both cases, there is no place for this result code in our abstract interface.

Conclusion: any locally-generated result code that says “you asked me to do too much” should be removed.
An attempt to close the loop

Generally speaking there are two types of service: confirmed and unconfirmed.

Whether a service needs to be confirmed or not should depend on whether there is any normative (or reasonably assumed to be normative) behaviour associated with the protocol that requires knowledge of the confirm (i.e., its timing or its outcome).

The confirm indicates that some protocol-relevant activity has taken place (which might have rippled up and down a protocol stack through multiple layers).

The VSPECIFIC.confirm primitive mentioned below is an example of trying to “close the loop” so that the SME can respond in some way, but the interaction is from the transport layer (“I got an ack”), not the remote protocol entity (“Yes, I did X”).

Is this of any value to the protocol description?

I would argue not. It is an attempt to infer something about the change of state of the remote protocol entity without engaging in a direct communication with that entity.

There are a whole bunch of reasons why such attempts at inference is wrong:

· The frame may get discarded because there is a mismatch in states between the local and remote entity (e.g. the remote entity may have been reset).

· The frame may get discarded due to operation of protected management frame protocol, or any other filtering done in the MAC stack.

· The remote entity might decide not to take whatever action was requested.

· The remove entity might not have taken the action yet, because of other exchanges it needs to perform to complete the action.
Where people may get confused is that it’s perfectly reasonable to design a product to use knowledge of the failure of the transmission of an action frame in some way – e.g., to reduce the time taken to take some recovery action. But there is no standardized protocol describing this perfectly reasonable implementation choice.

Conclusion: an attempt to close the loop using this kind of technique is of no value in helping define protocol state transitions between two communicating stateful entities.

Transmission Failures and Timeouts

There are three ways of determining a “failure to communicate”:

· Transmitter failed to gain access to the channel “within a reasonable time” (an unlikely occurance)
· Transmitter got no acknowledgement after transmitting the management frame “a reasonable number of times”

· Transmitter receives no matching response frame “after a reasonable time”

There is no distinction between these failures from a protocol point of view – i.e., there is no normative behaviour described which is dependent on the difference between these events.

A number of our primitives have TRANSMISSION_FAILURE codes. A larger number have TIMEOUTs. Many of the TIMEOUTs are for an unspecified period of time.
The question to answer here is whether each .request must have a matching .confirm. I tried to research this in the literature and found nothing helpful. X.210 doesn’t have the word “timout” in it.

If we decide that each .request must have a matching .confirm, then I believe we should ensure there is a TIMOUT ResultCode, and somewhere specify what the value of the TIMEOUT should be.

If we decide that there is no requirement for a matching .confirm, then all TIMEOUTs should be removed.
On the basis of minimum change to generate a consistent position, I prefer to remove TIMEOUTS.

Note, confusingly enough, a small number of primitives communicate a TIMEOUT ResultCode from the .response to the .confirm. This is presumably the timeout of some entitity outside the 802.11 STA with which the SME needs to communicate to do its job. Where this occurs, special attention should be paid to determine if this is intentional or an error in the .confirm.

Conclusion: Remove most locally generated TRANSMISSION_FAILURE and TIMEOUT ResultCodes, i.e. those where a plausible use of the failure does not exist.
The passage of time

Another confusion that people may have about the interface is the passage of time. The abstract interface takes no time at all to execute a primitive, but the sequence of events is determined by the protocol.
 Let’s take an example, SETKEYS results in the MAC updating only its local state. The SETKEYS.confirm primitive currently (D7.03) has the following effect: “The SME is notified that the requested action of the MLME-SETKEYS.request primitive is completed.” and has no parameters. This is an example, IMHO, of the attempt to create an implementation interface in which we need to know when the execution of the action has completed. But because the abstract interface executes in zero time, the answer is that the .confirm is always issued immediately after the .request. Seeing as it has no parameters, and its timing (from the protocol point of view) can be determined a priori by the SME, this primitive provides neither information nor timing, and should be removed.

Conclusion: .confirm primitives that say “yes I’ve finished doing X” that relate purely to the update of local state should be removed.
The Mystery Vendor Specific parameter

At one time, when Vendor Specific elements were added to primitives, the changes were made rather too over-enthusiastically. Specifically, those .confirms with a Vendor Specific parameter and without a matching .response have no place for that Vendor Specific information to have come from.

Conclusion: Seek and destroy such Vendor Specific parameters.
An example

Let’s take as an example, the MLME-VSPECIFIC interface.

We have comment on D1.0:

	comments

	Selected
	CID
	Page
	Clause
	Resn Status
	Comment
	Proposed Change
	Resolution
	Owning Ad-hoc

	0
	1157
	538.21
	10.3.29.2.2
	P
	The procedure for Vendor Specific Action frames is not particularly clear, but there does not appear to be any response from the peer entity expected, beyond the MAC layer ACK. So, this should follow the X.210 model for connectionless service, which has no .confirm primitive, perhaps (in which case, delete the .confirm completely). But, at the very least, there is no concept of a TIMEOUT or TRANSMISSION_FAILURE response to the request.
	Delete TIMEOUT and TRANSMISSION_FAILURE as valid values for the ResultCode. (Or, delete MLME-VSPECIFIC.confirm completely.)
	AGREE IN PRINCIPLE (ARCHITECTURE: 2009-11-18 20:10:17Z) Delete MLME-VSPECIFIC.confirm completely.
	EDITOR

Let’s consider some of the arguments for keeping the .confirm:

1. It tells me whether my .request parameters were correct (see “invalid parameters”)
2. It tells me if there was a transmission failure (see “an attempt to close the loop”)
We’ve already considered and dismissed both of these arguments above.
The .11p community wanted to re-introduce the VSPECIFIC.confirm because it was part of .11p, and was “used by the higher protocol layers”. When we drilled down into this last statement, we discovered that there was no Wave protocol associated with the VSPECIFIC.confirm event. The .11p community eventually agreed to live with the change made earlier in REVmb.

Conclusion

My conclusion is that we should remove .confirms unless:

· One of:

· They return information from the local entity (.request/.confirm)
· They allow the SME to synchronize with some OTA event (not quite sure about this one), or
· They provide a response from a remote entity (.request/.indication/.response/.confirm)
· And, there is some reasonable inferred standard protocol behaviour of the SME that is dependent on the event.

We should also remove:

any INVALID_PARAMETERS that are locally generated
any UNSPECIFIED_FAILUREs that are locally generated (except where it is the only other ReasonCode to “SUCCESS”).
any TIMEOUT ResultCodes that are locally generatedRANSMISSION_FAILURE ResultCodes

Vendor Specific parameters in a .confirm that do not have a matching .response

ResultCode parameters that now have only a single value
Another thing to note is that some of the .confirm primitives supply a VendorSpecificInfo parameter that is apparently plucked out of thin air. These were obviously the result of an over-enthusiastic application of the “every primitive must have a vendor specific element” principle. Where this occurs, the primitive is marked ** in the list below.

Changes

Editor is to remove the following .confirm primitives from clause 6. This includes removing all descriptive text, and editing Clause 6 figures to remove use of the primitive. Also scan the rest of the standard and remove any references to the .confirm. (This is very likely going to be a Null operation).
1. DEAUTHENTICATE**
2. DISSASSOCIATE **
3. RESET

4. STOP

5. MREQUEST **
6. MREPORT **
7. SETKEYS
8. DELETEKEYS

9. EAPOL(discussed and removed from list)
10. SETPROTECTION

11. DELTS **
12. HL-SYNC
13. DELBA **
14. SCHEDULE

15. NEIGHBORREPREQ

16. MLME-REMOTE-REQUEST

17. TIMING_ADVERTISEMENT

18. TDLSSETUP-REQUEST
19. TDLSSETUP-RESPONSE

20. TDLSSETUP-CONFIRM

21. TDLSTEARDOWN

22. EVLREQUEST

23. EVLREPORT

24. DIAGREQUEST

25. DIAGREPORT

26. CLINTERFERENCE REQUEST

27. CLINTERFERENCE REPORT

a. Also rename CLINTERFERENCE RESPONSE in Figure 6-19 to CLINTERFERENCE REPORT

28. TIMINGMSMTRQ
29. WNMNOTIFICATIONREQUEST
30. WNMNOTIFICATIONRESPONSE
Editor is to remove Vendor Specific parameter from the following primitives:

· START.confirm

Editor is to remove the result/status codes from .confirm primitives as follows, and remove the parameter entirely if this leaves a single code of “success”:
	.confirm Primitive
	Code to remove

	1. POWERMGT
	INVALID_PARAMETERS

	2. SCAN
	INVALID_PARAMETERS

	3. JOIN
	INVALID_PARAMETERS

TIMEOUT

	4. AUTHENTICATE
	INVALID_PARAMETERS

TOO_MANY_SIMULTANEOUS_REQUESTS

TIMEOUT

	5. ASSOCIATE
	INVALID_PARAMETERS
TIMEOUT

	6. REASSOCIATE
	INVALID_PARAMETERS

TIMEOUT

	7. STOP
	INVALID_PARAMETERS

	8. MEASURE
	INVALID_PARAMETERS

	9. CHANNELSWITCH
	INVALID_PARAMETERS

	10. TPC
	INVALID_PARAMETERS

	11. ADDTS
	TIMEOUT
Note, INVALID_PARAMETERS is present in both .response and .confirm, so is arguably OK.

	12. DLS
	INVALID_PARAMETERS

TIMEOUT

	13. ADDBA
	TIMEOUT (also remove from .response)

	14. DELBA
	INVALID_PARAMETERS

	15. LINKMEASURE
	INVALID_PARAMETERS
TIMEOUT

	16. RESOURCE-REQUEST-LOCAL
	INVALID_PARAMETERS

	17. EXTCHANNELSWITCH
	INVALID_PARAMETERS

	18. DSETPC
	INVALID_PARAMETERS

TIMEOUT

	19. ENABLEMENT
	INVALID_PARAMETERS

TOO_MANY_SIMULTANEOUS_REQUESTS
TIMEOUT

	20. TDLSSPTI
	INVALID_PARAMETERS

UNSPECIFIED_FAILURE

	21. TDLSCHANNELSWITCH
	INVALID_PARAMETERS

UNSPECIFIED_FAILURE

	22. tdlspeerpsm
	INVALID_PARAMETERS

UNSPECIFIED_FAILURE

	23. evlog
	INVALID_PARAMETERS

UNSPECIFIED_FAILURE

	24. locationcfg
	TRANSMISSION_FAILURE
UNSPECIFIED_FAILURE

	25. BTM
	INVALID_PARAMETERS

TIMEOUT
TRANSMISSION_FAILURE

UNSPECIFIED_FAILURE
(leaves list with single SUCCESS entry)

Also rename StatusCode to ResultCode in .confirm and .response.
Also delete ResultCode parameter entirely from BTM.indication.

	26. fms
	INVALID_PARAMETERS
UNSPECIFIED_FAILURE

TRANSMISSION_FAILURE

	27. tfs
	INVALID_PARAMETERS

TIMEOUT
UNSPECIFIED_FAILURE

TRANSMISSION_FAILURE

	28. sleepmode
	INVALID_PARAMETERS

TIMEOUT
UNSPECIFIED_FAILURE

TRANSMISSION_FAILURE

	29. timbroadcast
	INVALID_PARAMETERS
TRANSMISSION_FAILURE

	30. channelusage
	INVALID_PARAMETERS
UNSPECIFIED_FAILURE

	31. DMS
	MALFORMED REQUEST, REQUESTED INTERVAL TOO LONG, OVERRIDDEN DUE TO LACK OF RESOURCES.

(Note, results in deletion of ResultCode parameter)
Note, it is unclear whether the result codes of the DMS confirm are locally generated or not. They appear as though they should be remotely generated, but the .response and the DMS response frame format do not support the enumerated values shown in 6.3.67.3.2. So I have to conclude they are all locally generated, and subject to removal. Agreed.

	32. set-ess-link-parameters
	INVALID_PARAMETERS

	33. get-ess-link-parameters
	INVALID_PARAMETERS

	34. GAS
	UNSPECIFIED_FAILURE

TRANSMISSION_FAILURE
TIMEOUT – for discussion – is this use these valid (in .response too)?- valid, keep

	35. PDGAS
	Ditto

And finally:
· Remove ResultCode from DMS-TERM.indication

· Rename “TIMEOUT” to “TRANSMISSION FAILURE” in the EAPOL.confirm, and add text stating effect of receipt “This primitive communicates that the frame has been transmitted, see the procedures in 11.3.2.4.1. “

Abstract

This submission contains a proposed resolution for P802.11REVmb CID 11023 (received during the first sponsor ballot recirculation).

R1: Updated at 2011-03-16 TGmb meeting. Updates shown thus.

(Thank you to Dorothy Stanley for capturing these changes).

Submission
page 1
Adrian Stephens, Intel Corporation

