March 2004

11-04-0340-05-000i-clause-8.5-edits.doc

IEEE P802.11
Wireless LANs

Clause 8.5 edits

Date:
March 16, 2004
Author:
Tim Moore

Microsoft

1 Microsoft Way, Redmond, WA

Phone: 425-703-9861

Fax:

e-mail:timmoore@microsoft.com

Abstract

This document contains comment resolution proposals for 802.11i Sponsor Ballot. Contributors to this document are Tim Moore, Jouni Malinen.

48
8.3.2.3.2 Figure 21

Change “Plumb” to “Configure”

8.5.1

Change “plumbed” to “configured”

59

8.5.2

1. The value 0 (Group) indicates the message is not part of a PTK derivation.

To

1. The value 0 (Group/STAKey) indicates the message is not part of a PTK derivation.

60

8.5.2.1

The originating STA requests the STAKey by sending an EAPOL-Key frame to the AP, with the Request bit set and with a MAC Address IE in the Key Data field.

To

The originating STA requests the STAKey by sending an EAPOL-Key frame to the AP, with the Key Type set to 0, Request bit set to 1 and with a MAC Address IE in the Key Data field.

61

8.6

8.6.1 Mapping PTK to TKIP keys
Clause 8.5.1.2 defines the EAPOL Temporal Key derived from PTK.

A STA shall use bits 0-127 of Temporal Key as its input to the TKIP Phase 1 and 2 Mixing Functions.

A STA shall use bits 128-191 of Temporal Key as the Michael key for MSDUs from the Authenticator’s STA to the Supplicant’s STA or from the initiator STA to peer STA for STAKeys.

A STA shall use bits 192-255 of Temporal Key as the Michael key for MSDUs from the Supplicant’s STA to the Authenticator’s STA or from the peer STA to initiator STA for STAKeys.

8.6.2 Mapping GTK to TKIP keys
Clause 8.5.1.3 defines the EAPOL Temporal Key derived from GTK.

A STA shall use bits 0-127 of Temporal Key as the input to the TKIP Phase 1 and 2 Mixing Functions.

A STA shall use bits 128-191 of Temporal Key as the Michael key for MSDUs from the Authenticator’s STA to the STA or from the initiator STA to peer STA for STAKeys.

A STA shall use bits 192-255 of Temporal Key as the Michael key for MSDUs from the Supplicant’s STA to the Authenticator’s STA or from the peer STA to initiator STA for STAKeys.

10.3.11.1.2

	Authenticator/Supplicant
	Boolean
	TRUE, FALSE
	Whether the key is configured by the Authenticator or Supplicant, TRUE indicates that the Michael integrity key is for Tx.

	Authenticator/Supplicant

Initiator/Peer
	Boolean
	TRUE, FALSE
	Whether the key is configured by the Authenticator or Supplicant, TRUE indicates Authenticator or Initiator.

62
8.5.2.2

I: Install bit: Tx/Rx for Group key and Install/Not install for the pairwise key. This is the EAPOL-Key Information Install Flag bit.

To

I: Install bit: Install/Not install for the pairwise key. This is the EAPOL-Key Information Install Flag bit.

63

8.5.3

Message 3. Authenticator  Supplicant: 10

EAPOL-Key(0,1,1,1,P,KeyRSC,ANonce,MIC,RSNIE,GTK[N]) 11

Message 4. Supplicant  Authenticator: EAPOL-Key(0,1,0,0,P,0,0,MIC,0,0)

to

Message 3. Authenticator  Supplicant:

EAPOL-Key(1,1,1,1,P,KeyRSC,ANonce,MIC,RSNIE,GTK[N])

Message 4. Supplicant  Authenticator: EAPOL-Key(1,1,0,0,P,0,0,MIC,0,0)

64

8.5.3.3

Delete line

“GTK Length = Version Specific “

65

8.5.4.2
Delete text

The Authenticator shall use MLME-DEAUTHENTICATE.request primitive to deauthenticate the STA if message 2 of the Group Key Handshake has not been received by the Authenticator after the timeout period of dot11RSNAConfigGroupUpdateCount times dot11RSNAConfigGroupUpdateTimeOut after initiating the Group Key Handshake. The Authenticator may fail to complete the Group Key Handshake because the AP is unable to transmit the message for a period of time due to signal fading,

8.5.4.3

If the Authenticator does not receive a reply to its messages, its shall attempt dot11RSNAConfigPairwiseUpdateCount transmits of the message, plus a final timeout. The retransmit timeout value shall be 100 milliseconds for the first timeout, half the listen interval for the second timeout, and the listen interval for subsequent timeouts. If there is no listen interval, then 100 milliseconds shall be used for all timeout values. If it still has not received a response after this, then the Authenticator’s STA should use MLME-DEAUTHENTICATE.request primitive to deauthenticate the STA.

69
8.5.2

Key Length. This field is two (2) octets in length, represented as an unsigned binary number. The value defines the length in octets of the key to configure into IEEE 802.11.

to

Key Length. This field is two (2) octets in length, represented as an unsigned binary number. The value defines the length in octets of the Pairwise Temporal Key to configure into IEEE 802.11.

70

8.5.4

Delete text

If the GTK cipher suite is TKIP, the Authenticator shall initiate the exchange if its STA detects a TKIP MIC integrity failure using the GTK, receives a Michael MIC Failure Report, or on a management event.

71
8.5.4

Delete text

If an AP cannot send the EAPOL-Key frame containing a GTK to a STA, the AP may queue the message. If the AP deletes the message, the AP should send a Deauthentication message and then delete the association state by setting the Disconnect failure event in the Authenticator state machine.

72

8.5.4.1

Encrypted Key Data = 0

To

Encrypted Key Data = 1

75

8.5.3.6

Delete text

Informative Note: The “Initial exchange complete” bit is set in the last message from the Authenticator to the Supplicant to inform the Supplicant that the last key required to initialize the Supplicant has been sent. Once set the “Initial exchange complete” bit should be set in any EAPOL-Key frames from the Authenticator until a 4-Way Handshake is initiated.
88
8.5.2

Key Data Length. This field is two (2) octets in length, taken to represent an unsigned binary number. This represents the length of the Key Data field in octets. If the Encrypted Key Data flag is set, the length is the length of the Key Data after encryption.

To

Key Data Length. This field is two (2) octets in length, taken to represent an unsigned binary number. This represents the length of the Key Data field in octets. If the Encrypted Key Data flag is set, the length is the length of the Key Data after encryption (including any padding and expansion by the key wrap).
123

8.5.1

In an ESS, AA is the wireless shall be the BSSID used by the AP, and SPA the MAC address of the STA.

to

In an ESS, the AA and AP’s BSSID are equal, and the SPA and the STA’s MAC address are equal.
7

4

Add in the correct place

“KDE
Key Data Encapsulation”
8.5.2

The encrypted GTK is included and the GTK Length indicates the unencrypted length of the GTK in octets. The GTK is encrypted as specified by the Key descriptor version.

to

An encapsulated GTK shall be included and the unencrypted length of the GTK is six less than the length of the GTK KDE in octets. The entire Key Data field shall be encrypted as specified by the Key descriptor version.
The Key Data field is a variable-length field that is used to include any additional data required for the key exchange which is not included in the fixed fields of the EAPOL-Key descriptor. The additional data may be zero or more Information Element(s) (such as the RSN IE), GTK(s), STAKey(s), or PMKID(s), or vendor-specific data. Information Elements sent in the Key Data field include the Element ID and Length fields. Data other than Information Elements shall be encapsulated using the following format:

to

The Key Data field is a variable-length field that is used to include any additional data required for the key exchange which is not included in the fixed fields of the EAPOL-Key descriptor. The additional data may be zero or more Information Element(s) (such as the RSN IE), and zero or more KDE(s) (such as GTK(s), STAKey(s), or PMKID(s)). Information Elements sent in the Key Data field include the Element ID and Length fields. KDEs shall be encapsulated using the following format:

STAs shall ignore any information elements they do not understand.

To

STAs shall ignore any IEs or KDEs they do not understand.

Data fields that are encrypted but do not contain the GroupKey or STAKey information element shall be accepted.

to

Data fields that are encrypted but do not contain the GroupKey or STAKey KDE shall be accepted.

If the GroupKey or STAKey information element is included in the Key Data field but the Key data field is not encrypted the EAPOL-Key frames shall be ignored.

To
If the GroupKey or STAKey KDE is included in the Key Data field but the Key data field is not encrypted the EAPOL-Key frames shall be ignored.

The format of the GTK IE is as follows:

To

The format of the GTK KDE is as follows:

If the value of the Tx is 1 then the IEEE 802.1X component shall configure the Temporal Key derived from this IE into its IEEE 802.11 STA for both transmission and reception.

To

If the value of the Tx is 1 then the IEEE 802.1X component shall configure the Temporal Key derived from this KDE into its IEEE 802.11 STA for both transmission and reception.

If the value of the Tx is 0 means IEEE 802.1X component shall configure the Temporal Key derived from this IE into its IEEE 802.11 STA for reception only.

To

If the value of the Tx is 0 means IEEE 802.1X component shall configure the Temporal Key derived from this KDE into its IEEE 802.11 STA for reception only.

The format of the STAKey and Peer MAC Address IE is as follows

To

The format of the STAKey and Peer MAC Address KDE is as follows

The format of the MAC Address IE is as follows

To

The format of the MAC Address KDE is as follows

85

8.5.2

Table 7

	XX-XX-XX
	1
	GTK Key Data Encapsulation

	XX-XX-XX
	2
	STAKey Key Data Encapsulation

	XX-XX-XX
	3
	MAC Address Key Data Encapsulation

	XX-XX-XX
	4
	PMKID Key Data Encapsulation

Figure 37 – MAC Address Encapsulation Format

To

Figure 37 – MAC Address Key Data Encapsulation Format
Figure 38 – PMKID Encapsulation Format

To

Figure 38 – PMKID Key Data Encapsulation Format
Version 2 continuation
7

3

Key Data Encapsulation

Format for encapsulation of information other than IEs in the EAPOL-Key Kay Data field.

86
5.4.3.2

In an RSNA, Deauthentication also destroys any related PTKSAs and GTKSAs that exists in the STA and closes the associated IEEE 802.1X Controlled Port.

to

In an RSNA, Deauthentication also destroys any related PTKSA, GTKSA and STAKeySAs that exists in the STA and closes the associated IEEE 802.1X Controlled Port.

8.3.2.3.4
2. Each transmitter shall maintain a single TSC (48 bit counter) for each PTKSA, GTKSA and STAKeySA.

5. A receiver shall maintain a separate set of TKIP TSC replay counters for each PTKSA, GTKSA and STAKeySA.

7. For each PTKSA, GTKSA and STAKeySA,

8.3.3.4.3

2. Each transmitter shall maintain a single PN (48 bit counter) for each PTKSA, GTKSA and STAKeySA.

4. A receiver shall maintain a separate set of PN replay counters for each PTKSA, GTKSA and STAKeySA.
5. For each PTKSA, GTKSA and STAKeySA,

Insert before current 8.5.5
8.5.5 STAKey Handshake

A STA may request the AP to establish a STAKeySA between itself and another STA associated with the AP, for direct secure communication. Unlike the 4-Way and Group Handshake, the STAKey Handshake is initiated by a STA. Thus, the STAKey Request message is protected by the initiator STA’s EAPOL-Key Request Replay Counter. It is a monotonically increasing number; the AP maintains a separate request replay counter per STA to enforce replay protection.

STAKey Request: Initiator STA Authenticator:

EAPOL-Key(1,1,0,0,G,0,0,MIC,0,Peer MAC IE)

STAKey Message1: AuthenticatorPeer STA:

EAPOL-Key(1,1,1,1,G,0,0,MIC,0,Initiator MAC IE, STAKey)

STAKey Message2: Peer STAAuthenticator:

EAPOL-Key(1,1,0,0,G,0,0,MIC,0,Initiator MAC IE)

STAKey Message1: AuthenticatorInitiator STA:

EAPOL-Key(1,1,1,1,G,0,0,MIC,0, Peer MAC IE, STAKey)

STAKey Message2: Initiator STAAuthenticator:

EAPOL-Key(1,1,0,0,G,0,0,MIC,0, Peer MAC IE)

8.5.5.1 STAKey Request Message

STAKey Request uses the following values for each of the EAPOL-Key frame fields

Descriptor Type = N – See Clause 8.5.2

Key Information.

Version Number = 1 (RC4 encryption with HMAC-MD5) or 2 (NIST AES key wrap with HMAC-SHA1-128)

Key Type = 0 (Group)

Install = 0

Key Ack = 0

Key MIC = 1

Secure = 1

Error = 0

Request = 1

Encrypted Key Data = 0

Reserved = 0

Key Length = 0

Key Replay Counter = Request Replay Counter of Initiator-STA

Key Nonce = 0

Key IV = 0 (Version 2) or random (Version 1)

Key RSC = 0

Key MIC = MIC(KCKinitiator-STAAP, EAPOL)

Key Data Length = length in octets of Key Data
Key Data = Peer MAC IE (see Figure 37)

A STA sends a protected STAKey Request message to the AP with the MAC address of the peer STA. On reception of a STAKey Request, the AP verifies that the received Request Replay Counter is equal to or larger its local copy of the counter. It then verifies that the MIC is valid and increments the STA’s Request Replay counter value.

8.5.5.2 STAKey Message 1

STAKey Message 1 uses the following values for each of the EAPOL-Key frame fields

Descriptor Type = N – See Clause 8.5.2

Key Information.

Version Number = 1 (RC4 encryption with HMAC-MD5) or 2 (NIST AES key wrap with HMAC-SHA1-128)

Key Type = 0 (Group)

Install = 1

Key Ack = 1

Key MIC = 1

Secure = 1

Error = 0

Request = 0

Encrypted Key Data = 1

Reserved = 0

Key Length = 0

Key Replay Counter = n+3 (assuming that this follows the Group Key Handshake between the Peer STA and the AP)

Key Nonce = 0

Key IV = 0 (Version 2) or random (Version 1)

Key RSC = 0

Key MIC = MIC(KCKpeer-STAAP, EAPOL)

Key Data Length = length in octets of Key Data

Key Data = encrypted Initiator MAC IE and STAKey(see Figure 36)

In response to a STAKey Request message, the AP sends STAKey Message 1 to the peer STA, whose address is included in the request message. On reception of a STAKey Message 1, the STA verifies that the Replay Counter was never seen before in the context of the current PMKSA. It then validates the MAC, and updates the local Replay Counter. Next, the peer STA configures the STAKey for direct communication with the initiator STA. Finally, it sends STAKey Message 2 to the AP.

8.5.5.3 STAKey Message 2

STAKey Request uses the following values for each of the EAPOL-Key frame fields

Descriptor Type = N – See Clause 8.5.2

Key Information.

Version Number = 1 (RC4 encryption with HMAC-MD5) or 2 (NIST AES key wrap with HMAC-SHA1-128)

Key Type = 0 (Group)

Install = 0

Key Ack = 0

Key MIC = 1

Secure = 1

Error = 0

Request = 0

Encrypted Key Data = 0

Reserved = 0

Key Length = 0

Key Replay Counter = n+3

Key Nonce = 0

Key IV = 0 (Version 2) or random (Version 1)

Key RSC = 0

Key MIC = MIC(KCKpeer-STAAP, EAPOL)

Key Data Length = length in octets of Key Data
Key Data = Initiator MAC IE (see Figure 37)

STAKey Message 2 is integrity and replay protected acknowledgment to STAKey Message 1 from the peer STA to the AP. Upon reception of STAKey Message 2, the AP first verifies that the received replay counter is the same as the one it used in Message 1. After that it verifies the MAC, and updates the replay counter corresponding to the peer STA. The next step is to send STAKey Message 1 to the initiator STA.

8.5.5.4 STAKey Messages 1 and 2 to the initiator STA

After the 2-Way STAKey Handshake with the peer STA, the AP initiates a 2-Way Handshake with the initiator STA. The following differences between the two sets of exchanges are notable

1. The same STA key is included in both Message 1s.

2. The Replay Counter, KCK and KEK correspond to the PMKSA between the AP the initiator STA.

3. If this exchange fails, the AP notifies the peer STA to delete the STAKeySA.
66

8.5.6

Change PTKCALCNEGOTIATING,

To

PTKCALCNEGOTIATING, PTKCALCNEGOTIATING2,

change

REKEYNEGOTIATING

To

IDLE, REKEYNEGOTIATING

Change

SETKEYS

To

GTK_INIT, SETKEYS

Update Figures 43 and 44

[image: image1.emf]Send EAPOL (0, 0, 1, 0, P, 0, ANonce, 0, 0, 0)

TimeoutCtr++

PTKSTART

Send EAPOL (1, 1, 1, Pair, P, RSC, ANonce, MIC (PTK), RSNIE, GTK [GN])

TimeoutCtr++

PTKINITNEGOTIATING

TimeoutEvt

EAPOLKeyReceived&&

!Request&&K==Pairwise

Anonce = Counter++

ReAuthenticationRequest = FALSE

AUTHENTICATION2

PMK=AAA Key

INITPMK

! PSK&&

802.1X::keyRun

if Pair

==

TRUE

MLME-SetKeys.Request (0, Tx/Rx, PTK)

MLME-SetProtection.Request (TA, Tx, Rx)

.

if IBSS==

TRUE then

keycount++

if keycount==2then

802.1X::PortValid = TRUE

else

802.1X::PortValid = TRUE

endif

802.1X::keyDone = TRUE

PTKINITDONE

EAPOLKeyReceived

&&!Request

&&K== Pairwise

&& MICVerified

TimeoutEvt

PMK=PSK

INITPSK

PSK&&

802.1X::keyRun

TimeoutCtr>N

GNoStations++

PTK = 0

802.1X::portControl = Auto

802.1X::portEnable = TRUE

AuthenticationRequest = FALSE

AUTHENTICATION

AuthenticationRequest

UCT

ReAuthenticationRequest

! 802.1X::keyAvailable

802.1X::keyAvailable

TimeoutCtr>N

PTK=Calc PTK(ANonce,SNonce)

PTKCALCNEGOTIATING

MICVerified

EAPOLKeyReceived &&

!Request&&K== Pairwise

802.1X::keyAvailable

to DISCONNECT

to DISCONNECT

to KEYERROR

TimeoutCtr=0

PTKCALCNEGOTIATING2

TimeoutEvt

UCT

[image: image2.emf]GNoStations—

DeauthenticationRequest = FALSE

DISCONNECTED

UCT

Keycount = 0

If GUpdateStationKeys == TRUE

GKeyDoneStation—

GUpdateStationKeys = FALSE

If Unicast cipher supported by Authenticator AND (ESS OR ((IBSS or

WDS) and Local AA > Remote AA)))

Pair = TRUE

802.1X::portEnable = FALSE

MLME-DeleteKeys.Request(PTK)

802.1X::portValid = FALSE

TimeoutCtr = 0

INITIALIZE

Init

STADisconnect()

Disconnect = FALSE

DISCONNECT

UCT

DeauthenticationRequest

Disconnect

dot11RSNAConfigSALifetime timeout

from INITPMK, PTKSTART

[image: image3.emf]GUpdateStationKeys=FALSE

Send EAPOL(1,1,1,!Pair,G,RSC,GNonce,MIC(PTK),GTK[GN])

GTimeoutCtr++

REKEYNEGOTIATING

GKeyDoneStations

–-

MLME-SetProtection.Request(TA,Tx_Rx)

REKEYESTABLISHED

EAPOLKeyReceived

&&!Request

&&K==Group&& MICVerified

TimeoutEvt

GUpdateStationKeys

GKeyDoneStations—

Disconnect = TRUE

KEYERROR

TimeoutCtr

>N

GTimeoutCtr = 0

IDLE

Init

UCT

UCT

GUpdateStationKeys=FALSE

[image: image4.emf]GTKReKey = FALSE

Swap(GM. GN)

GKeyDoneStations = GNoStations

GTK[GN] = CalcGTK()

For each STA

GUpdateStationKeys = TRUE

SETKEYS

GTKAuthenticator

MLME-SetKeys.Request(GN,Tx/Rx,GTK[GN])

SETKEYSDONE

GKeyDoneStations==

0

GTK[0..N] = 0

GN =1

GM = 2

GTK[GN] = CalcGTK()

GTK_INIT

GInit

GTKReKey

GTKReKey

8.5.6.1.1

Add

PTKCALCNEGOTIATING2: This state is entered when the second EAPOL-Key frame for the 4-Way Handshake MIC is verified.

8.5.6.1.2

Add

IDLE: This state is entered when there is no Group Key Handshake occuring.

8.5.6.1.3

Add

GTK_INIT: This state is entered on system initialization.

8.5.6.2
Add

Disconnect – This variable is set to TRUE when the STA should initiate a Deauthentication.
GTimeoutCtr – This variable maintains the count of EAPOL-Key receive timeouts for the Group Key Handshake. It is incremented each time a timeout occurs on EAPOLKeyReceived event and is initialized to 0. Annex D contains details of the timeout values. The Replay Counter for the EAPOL-Key frame shall be incremented on each transmission of the EAPOL-Key frame.

Delete text for GKeyReady, GInitAKeys, GInitDone and IntegrityFailed (including informational note)

8.5.6.3

Delete text for CheckMIC()

58

8.5.2

b) RC4 is the EAPOL-Key encryption algorithm used to protect the distributed GTK.

To

b) RC4 is the EAPOL-Key encryption algorithm used to protect the Key Data field.

b) The NIST AES key wrap is the EAPOL-Key encryption algorithm used to protect the distributed GTK.

To

b) The NIST AES key wrap is the EAPOL-Key encryption algorithm used to protect the Key Data field.

1. The value 1 shall be used for all EAPOL-Key frames to and from a STA when the Group and Pairwise cipher is TKIP for Key Descriptor 1.

To

1. The value 1 shall be used for all EAPOL-Key frames to and from a STA when the Group and Pairwise cipher are not AES-CCMP for Key Descriptor 1.

Submission
page 1
Tim Moore, Microsoft

_1140952867.vsd

_1140952884.vsd

_1140952900.vsd

_1140952836.vsd

