July 2003

doc.: IEEE 802.11-00/483

IEEE P802.11
Wireless LANs

Group Key Optimization
Date:
July 1, 2003
Author:
Tim Moore

Microsoft

1 Microsoft Way, Redmond, WA, 98052

Phone: 1-425-703-9861

Fax:

e-Mail: timmoore@microsoft.com
Abstract

Summary

Allow the GTK to be added to message 3 of the 4-way handshake. This has the following advantages:
1. Optimizates the number of round trips needed to do the key handshake

2. Removes the key synchronization problem of installing Pairwise keys and receiving Group update messages

3. Removes the delay in key handshake due to the need to synchronize the sending of group key updates to the Pairwise install

4. Removes the synchronization issue in IBSS of installing Pairwise keys while the other STA is still completeing its 4-way handshake.

Section 8.5.2

Replace Figure 64 with
	Descriptor Type – 1 octet

	Key Information – 2 octets
	Key Length – 2 octets

	Key Replay Counter – 8 octets

	Key Nonce – 32 octets

	EAPOL-Key IV – 16 octets

	Key RSC – 8 octets

	STA MAC Address – 6 octets

	GTK Length -2 octets

	Key MIC – 16 octets

	Key Data Length – 2 octets
	Key Data – n octets

Replace text for EAPOL Key ID with

· EAPOL Key ID (bits 4 and 5): specifies the IEEE 802.11 Key ID of the temporal key of the key derived from the message. The value of this shall be the key id of the GTK.

Group keys shall not use Key ID 0, except in a TSN. This means that key IDs 1 to 3 are available to be used to identify Group keys. This document recommends that implementations reserve key IDs 1 and 2 for Group Keys, and that key ID 3 is not used.

· Secure (bit 9): this bit is set once the initial key exchange is complete. That is, the secure bit in the EAPOL-Key frame is used to inform when the pairwise key exchange is complete and the first Group Key Handshake is complete. It shall be initialized to 0 (not secure) at the beginning of any 4-way handshake.

To

· Secure (bit 9): this bit is set once the initial key exchange is complete. That is, the secure bit in the EAPOL-Key frame is used to inform when the pairwise key exchange is complete and the first GTK has been transferred. It shall be initialized to 0 (not secure) at the beginning of any 4-way handshake.

The Supplicant and Authenticator initialize the secure bit to zero. The Authenticator sets the secure bit when it sends the first Group EAPOL-Key frame to the Supplicant and the Supplicant sets the secure bit on receiving the first Group EAPOL-Key frame. The Supplicant clears the secure bit on receiving a TKIP integrity error from the MAC or on receiving an EAPOL-Key frame with the secure bit cleared. The Authenticator clears the secure bit on receiving a TKIP integrity error from the Supplicant or from its STA.

To

The Supplicant and Authenticator initialize the secure bit to zero. The Authenticator sets the secure bit when it sends the first GTK to the Supplicant and the Supplicant sets the secure bit on receiving the first EAPOL-Key frame after receiving the GTK. The Supplicant clears the secure bit on receiving a TKIP integrity error from the MAC or on receiving an EAPOL-Key frame with the secure bit cleared. The Authenticator clears the secure bit on receiving a TKIP integrity error from the Supplicant or from its STA.

Replace Key RSC text before table 8 with

Key RSC. This field is eight (8) octets in length. It contains the receive sequence counter (RSC) for the key being installed in IEEE 802.11. It is only used in message 3 of the 4-way handshake and the first message of the Group key update, where it is used to synchronize the IEEE 802.11 replay state. The Key RSC is for the Group key. It shall contain 0 in other messages. If the Key RSC is less than eight octets in length the remaining octets shall be set to 0. The least significant octet of the TSC or PN shall be in the first octet of the Key RSC.

Informative Note: The Key RSC for TKIP is the TSC in the first 6 octets and for CCMP is the PN in the first 6 octets.

Table 1—Key RSC TSC Table

	KeyRSC 0
	KeyRSC 1
	KeyRSC 2
	KeyRSC 3
	KeyRSC 4
	KeyRSC 5
	KeyRSC 6
	KeyRSC 7

	TSC0
	TSC1
	TSC2
	TSC3
	TSC4
	TSC5
	0
	0

	PN0
	PN1
	PN2
	PN3
	PN4
	PN5
	0
	0

For WEP, the key RSC value shall be set to 0 on transmit, and shall not be used at the receiver.
Replace EAPOL Key ID with

Key GTK Length
This field is two octets in length, taken to represent an unsigned binary number. It is 0 except for Message 3. The value defines the length of the Group key in octets to be configured into the IEEE MAC not the encrypted GTK length. For example, a value of 32 in this field indicates a 256 bit key. In Message 3 the GTK is encrypted; according to the Key Descriptor Version; and is added at the end of the EAPOL-Key Data field.

Replace Key Data text with
Key Data.

4-way message 3: This field contains one or two RSN IEs and an encrypted GTK.
The Key Data Length is set to the length of the Data field.

The RSN IEs are from and including the RSN IE id. An AP shall insert the second RSN IE only to indicate the pairwise key cipher suite the STA must use when the STA selects an enabled pairwise key cipher suite that policy disallows this particular STA and must be one of the ciphers advertised by the Authenticator. All other fields in the second RSN IE must be identical to the first RSN IE.
The RSN IEs shall not be not be encrypted. The Authenticator shall insert the RSN IE it sent in its Beacon or Probe Response. The Supplicant shall bit-wise compare the required RSN IE against the RSN IE received in the Beacon or Probe Response. If the second optional RSN IE is present, the STA shall either use that cipher suite with its pairwise key, or it shall disassociate. When both Beacon and Probe Response RSNIEs are received by the STA, the Probe Response RSN IE shall be used for the bit-wise compare. In either case, if the values do not match, then the receiver shall consider the RSN IE modified and shall use the MLME-DEAUTHENTICATE.request primitive to break the association. A security error should be logged at this time.
The encrypted GTK is included and the GTK Length contains the unencrypted length of the GTK. The GTK will be encrypted as specified by the Key descriptor version.
Section 8.5.5.2, Replace StaProcessEAPOL-Key with:

StaProcessEAPOL-Key (S, M, A, T, N, K, D, RSC, ANonce, GTK Length, MIC, GTK)

{

TPTK (PTK

TSNonce (0

PRSC (0

UpdatePTK (0

State (UNKNOWN

if M = 1 then

if Check MIC(PTK, EAPOL-Key message) fails then
State (FAILED

else

State (MICOK
endif
endif
if K = P && D = 0 then
if State != Failed then
if PSK exists then – PSK is a pre-shared key

PMK (PSK
else

PMK (Master Session Key from 1X

endif

TSNonce (SNonce

if ANonce != PreANonce then
TPTK (Calc PTK(PMK, ANonce, TSNonce)

PreANonce (ANonce

endif
endif

if State = MICOK then
PTK (TPTK

UpdatePTK (T

if UpdatePTK = 1 then
if GTK Length = 0 then
PRSC (RSC

endif
if Set PTK(0, TRUE, PRSC, PTK) fails then
invoke MLME-DEAUTHENTICATE.request

endif

MLME.SetProtection.Request(TA, Rx)

endif

if GTK Length != 0 then
if (GTK[N] (Decrypt GTK) succeeds then
if Set GTK(N, 0, RSC, GTK[N]) fails then
 invoke MLME-DEAUTHENTICATE.request

endif

else

State (FAILED

endif

endif
endif

else if K = G && D = 0 then

 if State = MICOK then
if (GTK[N] (Decrypt GTK) succeeds then
if Set GTK(N, T, RSC, GTK[N]) fails then
invoke MLME-DEAUTHENTICATE.request

endif

else

State (FAILED

endif
else

State (FAILED

endif

else if D = 1 then // DL key

if State = MICOK then
if (DLK (Decrypt DLK) succeeds then
if Set DLK(0, 1, RSC, DLK) fails then
invoke MLME-DEAUTHENTICATE.request

endif

else

State (FAILED

endif
else

State (FAILED

endif
endif
if A = 1 && State != Failed then
Send EAPOL(0, 1, 0, 0, 0, K, 0, TSNonce, 0, 0, MIC(TPTK), 0)

endif

if UpdatePTK = 1 then
MLME.SetProtection.Request(TA, Tx_Rx)
endif

if State = MICOK && S = 1 then
MLME.SetProtection.Request(TA, Tx_Rx)
802.1X::portValid = TRUE

endif

}

Add after the StaProcessEAPOL-Key pseudo code the following text:

When processing message 3, the GTK is decrypted from the EAPOL-Key message and installed. The PTK shall be installed before the GTK.
Section 8.5.6 replace figure 69 with:

[image: image1.emf]GNoStations--

DISCONNECTED

Send EAPOL(0, 0 ,1 , 0, 0, P, ANonce, 0, 0)

TimeOutCtr++

PTK START

Send EAPOL(0, 1, 1, Pair, 0, P, ANonce, GTK Length, MIC(PTK), 0)

PTKINITNEGOTIATING

UCT

TimeoutEvt

EAPOLKeyRecvd

&& K == Pairwise

PInitAKeys = False

GUpdateStationKeys = False

Send EAPOL(1, 1, 1, !Pair, GN, G, GNonce, MIC(PTK), GTK[GN]);

TimeOutCtr++

REKEYNEGOTIATING

MSK = 0

GInitAKeys = PInitAKeys = IntegrityFailed = FALSE

If Unicast cipher supported by Authenticator

 AND (ESS OR (IBSS and Local AA > Remote AA)))

Pair = TRUE

802.1X::portEnable = FALSE

Remove PTK

802.1X:portValid = FALSE

INITIALIZE

ANonce = Counter++;

AUTHENICATION2

PMK = RadiusKey

INITPMK

Init

!PSK &&

802.1X::keyRun

GTKReKey = FALSE

If GInitDone == FALSE {

GTK[0..N] = 0;

GN = 1

GM = 2

}

Else

Swap(GM,GN)

GInitDone = TRUE

GKeyDoneStations = GNoStations

GNonce = Counter++;

GTK[GN] = Calc GTK(GNonce);

GUpdateStationKeys = TRUE

SETKEYS

GTKAuthenticator &&

(GTKReKey

|| (GInitAKeys && !GInitDone))

Check MIC(PTK)

GKeyDoneStations–-

TimeOutCtr = 0

MLME.SetProtection(TA, TX_Rx)

REKEYESTABLISHED

EAPOLKeyRecieved

&& K == Group

&& MICVerified

SetGTK(GN, Tx/Rx, GTK[GN])

GKeyReady = True

SETKEYSDONE

GKeyDoneStations == 0

TimeoutEvt

GUpdateStationKeys

|| GKeyReady

GKeyDoneStations--

KEYERROR

TimeoutCtr>N

UCT

STADisconnect()

DISCONNECT

UCT

DeauthenticationRequest

If Pair == TRUE

Set PTK(0, Tx/RX, PTK)

MLME.SetProtection.Request(TA, Tx_Rx)

If GTK Length

802.1X::PortValid = TRUE

802.1X::keyDone = TRUE

GInitAKeys = TRUE

PTKINITDONE

EAPOLKeyRecvd

&& K == Pairwise

&& MICVerified

TimeoutEvt

PMK = PSK

INITPSK

PSK &&

802.1X::keyRun

Disconnect

TimeoutCtr>N

GNoStations++

PTK = 0;

802.1X::portControl = Auto;

802.1X::portEnable = True;

AUTHENICATION

AuthenticationRequest

UCT

ReAuthenticationRequest

!802.1X::keyAvailable

802.1X::keyAvailable

TimeoutCtr>N

PTK = Calc PTK(ANonce, SNonce)

PTKCALCNEGOTIATING

MICVerified

EAPOLKeyRecvd

&& K == Pairwise

802.1X::keyAvailable

Add to end of PTKINITNEGOTIATING text:

When Message 3 of the 4-way handshake is sent in state PTKINITNEGOTIATING, the encrypted GTK shall be sent at the end of the data field and the GTK length is put in the GTK Length field.

Delete text from section 8.5.6.2

PInitAKeys – This variable is set to TRUE when the Authenticator is ready to send a Group key to its Supplicant after initialization.

Section 5.9.2

Add

e. Transport the GTK from Authenticator to Supplicant.

Section 5.9.3.2

For stations S2 and S3 to decrypt multicast/broadcast frames from S1, B1 must be sent to S2 and S3. This is done using the Group Key Handshake. S1 initiates the Group Key Handshake with S2 and S3.

To

For stations S2 and S3 to decrypt multicast/broadcast frames from S1, B1 must be sent to S2 and S3. This is done using the 4-way handshake or the Group Key Handshake. S1 initiates the Group Key Handshake with S2 and S3.

In a similar manner S3 needs to complete 4-way and Group Key Handshakes with S1 and S2, to deliver B3 to S1 and S2.

To

In a similar manner S3 needs to complete 4-way and optionally the Group Key Handshakes with S1 and S2, to deliver B3 to S1 and S2.

In total there are six 4-way handshakes and six group key updates, or N((N–1) exchanges among N STAs.

To

In total there are six 4-way handshakes and up to six group key updates, or N((N–1) exchanges among N STAs.

The Group Key Handshake sends the broadcast/multicast keys to the correct STAs. The 4-way handshake is used to derive the unicast key. However, since in IBSS there are two 4-way handshakes between any two STAs, the unicast key used between any two STAs is from the 4-way handshake initiated by the STA with the lowest MAC address.

To

The Group Key Handshake can be used to send the broadcast/multicast keys to the correct STAs. The 4-way handshake is used to derive the unicast key and optionally to send the broadcast/multicast key to the correct STAs. However, since in IBSS there are two 4-way handshakes between any two STAs, the unicast key used between any two STAs is from the 4-way handshake initiated by the STA with the lowest MAC address.

Section 5.9.3.3

Error! Reference source not found. depicts the usage of the 4-way and Group Key Handshake when a STA joins an IBSS. An IBSS that is configured to use a pre-shared key will only use the 4-way and Group Key Handshakes. An IBSS that is configured to use IEEE 802.1X will need to use IEEE 802.1X and EAP to generate a PMK between each pair of STAs before the 4-way and Group Key Handshakes may be started.

To

Error! Reference source not found. depicts the usage of the 4-way and optionally the Group Key Handshake when a STA joins an IBSS. An IBSS that is configured to use a pre-shared key will only use the 4-way and optionally the Group Key Handshakes. An IBSS that is configured to use IEEE 802.1X will need to use IEEE 802.1X and EAP to generate a PMK between each pair of STAs before the 4-way and Group Key Handshakes may be started.

Section 8.4.1

In an IBSS each STA defines its own group key to secure its broadcast/multicast transmissions. After establishing a security association, each STA shall use the Group Key Handshake to distribute its transmit Group Key to its new peer STA.

To

In an IBSS each STA defines its own group key to secure its broadcast/multicast transmissions. After establishing a security association, each STA shall use either the 4-way handshake or the Group Key Handshake to distribute its transmit Group Key to its new peer STA.

Section 8.4.8
Add

4. Optionally, transfer GTK form Authenticator to Supplicant

Section 8.4.9
Each Authenticator also uses the PTK negotiated by the exchange it initiates to distribute its own Group Transient Key. Each Authenticator generates its own Group key, and uses the Group Key handshake to transfer the GTK to other STAs with whom it has completed a 4-way handshake.

To

Each Authenticator also uses the PTK negotiated by the exchange it initiates to distribute its own Group Transient Key. Each Authenticator generates its own Group key, and uses the 4-way handshake or the Group Key handshake to transfer the GTK to other STAs with whom it has completed a 4-way handshake.

Section 8.5.3.3

Message 3 uses the following values for each of the EAPOL-Key frame fields

Descriptor Type = N – See Clause 8.5.2

Key Information.

Version = 1 (RC4 encryption with HMAC-MD5) or 2 (NIST AES key wrap with HMAC-SHA1-128) – same as Message 1

Key Type = 1 (Pairwise) – same as Message 1

Key Index = GTK Key ID
Install = 0/1 – 0 only if AP does not support key mapping keys

Key Ack = 1

Key MIC = 1

Secure = 1
Error = 0 – same as Message 1

Request = 0 – same as Message 1

Reserved = 0 – unused by this protocol version

Key Length = Cipher suite specific; see Error! Reference source not found..

Key Replay Counter = n+1
Key Nonce = ANonce – same as Message 1

Key IV = 0 – unused by the 4-way handshake

Key RSC = starting sequence number Authenticator’s STA will use in packets protected by GTK
GTK Length = Cipher suite specific
Key MIC = MIC(KCK, EAPOL) – MIC computed over the body of this EAPOL-Key frame with the Key MIC field first initialized to 0.

Key Data Length = length in octets of included RSN IEs

Key Data = the AP's Beacon/Probe RSN IE, and, optionally, a second RSN IE that is the Authenticator’s unicast cipher suite assignment and an encrypted GTK.

Section 8.5.3.5
1. The Authenticator sends an EAPOL-Key frame containing ANonce, the RSN IE from its Beacon or Probe Response messages, MIC, whether to install the temporal keys and an encrypted GTK

Section 5.92
Change caption to “Establishing PTK and GTK”
Change Figure 3
Add GTK to message 3 parameters

Remove “for STA Unitcast” text
Delete Figure 4
Delete text “See Figure 4”

Change Figure 5

Delete arrows and text for group key update

Change figure 6

Delete arrows and text for group key update

Change figure 7

Delete arrows and text for group key update

Change figure 37

[image: image2.emf]802.11 Station

802.1X Supplicant

802.11Access Point

802.1X Authenticator

EAPOL-Key (0, 1, 1, 1, 0, P, Key RSC, ANonce, MIC, RSN IE, GTK)

Set Temporal Encryption and MIC Keys from PTK in Key

Id for Tx/Rx

Set Temporal Encryption and MIC Keys from PTK in

Key Id for Tx/Rx

EAPOL-Key (0, 0, 1, 0, 0, P, 0, ANonce, 0, 0)

Calculate PTK using ANonce and SNonce

EAPOL-Key (0, 1, 0, 0, 0, P, 0, SNonce, MIC, RSN IE)

Calculate PTK using ANonce and SNonce

ANonce = Get next Key Counter

EAP-Success

SNonce = Get next Key Counter

EAPOL-Key (0, 1, 0, 0, 0, P, 0, 0, MIC, 0)

1 2 3

Submission
page 9
Tim Moore, Microsoft

_1120412783.vsd
text

GNoStations--

disconnected

Send EAPOL(0, 0 ,1 , 0, 0, P, ANonce, 0, 0)
TimeOutCtr++

PTK start

Send EAPOL(0, 1, 1, Pair, 0, P, ANonce, GTK Length, MIC(PTK), 0)

PTKinitnegotiating

UCT

TimeoutEvt

TimeoutCtr>N

EAPOLKeyRecvd && K == Pairwise

PInitAKeys = False
GUpdateStationKeys = False
Send EAPOL(1, 1, 1, !Pair, GN, G, GNonce, MIC(PTK), GTK[GN]);
TimeOutCtr++

rekeynegotiating

MSK = 0
GInitAKeys = PInitAKeys = IntegrityFailed = FALSE
If Unicast cipher supported by Authenticator
 AND (ESS OR (IBSS and Local AA > Remote AA)))
	Pair = TRUE
802.1X::portEnable = FALSE
Remove PTK
802.1X:portValid = FALSE

Initialize

ANonce = Counter++;

AUTHENICATION2

PMK = RadiusKey

initPmk

Init

UCT

!PSK && 802.1X::keyRun

GTKReKey = FALSE
If GInitDone == FALSE {
	GTK[0..N] = 0;
	GN = 1
	GM = 2
}
Else
	Swap(GM,GN)
GInitDone = TRUE
GKeyDoneStations = GNoStations
GNonce = Counter++;
GTK[GN] = Calc GTK(GNonce);
GUpdateStationKeys = TRUE

setkeys

GTKAuthenticator && (GTKReKey
|| (GInitAKeys && !GInitDone))

Check MIC(PTK)
GKeyDoneStations–-
TimeOutCtr = 0
MLME.SetProtection(TA, TX_Rx)

rekeyestablished

EAPOLKeyRecieved && K == Group
&& MICVerified

SetGTK(GN, Tx/Rx, GTK[GN])
GKeyReady = True

setkeysDONE

GKeyDoneStations == 0

TimeoutEvt

GUpdateStationKeys
|| GKeyReady

!802.1X::keyAvailable

GKeyDoneStations--

KEYERROR

TimeoutCtr>N

UCT

STADisconnect()

DISCONNECT

UCT

DeauthenticationRequest

ReAuthenticationRequest

802.1X::keyAvailable

TimeoutCtr>N

If Pair == TRUE
	Set PTK(0, Tx/RX, PTK)
	MLME.SetProtection.Request(TA, Tx_Rx)
If GTK Length
	802.1X::PortValid = TRUE
	802.1X::keyDone = TRUE
GInitAKeys = TRUE

PTKiniTDONE

EAPOLKeyRecvd && K == Pairwise
&& MICVerified

TimeoutEvt

PMK = PSK

initPsk

PSK && 802.1X::keyRun

Disconnect

GNoStations++
PTK = 0;
802.1X::portControl = Auto;
802.1X::portEnable = True;

AUTHENICATION

AuthenticationRequest

PTK = Calc PTK(ANonce, SNonce)

PTKCALCnegotiating

MICVerified

EAPOLKeyRecvd && K == Pairwise

802.1X::keyAvailable

_1120478198.doc

[image: image1.emf]802.11 Station

802.1X Supplicant

802.11Access Point

802.1X Authenticator

EAPOL-Key (0, 1, 1, 1, 0, P, Key RSC, ANonce, MIC, RSN IE, GTK)

Set Temporal Encryption and MIC Keys from PTK in Key

Id for Tx/Rx

Set Temporal Encryption and MIC Keys from PTK in

Key Id for Tx/Rx

EAPOL-Key (0, 0, 1, 0, 0, P, 0, ANonce, 0, 0)

Calculate PTK using ANonce and SNonce

EAPOL-Key (0, 1, 0, 0, 0, P, 0, SNonce, MIC, RSN IE)

Calculate PTK using ANonce and SNonce

ANonce = Get next Key Counter

EAP-Success

SNonce = Get next Key Counter

EAPOL-Key (0, 1, 0, 0, 0, P, 0, 0, MIC, 0)

_1120478153.vsd

802.11 Station
802.1X Supplicant

802.11Access Point
802.1X Authenticator

