May 2003

doc.: IEEE 802.11-03/266r1

IEEE P802.11
Wireless LANs

Draft

Proposed Recommended Practice for Establishing an Adhoc ESS Subnet
Date:
July 20, 2003
Author:
Dennis Baker and James Hauser

Naval Research Laboratory, Code 5521

Washington, DC 20375

Phone: 202-767-1391, 202-767-2771

Fax: 202-767-1191

e-Mail: dbaker@mchsi.com, hauser@itd.nrl.navy.mil

Abstract

The 802.11 specification describes the concept of an Extended Service Set (ESS), which consists of multiple Basic Service Sets (BSS) connected by an unspecified Distribution System (DS). This paper proposes a recommended practice for forming an adhoc ESS of up to 32 access points, at the subnet level, i.e., below the IP layer. The proposed approach allows an entire ESS to be implemented using only a single 802.11 channel, although multiple channels can also be supported. Mobility effects are handled completely within the adhoc DS, and externally attached networks can treat the entire ESS as though it were a single ethernet LAN.
1 Overview

1.1 Assumption
This proposed recommended practice is based on the assumption that the 802.11 specification has been modified as indicated below.
Change the contents of Table 1 as follows (only those rows that need changing are shown):

Table 1 - Valid type and subtype combinations
(numeric values in Table 1 are shown in binary)
	Type value
b3 b2
	Type description
	Subtype value
b7 b6 b5 b4
	Subtype description

	11
	Reserved
	0000
	Subnet

	11
	Reserved
	0001-1111
	 Reserved

2 References

IEEE Standard 802.11-1999

3 Definitions, abbreviations, and acronyms
backbone connection node (BCN): In the Dynamic Backbone Algorithm, this refers to the backbone node chosen by a non-backbone node as its primary connection to the backbone.
dynamic backbone subnet (DBS): A wireless network that uses a distributed algorithm whose goal is to identify and maintain a minimal subset of nodes, called “backbone nodes”, and a minimal subset of connected bidirectional links, called “backbone links”, such that every node in the network is either a backbone node or is directly connected to a backbone node. The resultant network handles routing and mobility and appears, to external networks, to operate like an ethernet LAN.

AID

association identifier

AP

access point

APID

access point identifier

APIDn

APID = n

APME

access point management entity

ARP

address resolution protocol

BCN

backbone connection node

BSS

basic service set

DBA

dynamic backbone algorithm

DBS

dynamic backbone subnet
DS

distribution system

DSM

distribution system medium

ESS

extended service set

IP

internet protocol

LAN

local area network

LLC

logical link control

LSA

link state advertisement

LVE

last valid epoch

MAC

medium access control

MLME

MAC sublayer management entity

MSDU

MAC service data unit

OAPID

originating APID

PHY

physical (layer)

PLME

physical layer management entity

RARP

reverse address resolution protocol

SN

subnet

SNA

subnet address

STA

station

TCP

transmission control protocol

UDP

user datagram protocol

WM

wireless medium
4 Adhoc ESS subnet architecture

The proposed architecture is one in which multiple Access Points form a wireless, adhoc Distribution System. No user intervention is required to setup the bidirectional links of the DS. The DS handles all mobility management, including station roaming and routing within the associated ESS. Insofar as IP-routing is concerned, the resultant ESS appears as though it is a static ethernet.

A distributed algorithm is responsible for maintaining a dynamic backbone for the adhoc DS. An Access Point of the DS is either a member of this dynamic backbone or is directly connected to such an AP by a DS backbone connection link. Figure 1 represents a snapshot of such an adhoc DS and its associated adhoc ESS.

[image: image146.wmf]Backbone AP

DS Backbone

Links

DS Backbone

Connection Links

Mobile

STAs

BSS

DS Ordinary

Links

Non

-

Backbone AP

Backbone AP

DS Backbone

Links

DS Backbone

Connection Links

Mobile

STAs

BSS

DS Ordinary

Links

Non

-

Backbone AP

Figure 1 - Proposed adhoc ESS subnet architecture.

Figure 2 shows where the access point management entity of an adhoc DS AP fits within the protocol architecture layers. The dashed line that separates the DSM and WM indicates that these may or may not be the same media.
[image: image147.wmf]WM

MAC

WM

PHY

MLME

PLME

DSM

MAC

DSM

PHY

802.2

DSS APME

IP

UDP/TCP

ARP

RARP

Optional Higher Layer

Protocols & Applications

WM

MAC

WM

PHY

MLME

PLME

DSM

MAC

DSM

PHY

802.2

DSS APME

IP

UDP/TCP

ARP

RARP

Optional Higher Layer

Protocols & Applications

Figure 2 - Layered architecture of adhoc Distribution System
5 Subnet frame formats
5.1 General subnet frame format
We propose that subnet (SN) frames be assigned 802.11 frame type = 11 and subtype = 0000 (binary). The proposed format for subnet frames is defined in Figure 3. The fields that precede the SN body are collectively referred to as the SN header.
	Octets: 2
	1 or 3
	1 or 3
	1 or 3
	1 or 3
	1
	0-2297

	SN control
	SNA1 (RSNA)
	SNA2 (TSNA)
	SNA3 (DSNA)
	SNA4 (SSNA)
	SN
seq
	SN body

Figure 3 – Subnet frame format
5.2 Subnet frame fields

5.2.1 SN frame control field
The subfields within the SN control field of subnet frames are set as illustrated in Figure 4.
	SN Protocol Version

B0
	SN Type
	SN Subtype
	Reserved
	Precedence
	Unicast Route Preference
	Snoop
	Short or Long Addresses
B15

	Bits: 2
	2
	4
	1
	3
	2
	1
	1

Figure 4 – SN Frame Control field
5.2.1.1 SN protocol version field

The SN Protocol Version field is 2 bits in length and is invariant in size and placement across all revisions. The present value of the protocol version is 0. All other values are reserved. A device that receives a frame with a higher revision level than it supports will discard the frame without indication to the sending access point or LLC.

5.2.1.2 SN type and subtype fields
The SN frame type field is 2 bits in length, and the subtype field is 4 bits in length. The SN frame type and subtype fields together identify the function of the SN frame. There are presently two defined SN frame types: SN management and SN data. Each of the frame types has several defined subtypes. Table 1 defines the valid combinations of SN frame type and subtype.
Table 1 - Valid SN frame type and subtype combinations
(numeric values in Table 1 are shown in binary)
	SN type value
b3 b2
	SN type description
	SN subtype value
b7 b6 b5 b4
	SN subtype description

	00
	management
	0000
	reserved

	00
	management
	0001
	DBA frame 1

	00
	management
	0010
	DBA frame 2

	00
	management
	0011
	DBA frame 3

	00
	management
	0100
	DBA frame 4

	00
	management
	0101
	DBA frame 5

	00
	management
	0110
	SN ARP query

	00
	management
	0111
	SN ARP reply

	00
	management
	1000
	link state advertisement

	00
	management
	1001-1111
	reserved

	01
	reserved
	0000-1111
	reserved

	10
	data
	0000
	data

	11
	reserved
	0000-1111
	 reserved

5.2.1.3 Reserved field
This field is presently unused and should be set to 0.
5.2.1.4 Precedence field

This field is used to indicate the transmission precedence of the attached MSDU. The highest precedence level is 7 and the lowest is 0.
5.2.1.5 Unicast route preference field

This field is used to indicate whether the unicast routing of this frame within the DS should: 0) try to avoid the backbone, 1) ok to use the backbone, 2) give preference to the use of backbone links, or 3) use only backbone links
5.2.1.6 Snoop field

This flag indicates that the MSDU should be interpreted even though the AP is not the destination of the frame.
5.2.1.7 Short/long addresses field

This flag is 0 if all SN addresses in the SN frame header are to be interpreted as consisting only of the corresponding APID, while the corresponding AID is implied to be 0. If this flag is 1, the SN addresses of the SN frame header have their normal form consisting of both an APID and AID.
5.2.2 SN address fields
5.2.2.1 SN address representation

A SN address is represented as a pair (APID.AID). An access point has AID = 0 and its APID may be assigned manually or automatically. SN multicast destination addresses also have AID = 0. Table 2 lists the present allocation of values for APID. When bit 7 of the APID is set, it indicates that the APID is a multicast address.
Table 2 - Valid APID values
(numeric values in Table 1 are shown in binary)
	APID
b7 b6 b5 b4 b3 b2 b1 b0
	Type
	Multicast group name

	00000000-00011111
	unicast
	

	00100000-01111110
	unicast, reserved
	

	01111111
	NO_APID
	

	10000000
	multicast
	Local, DS announcement

	10000001
	multicast
	Local, DBS broadcast

	10000010
	multicast
	Local, DBS backbone broadcast

	10000011
	multicast
	DBS backbone broadcast

	10000100-10011110
	multicast, reserved
	

	10011111
	multicast
	DS broadcast

	10100000-11111110
	multicast, reserved
	

	11111111
	multicast
	ESS broadcast

Figure 5 shows the normal format of an SN address field.
	Octets: 1
	2

	APID
	AID

Figure 5 – Normal SN address field
However, for the case where the short/long address field has the value 0, the SN address fields in the SN frame header are abbreviated to that shown in Figure 6, while the corresponding AID is implied to be 0.

	Octets: 1

	APID

Figure 6 – SN address field in subnet header when short/long address field is 0
For purposes of routing within the DS, an access point assigns a SN address to a station when a station associates with the access point. The SN address of a station consists of the APID of the access point to which it is associated and the AID assigned to the station when it associates.
Below each address and enclosed in parenthesis is a pseudonym for that address. In these pseudonyms, prefix letters R, T, D, and S stand for next recipient, transmitter, destination, and source, respectively.

5.2.2.2 Destination SN address (DSNA) field
DSNA is used to designate the SN address of the destination of the SN frame.

5.2.2.3 Source SN address (SSNA) field

SSNA is used to designate the SN address of the originating source of the SN frame.
5.2.2.4 Receiver SN address (RSNA) field

RSNA is used to designate the SN address of the next immediate recipient of a unicast destination DSNA. If DSNA represents a multicast address and RSNA is a unicast address, then RSNA designates the node that should respond to an associated RTS (if RTS/CTS are being used).
5.2.2.5 Transmitter SN address (TSNA) field

TSNA is used to designate the SN address of the transmitter of the SN frame.
5.2.3 SN sequence control field

The SN sequence control field is used along with the 802.11 frame sequence field to both detect duplicates and to determine when the time-to-live of the MSDU has been exceeded. Figure 7 shows that this field is composed of two subfields – a temporal part, time-to-live (TTL) and a reserved part.
	Bits: 2
	6

	TTL
B0 B1
	reserved
B2 B7

Figure 7 – SN sequence field
5.2.4 SN frame body field

The SN frame body field is a variable length field that contains information specific to individual frame types and subtypes.
5.3 Format of individual SN frames
5.3.1 SN management frames

5.3.1.1 DBA frame 1

The Dynamic Backbone Algorithm (DBA) defines five frame formats that are used to exchange the information required to form and maintain the adhoc DS’s dynamic backbone. This information is exchanged in five consecutive “frames”. Figure 8 shows the format of the DBA frame 1 transmissions.
	Octets: 4
	4
	4
	4
	4
	4

	Probe ack

B0 B31
	LQI

	DBA active
	DBA stale
	reserved
	reserved

Figure 8 – DBA frame 1

5.3.1.1.1 DBA frame 1 fields

5.3.1.1.1.1 DBA frame 1 probe ack field

This field is used to acknowledge the reception of DBA frame 1 transmissions. A “1” in bit position Bn indicates that the transmitting AP has successfully received the DBA frame 1 transmission from APIDn, whereas a “0” indicates failure to receive this transmission. The transmitting AP places a “0” in its own bit position.
5.3.1.1.1.2 DBA frame 1 LQI field

The LQI field is used to indicate the existence of persistant, bidirectional links between the transmitting AP and all other APs. A “1” in bit Bn indicates that such a link exists between the transmitting AP and APIDn, whereas a “0” indicates the lack of a link. The transmitting AP places a “0” in its own bit position.
5.3.1.1.1.3 DBA frame 1 DBA active field

This 32-bit field is used to indicate which APIDs that the transmitting AP considers to be actively participating in the DBA. A “1” in bit Bn indicates that APIDn is considered to be active, whereas a “0” indicates that APIDn is considered not presently active.
5.3.1.1.1.4 DBA frame 1 DBA stale field

This 32-bit field is used to indicate APIDs that the transmitting AP considers to have “recently” participated in the DBA but are not “currently” participating, i.e., the participation is “stale”. A “1” in bit Bn indicates that APIDn participation in DBA is considered to be stale, whereas a “0” indicates that APIDn participation in DBA is not considered to be stale.

5.3.1.1.1.5 DBA frame 1 reserved fields

Eight octects (2 fields) of DBA frame 1 are currently marked “reserved” and their values are unspecified.
5.3.1.2 DBA frame 2

Figure 9 shows the format of all DBA frame 2 transmissions.

	Octets: 4
	1

	Bidirectional links

B0 B31
	own clusterhead

Figure 9 – DBA frame 2

5.3.1.2.1 DBA frame 2 fields

5.3.1.2.1.1 DBA frame 2 bidirectional links field

This 32-bit field is used to indicate APs that the transmitting AP considers to be directly linked to it via bidirectional links. A “1” in bit Bn indicates that the link to APIDn is considered to be a bidirectional link, whereas a “0” indicates that the link to APIDn is not considered to be a bidirectional link. The transmitting AP places a “0” in its own bit position.
5.3.1.2.1.2 DBA frame 2 own clusterhead field
The DBA frame 2 own clusterhead field contains the APID of the AP that has been designated by the DBA as the transmitting AP’s own clusterhead.

5.3.1.3 DBA frames 3 and 5
Figure 10 shows the format of all DBA frame 3 and frame 5 transmissions.

	Bits: 4
	4
	
	4
	4
	8

	Type of 2-way link with APID0
	Type of 2-way link with APID1
	…
	Type of 2-way link with APID30
	Type of 2-way link with APID31
	Node type

Figure 10 – DBA frames 3 and 5
5.3.1.3.1 DBA frames 3 and 5 fields
5.3.1.3.1.1 DBA frames 3 and 5 link type fields

These are 4-bit fields (to begin or end on octet boundaries) that represent the type of bidirectional links the transmitting AP has with other APs. The encoding for frame 3 is as follows: 0 = unknown link type, 1 = no link, 2 = link and 3 = backbone link. This encoding is extended in frame 5 to allow for indicating newly determined backbone connection links (link type = 4). The transmitting AP places a “1” in its own link type field.
5.3.1.3.1.2 DBA frames 3 and 5 node type field
The DBA frame 3 node type field indicates the type of node that is reporting, i.e., the current role that the node has in the network restructuring. Valid node types are the following: 1 = non-backbone node, 2 = clusterhead, and 3 = gateway. All nodes having node types set to clusterhead or gateway are considered to be backbone nodes.
5.3.1.4 DBA frame 4

Figure 11 shows the format of all DBA frame 4 transmissions.

	Octets: 1
	2
	
	2

	P, 0, 0, 0, 0, n

B0, B1, B2, B3, B4, B5 B6 B7
	Link 1 ID
	…
	Link n ID

Figure 11 – DBA frame 4
5.3.1.4.1 DBA frame 4 fields

5.3.1.4.1.1 DBA frame 4 P field

Bit 0 of the first octect of DBA frame 4 is a flag indicating whether the AP is leaving the backbone (P = 1) or not leaving (P = 0).
5.3.1.4.1.2 DBA frame 4 reserved fields

Bits B1 through B4 of the first octect of DBA frame 4 are reserved bits and are set to zeroes (binary).
5.3.1.4.1.3 DBA frame 4 n field

Each AP that is leaving the backbone announces which of its backbone neighbors have to build links to each other in order to keep the backbone connected. Field n (bits 5, 6, and 7 of the first octect of DBA frame 4) holds the number of such links that are being reported. Some of these backbone links may already exist.
5.3.1.4.1.4 DBA frame 4 link id fields
Each of the DBA frame 4 link id fields is defined by giving the APID’s of the nodes at the ends of the link, as shown in Figure 12.
	Octets: 1
	1

	APIDxj
	APIDyj

Figure 12 – DS Link j is identified by the APIDs x and y at the link endpoints

5.3.15 SN ARP query

Figure 13 shows the format of an SN ARP query message is sent. This message is used to find the target subnet address given the target MAC address.
	Octets: 6

	Target MAC Address

Figure 13 – SN ARP query format

5.3.1.5.1 SN ARP query fields
5.3.1.5.1.1 SN ARP query target MAC address field

This field contains the MAC address of the node whose subnet address is being sought.
5.3.1.6 SN ARP reply

Figure 14 shows the format of an SN ARP reply.
	Octets: 6
	3

	Target MAC Address
	Target SN Address

Figure 14 – SN ARP reply format

5.3.1.6.1 SN ARP reply fields

5.3.1.6.1.1 SN ARP reply target MAC address field

This field contains the MAC address of the node whose subnet address is being sought.
5.3.1.6.1.2 SN ARP reply target SN address field

This field contains the subnet address of the node whose MAC address is given in the first field.
5.3.1.7 Links state advertisement

Figure 15 shows the format of a links state advertisement. This message typically combines the LSAs of several APs.
	Octets: 1
	1
	1
	4
	
	1
	1
	4

	number of reports n
	 OAPID1
	LVE1
	LQI1
	…
	(OAPID)n
	LVEn
	LQIn

Figure 15 – Links State Advertisement format
5.3.1.7.1 LSA fields

5.3.1.7.1.1 LSA number of reports field

This field indicates how many reports follow in this frame. Each report consists of three fields: the originating APID (OAPID), the last valid epoch (LVE) for this report, and the link quality indexes (LQI). Each report adds 6 bytes to the length of the LSA frame.
5.3.1.7.1.2 LSA OPAID field

The originating APID is the AP to which a report applies.
5.3.1.7.1.3 LSA last valid epoch field
Link state information is subject to a time-to-live, which is determined by an epoch counter and the last valid epoch field. When the epoch counter reaches LVE that report is removed from the database.
5.3.1.7.1.4 LSA LQI field

Figure 16 shows the LSA LQI field, which is used to indicate the existence of persistant, bidirectional links between the OAPID and all other APs. A “1” in bit Bn indicates that such a link exists between the OAPID and APIDn, whereas a “0” indicates the lack of a link. The originating AP places a “0” in its own bit position.
	Bit: 0
	…
	Bit: 31

	quality of DS link (OAPID,APID0)
	
	quality of DS link (OAPID,APID31)

Figure 16 – LQI element

In the LQI element, a DS link is represented by its endpoint APIDs.
5.3.2 SN data frames

5.3.2.1 Data

The frame format for a SN Data frame is independent of subtype and is defined in Figure 17.

	Octets: 2
	1 or 3
	1 or 3
	1 or 3
	1 or 3
	1
	0-2297

	SN control
	SNA1 (RSNA)
	SNA2 (TSNA)
	SNA3 (DSNA)
	SNA4 (SSNA)
	SN
Seq
	SN body

Figure 17 – SN data frame format
The SN body holds the MSDU that is to be transmitted.

6 Subnet algorithms and protocols

6.1 Subnet timing

6.1.1 Synchronous counters

The adhoc DS is a synchronous system that is driven by synchronous, time-driven events and asynchronous, frame reception events. Figure 18 shows the timing relationship among the various logical synchronous counters. These consist of epoch, frame, slot, and time-to-live counters, which are used to generate the synchronous, time-driven events. All synchronous counters start each epoch repetition interval Tr set to their minimum values and end the repetition interval set to their maximum values. These counters must also be synchronized across the adhoc DS. Details of how these counters are used appear in subsequent sections.
[image: image148.wmf]Frame 1

Frame 2

Frame 4

Frame 3

Frame 5

Frame F

max

…

Frame F

max

Frame 1

…

Epoch 0

Epoch 1

Epoch 3

Epoch 2

Epoch 4

Epoch E

max

…

Epoch 5

Epoch 6

Epoch 8

Epoch 7

Epoch 9

Slot 0

Slot 1

Slot 3

Slot 2

Slot 4

Slot S

max

…

Slot S

max

Slot 0

…

TTL 0

TTL 1

TTL T

max

…

TTL T

max

TTL 0

…

T

t

T

e

T

f

T

s

T

r

Time axis

Frame 1

Frame 2

Frame 4

Frame 3

Frame 5

Frame F

max

…

Frame F

max

Frame 1

…

Frame 1

Frame 2

Frame 4

Frame 3

Frame 5

Frame F

max

…

Frame F

max

Frame 1

…

Epoch 0

Epoch 1

Epoch 3

Epoch 2

Epoch 4

Epoch 0

Epoch 1

Epoch 3

Epoch 2

Epoch 4

Epoch E

max

…

Epoch 5

Epoch 6

Epoch 8

Epoch 7

Epoch 9

Epoch 5

Epoch 6

Epoch 8

Epoch 7

Epoch 9

Slot 0

Slot 1

Slot 3

Slot 2

Slot 4

Slot S

max

…

Slot S

max

Slot 0

…

Slot 0

Slot 1

Slot 3

Slot 2

Slot 4

Slot S

max

…

Slot S

max

Slot 0

…

TTL 0

TTL 1

TTL T

max

…

TTL T

max

TTL 0

…

T

t

T

e

T

f

T

s

T

r

Time axis

Figure 18 – Subnet timing and synchronous counters

6.1.2 Self-synchronization protocol
In the absence of an external time synchronization capability, such as might be provided by GPS, the self-synchronization protocol can be used to achieve sufficiently accurate time synchronization across the adhoc DS of the synchronous counters described in the previous section.

Details of this protocol to be supplied in a future draft.
6.2 Backbone maintenance
6.2.1 Overview
Periodically, the adhoc DS is presented with a new backbone structure, an example of which is shown in Figure 1. A synchronous, distributed algorithm, the Dynamic Backbone Algorithm (DBA), is responsible for maintaining this backbone. The DBA takes as input the APID of the host AP and the maximum number of access points allowed in the adhoc DS. DBA is driven by synchronous events, FRAME_<frame number>_TRANSMIT and BEGIN_FRAME_<frame number>, and by asynchronous, FRAME_<frame number>_RECEIVE events.

The DBA requires five frames of communications to determine a new backbone; these communications take place during the first five frames of each epoch. Each access point uses its APID to determine in which slot to transmit its DBA control frames, that is, APID = 0 transmits in slot 0, APID = 1 transmits in slot 1, etc. These transmissions are triggered by FRAME_<frame number>_TRANSMIT events. The transmissions should complete with sufficient time to allow the next access point to process this frame before sending its own DBA control frame.

The algorithm proceeds in five phases, which approximately coincide with the five frames required for backbone formation. These phases are the following: 1) neighbor discovery, 2) cluster forming, 3) cluster linking, 4) backbone pruning, and 5) connecting to the backbone.

Neighbor discovery at an AP is accomplished before that AP transmits in frame 2. This is accomplished by explicitly acknowledging previously heard frame 1 transmissions when an AP sends its own frame 1 transmission. By examining acknowledgements received in frame 1, each AP can determine which higher-numbered APs it is currently bidirectionally connected to. Bidirectional connectivity to lower-numbered APs is determined when these APs report their bidirectional neighbors as part of their frame 2 transmissions.

All DBA transmissions are sent as 802.11 “subnet” frames and have a 7-byte SN header prepended to them. The subfields of the SN control field are set as follows (binary): version = 00, type = 00 (management), reserved = 0, precedence = 111 (highest), route preference = 00, snoop = 0, short or long addresses = 0 (short). The subtype subfield varies depending on the DBA frame being transmitted and has the values shown in Table 1. Other fields in the subnet header are set as follows: RSNA = Local DS announcement, TSNA = host’s APID, DSNA = Local DS announcement, and SSNA = host’s APID. The SN sequence field is set to all 0’s except for the TTL subfield, which takes on the current value of the synchronous TTL counter.

Just prior to its frame 2 transmission, each AP makes a determination whether it should be a “clusterhead”. Clusterhead status has significance only within the execution of the DBA; it is a temporary “bookkeeping” state that is used in the process of determining whether an AP should become part of the dynamic backbone. The rule is that an AP becomes a clusterhead unless it is already bidirectionally linked to one. Each AP selects as its “own clusterhead” the lowest numbered clusterhead to which it is bidirectionally connected. If an AP is a clusterhead, then it is also its own clusterhead. An AP includes the APID of its own clusterhead in its frame 2 transmission.

In the context of the DBA, a cluster is defined as a set of nodes consisting of a clusterhead and all its bidirectional neighbors. Note that this implies that, depending on the topology, a non-clusterhead node may be a member of several clusters simultaneously. Therefore, a non-clusterhead node is not restricted to being a member only of the cluster of its own clusterhead. Just as the designation of a node as a clusterhead is strictly a DBA bookkeeping technique, the DBA concept of “cluster membership” is also a temporary designation, which has no significance outside the operation of the DBA.

At the start of frame 3, the adhoc DS has been organized into clusters. In the context of DBA, a cluster is defined as a set of nodes consisting of a clusterhead and all its bidirectional neighbors. Now begins the process of actually forming the backbone. This process is accomplished by linking the clusters together. Each AP that is not a clusterhead determines at this time whether it should become a “gateway” to link “adjacent” clusters. Here also, gateway status is only a temporary, bookkeeping state; at the end of frame 5 all clusterheads and gateway nodes can just be considered as backbone nodes. Adjacent clusters are of two types: overlapping or non-overlapping. Adjacent, overlapping clusters have one or more APs that are bidirectionally connected to each clusterhead. Adjacent, non-overlapping clusters have no nodes that are bidirectionally linked to both clusterheads. However, in the latter case, there exists at least one pair of APs that are bidirectionally linked to each other and which in turn are bidirectionally linked to different clusterheads.
The following section provides pseudocode for the DBA. This code defines two procedures linkup1 and linkup2 that determine whether an AP should become a gateway to link adjacent, overlapping or non-overlapping clusters, respectively. Briefly, these two procedures operate as follows.
In linkup1, every AP that is not a clusterhead is a candidate gateway. The candidate examines the DBA database for all combinations of pairs of clusterheads to which it is directly connected via bidirectional links. The corresponding clusters are overlapping. The lowest numbered AP in the intersection of the two clusters makes the determination to become a gateway for that pair. All access points in the intersection are “aware of each other” since they can be at most two hops away from each other, and every AP possesses the connectivity information for every one of its neighbor access points. Links between the new gateway and the clusterheads that it is linking are marked as backbone links. It should be noted that in both linkup1 and linkup2, a single AP can act as gateway for linking more than one pair of clusters.
Procedure linkup2 handles the case of adjacent, non-overlapping clusters. As in linkup1, only non-clusterhead nodes are candidates to form this linkage. The candidate examines the DBA database for all known pairs of clusterheads consisting of its own clusterhead and clusterhead k that is 2-hops away. To avoid redundant linkage, the node attempts to ascertain the need for the creation of a linkage by checking, for each such pair of clusterheads, whether a linkage may already have been created by linkup1. If such a prior linkage has not occurred, it then ranks the potential gateway-to-gateway links that join a node from cluster k to a node belonging to its own clusterheads cluster. The ranking is done by adding the APIDs of the candidate gateway pair and awarding the highest ranking to the link with the lowest sum. In case of ties, the link with the lowest numbered node is ranked the highest. If the host node is an endpoint on the highest ranking link, then it becomes a gateway for linking clusterheads h1 and h2 and both the link between the new gateway and its own clusterhead and the highest ranked gateway-to-gateway link are marked as backbone links. In some cases only one of the two potential gateway nodes in a pair may decide to become a gateway while the other may find that it is not needed if another link of higher rank is available and known to it. Such asymmetric situations are detected and corrected during frame 3.
Just prior to the beginning of frame 3 transmissions, gateway nodes have determined which of their links are to be promoted to backbone type. In frame 3 all nodes learn of the backbone links within two hops of itself. The frame 3 transmission also has the purpose of resolving any inconsistencies when non-clusterhead nodes assign a different link type to the link between them as a result of linkup2. Here the rule is that the resultant link type is determined by the lowest numbered endpoint node. Thus, when such a link-type inconsistency is detected as a result of receiving a frame 3 transmission, the receiving node will adjust its own database to be consistent with the information received. This may involve changing the types of one (or possibly two) links as well as possibly changing whether the host node is a backbone node or not.

The purpose of frame 4 is to allow a backbone node to revert to non-backbone status if it determines that all of the following conditions are met: 1) the node is currently a backbone node, 2) it has already heard the frame 4 transmissions from all other neighboring backbone nodes that have already transmitted in frame 4, 3) it has at least one backbone neighbor, 4) every non-backbone neighbor of the node is linked to at least one other backbone node, and 5) becoming a non-backbone node will not cause bifurcation of the backbone. As a byproduct of checking for possible bifurcation of the backbone, the host node develops a tree for linking its backbone neighbors. If the node determines that it can leave the backbone, the backbone links that make up this tree are announced as part of the node’s frame 4 transmission along with the indication that the node is leaving the backbone.
At the end of frame 4 the backbone has been completely determined, and the only thing that remains is for each non-backbone node to select which backbone node it will designate as its “backbone connection node” (BCN). The link between a non-backbone node and its BCN is designated to be of type backbone-connection-link. Each non-backbone node selects as its BCN the backbone node with the fewest neighbors. In case of ties, the lowest numbered backbone node becomes the BCN. In frame 5, each node announces its final determination of whether or not it is a backbone node and the type of links that it has with neighboring nodes.
At the end of frame 5, the new structure is “installed”, and from that time until the next backbone is installed, this structure will be used to route broadcast and multicast traffic.
6.2.2 Detailed operation

DBA(i,n) // i is local apid and n is max APs allowed
{
Reset();

switch(event) {

case BEGIN_FRAME_1:

Reset();

case FRAME_1_TRANSMIT:

pkt.Probe_ack
[image: image1.wmf]Ü

 for (
[image: image2.wmf]"

k
[image: image3.wmf]Î

 N) nodesHeard[k];

Transmit pkt;

case FRAME_1_RECEIVE:

// rcv pkt from Node with apid = j (j[image: image4.wmf]¹

i)

nodesHeard[j] = TRUE;

if (i<j) { // Process j’s response to i’s probe

if (pkt.Probe_ack[i] [image: image5.wmf]º

1) {

linkType[i,j] = linkType[j,i] = LINK;

bidirectionalNeighbors[j] = TRUE;

}

}

case FRAME_2_TRANSMIT:

if (ownHead[image: image6.wmf]º

NO_APID) {

nodeType[i] = CLUSTERHEAD;

isBackboneNode[i] = TRUE; ownHead = i;

}

else { // ownHead has already been set

nodeType[i] = NON_BACKBONE_NODE;

isBackboneNode[i] = FALSE;

}

pkt.own_clusterhead
[image: image7.wmf]Ü

 ownHead;

pkt.Bidirectional_links
[image: image8.wmf]Ü

 for (
[image: image9.wmf]"

k
[image: image10.wmf]Î

N)

bidirectionalNeighbors[k];

Transmit pkt;

case FRAME_2_RECEIVE pkt from Node j (j
[image: image11.wmf]¹

i):

if (j<i) {

if (pkt.Bidirectional_links[i] [image: image12.wmf]º

1) {

bidirectionalNeighbors[j] = TRUE;

}

else break;
// exit case

}

elseif (bidirectionalNeighbors[j][image: image13.wmf]¹

TRUE)

break;

for (
[image: image14.wmf]"

k
[image: image15.wmf]Î

 N) {

if (pkt.Bidirectional_links [k] [image: image16.wmf]º

1)

linkType[k,j] = linkType[j,k] = LINK;

if (pkt.own_clusterhead [image: image17.wmf]º

 j) { // sender is a CH

if (linkType[i,j]
[image: image18.wmf]³

LINK)

isBackboneNode[j] = TRUE;

if (ownHead[image: image19.wmf]º

NO_APID)

ownHead = j;

}

if (pkt.own_clusterhead [image: image20.wmf]¹

i) {

if (linkType[i, pkt.own_clusterhead]
[image: image21.wmf]³

LINK) {

headsOneHopAway[pkt.own_clusterhead] =

TRUE;

numHeadsOneHopAway++;

}

else {

headsTwoHopsAway[pkt.own_clusterhead] =

TRUE;

numHeadsTwoHopsAway++;

}

}

}

case BEGIN_FRAME_3:

Linkup1(); Linkup2();

case FRAME_3_TRANSMIT:

pkt.Node_type
[image: image22.wmf]Ü

 nodeType[i];

pkt.Link_type
[image: image23.wmf]Ü

 for (
[image: image24.wmf]"

k
[image: image25.wmf]Î

 N) linkType[i,k];

Transmit pkt;

case FRAME_3_RECEIVE pkt from Node j (j[image: image26.wmf]¹

i):

if (bidirectionalNeighbors[j] [image: image27.wmf]º

 FALSE) break;

nodeType[j]
[image: image28.wmf]Ü

 pkt.Node_type;

for (
[image: image29.wmf]"

k
[image: image30.wmf]Î

 N, k[image: image31.wmf]¹

j) {

if (pkt.Link_type [k][image: image32.wmf]º

BB_LINK) {

isBackboneNode[j] = isBackboneNode[k] =

TRUE;

if (k[image: image33.wmf]º

i and

nodeType[i][image: image34.wmf]º

NON_BACKBONE_NODE)

nodeType[i] = BACKBONE_NODE;

linkType[k,j] = linkType[j,k] = BB_LINK;

}

if (pkt.Link_Type[k] [image: image35.wmf]¹

BB_LINK and k[image: image36.wmf]º

i

and nodeType[j][image: image37.wmf]¹

CLUSTERHEAD

and linkType[i,j][image: image38.wmf]º

BB_LINK) {

linkType[i,j] = linkType[j,i] = LINK;

needToBeBbn = FALSE;

for (
[image: image39.wmf]"

m
[image: image40.wmf]Î

 N, m[image: image41.wmf]¹

i, m [image: image42.wmf]¹

ownHead) {

if (linkType[i,m] [image: image43.wmf]º

 BB_LINK) {

needToBeBbn = TRUE;

break;

}

}

if (needToBeBbn [image: image44.wmf]º

 FLASE) {

nodeType[i] = NON_BACKBONE_NODE;

isBackboneNode[i] = FALSE;

linkType[i,ownHead] = LINK;

linkType[ownHead,i] = LINK;

}

}

}

case FRAME_4_TRANSMIT:

numLinks = 0;

isLeavingBackbone = CanLeaveBB();

pkt.P
[image: image45.wmf]Ü

 isLeavingBackbone;

if (isLeavingBackbone) {

isBackboneNode[i] = FALSE;

nodeType[i] = NON_BACKBONE_NODE;

for (
[image: image46.wmf]"

k
[image: image47.wmf]Î

 N) {

if (linkType[i,k]
[image: image48.wmf]³

LINK)

linkType[i,k] = linkType[k,i] = LINK;

}

// Build BB links connecting all BB neighbors

for (
[image: image49.wmf]"

k
[image: image50.wmf]Î

 N) {

if (cnxTree[k]>1) {

m = cnxTree[k] - 2;

linkType[m,k] = linkType[k,m] =

BB_LINK;

}

}

// Put new BB link IDs into packet

for (
[image: image51.wmf]"

k
[image: image52.wmf]Î

 N) {

m = cnxTree[k] – 2;

if (m
[image: image53.wmf]³

0) {

nodePair[numLinks,0] = k;

nodePair[numLinks,1] = m;

pkt.APIDxj
[image: image54.wmf]Ü

 nodePair[numLinks,0];

pkt.APIDyj
[image: image55.wmf]Ü

 nodePair[numLinks,1];

numLinks++;

}

}

}

pkt.n
[image: image56.wmf]Ü

 numLinks;

Transmit pkt;

case FRAME_4_RECEIVE pkt from Node j (j[image: image57.wmf]¹

i):

if (bidirectionalNeighbors[j] [image: image58.wmf]º

 FALSE) break;

nodesHeardFrame4[j] = TRUE;

if (pkt.P) { // Is node j leaving backbone?

if (linkType [i,j] > LINK)

linkType[i,j] = linkType[j,i] = LINK;

isBackboneNode[j] = FALSE;

if (!isBackboneNode[i]) break; // exit case

for (
[image: image59.wmf]"

k
[image: image60.wmf]Î

 L) { // L is set 1, ... pkt.n

linkType[pkt.APIDxk,pkt.APIDyk] =

BB_LINK;

linkType[pkt.APIDyk,pkt.APIDxk] =

BB_LINK;

}

}

case FRAME_5_TRANSMIT:

ChooseBCN();

bestBCN = backboneConnectionNode[i];

linkType[bestBCN,i] = linkType[i,bestBCN] =

BCN_LINK;

pkt.Link_type
[image: image61.wmf]Ü

 for (
[image: image62.wmf]"

k
[image: image63.wmf]Î

 N) linkType[i,k];

pkt.Node_type
[image: image64.wmf]Ü

 nodeType[i];

Transmit pkt;

case FRAME_5_RECEIVE pkt from Node j (j[image: image65.wmf]¹

i):

for (
[image: image66.wmf]"

k
[image: image67.wmf]Î

 N, k
[image: image68.wmf]¹

j) {

switch (pkt.Link_type [k] {

case BB_LINK:

linkType[j,k] = linkType[k,j] = BB_LINK;

isBackboneNode[j]=

isBackboneNode[k]=TRUE;

backboneConnectionNode[k]=k;

backboneConnectionNode[j]=j;

case BCN_LINK:

linkType[j,k] = linkType[k,j] = BCN_LINK;

if (pkt.Node_type
[image: image69.wmf]º

NON_BACKBONE_NODE) {

backboneConnectionNode[k]=k;

backboneConnectionNode[j]=k;

} else {

backboneConnectionNode[k]=j;

backboneConnectionNode[j]=j;

}

case LINK:

linkType[j,k] = linkType[k,j] = LINK;

case NO_LINK:

linkType[j,k] = linkType[k,j] = NO_LINK;

} // End of FRAME_5_RECEIVE switch

}

} // End of event switch
} // End of DBA
Reset()

{
ownHead = NO_APID;

isLeavingBackbone = FALSE;

numLinks = 0;

numHeadsOneHopAway = 0;

numHeadsTwoHopsAway = 0;

for (
[image: image70.wmf]"

j
[image: image71.wmf]Î

 N) {

nodeType[j] = NON_BACKBONE_NODE;
 // NON_BACKBONE_NODE=1,

// CLUSTERHEAD=2,

// GATEWAY=3 (BACKBONE_NODE
[image: image72.wmf]³

 2)

bidirectionalNeighbors[j] = FALSE;

headsOneHopAway[j] = FALSE;

headsTwoHopsAway[j] = FALSE;

nodesHeard[j] = FALSE;

nodesHeardFrame4[j] = FALSE;

isBackboneNode[j] = FALSE;

backboneConnectionNode[j] = NO_APID;

for (
[image: image73.wmf]"

k
[image: image74.wmf]Î

 N) linkType[j,k] = NO_LINK;

// NO_LINK=1, LINK=2, BB_LINK=3, BCN_LINK=4

}

} // End of Reset
Linkup1()

{

if (nodeType[i]
[image: image75.wmf]º

CLUSTERHEAD) return;

if (numHeadsOneHopAway >1) {

for (
[image: image76.wmf]"

k
[image: image77.wmf]Î

 H1) { // H1 is set of heads 1-hop away

for (
[image: image78.wmf]"

m
[image: image79.wmf]Î

 H1, m
[image: image80.wmf]¹

k) {

for (
[image: image81.wmf]"

p
[image: image82.wmf]Î

 N) {

if (linkType[p,k]
[image: image83.wmf]³

LINK and

linkType[p,m]
[image: image84.wmf]³

LINK)

if (p ≤ i) break;

}

if (p
[image: image85.wmf]º

 i) {

isBackboneNode[i] = TRUE;

nodeType[i] = GATEWAY;

linkType[i,k] = linkType[k,i] = BB_LINK;

linkType[i,m] = linkType[m,i] = BB_LINK;

}

}

}

}

} // End of Linkup1
Linkup2()

{

if (nodeType[i]
[image: image86.wmf]º

CLUSTERHEAD) return;

for (
[image: image87.wmf]"

k
[image: image88.wmf]Î

 H2) { // H2 is set of heads 2-hops away

for (
[image: image89.wmf]"

m
[image: image90.wmf]Î

 N) {

if (m
[image: image91.wmf]º

ownHead or m
[image: image92.wmf]º

k) continue;

if (linkType[m,k]
[image: image93.wmf]³

LINK) {

for (
[image: image94.wmf]"

p
[image: image95.wmf]Î

 H1) {

if (linkType[m,p]
[image: image96.wmf]³

LINK) break;

}

if (p < numHeadsOneHopAway) break;

}

}

if (m < n) continue;

hig1 = hig2 = n;

for (
[image: image97.wmf]"

g1
[image: image98.wmf]Î

 N) {

if (nodeType[g1]
[image: image99.wmf]º

CLUSTERHEAD) continue;

for (
[image: image100.wmf]"

g2
[image: image101.wmf]Î

 N) {

if (nodeType[g2]
[image: image102.wmf]º

CLUSTERHEAD) continue;

if (g1
[image: image103.wmf]º

g2) continue;

if (linkType[ownHead,g1]
[image: image104.wmf]³

LINK and

linkType[g1,g2]
[image: image105.wmf]³

LINK and

linkType[g2,k]
[image: image106.wmf]³

LINK) {

if (g1+g2 < hig1+hig2 or

(g1+g2
[image: image107.wmf]º

 hig1+hig2 and

min(g1,g2) < min(hig1,hig2))) {

hig1 = g1;

hig2 = g2;

}

}

}

}

if (i
[image: image108.wmf]º

 hig1) {

nodeType[i] = GATEWAY;

isBackboneNode[i] = TRUE;

linkType[ownHead,i] = linkType[i,ownHead] =

BB_LINK;

linkType[i,hig2] = linkType[hig2,i] =

BB_LINK;

}

if (i
[image: image109.wmf]º

 hig2) {

nodeType[i] = GATEWAY;

isBackboneNode[i] = TRUE;

linkType[hig1,i] = linkType[i,hig1] =

BB_LINK;

linkType[i,k] = linkType[k,i] = BB_LINK;

}

}

} // End of Linkup2
CanLeaveBB()

{

if (!isBackboneNode[i]) return (FALSE);

for (
[image: image110.wmf]"

k
[image: image111.wmf]Î

 N, k<i) { // don’t leave if missed BB xmit

if (isBackboneNode[k] and

nodesHeardFrame4[k]
[image: image112.wmf]º

FALSE)

return (FALSE);

}

// Check that it has a backbone neighbor

firstBbn = NO_APID;

numBBnbrs = 0;

for (
[image: image113.wmf]"

k
[image: image114.wmf]Î

 N, k
[image: image115.wmf]¹

i) {

if (isBackboneNode[k] and linkType[i,k]
[image: image116.wmf]³

LINK) {

if (firstBbn
[image: image117.wmf]º

NO_APID) {

firstBbn = k;
// lowest # backbone node

}

numBBnbrs++;

}

}

if (firstBbn
[image: image118.wmf]º

NO_APID) return (FALSE);

// Check to see if needed as BCN

for (
[image: image119.wmf]"

k
[image: image120.wmf]Î

 N, k
[image: image121.wmf]¹

i) {

if (!isBackboneNode[k] and linkType[i,k]
[image: image122.wmf]³

LINK) {

loopCount = 0;

for (
[image: image123.wmf]"

m
[image: image124.wmf]Î

 N, m
[image: image125.wmf]¹

i, m
[image: image126.wmf]¹

k) {

if (isBackboneNode[m] and

linkType[m,k]
[image: image127.wmf]³

LINK and

linkType[i,m]
[image: image128.wmf]³

LINK) break;

loopCount++;

}

if (loopCount
[image: image129.wmf]º

n) return (FALSE);

}

}

// Would leaving split the backbone?

for (
[image: image130.wmf]"

k
[image: image131.wmf]Î

 N) cnxTree[k] = 0;

cnxTree[firstBbn] = 1;

treeSize = 0;

BuildCnxTree(firstBbn);

If (treeSize < (numBBnbrs – 1)) return (FALSE);

return (TRUE);

} // End of CanLeaveBB
BuildCnxTree(m)

{

for (
[image: image132.wmf]"

k
[image: image133.wmf]Î

 N) {

if (linkType[i,k]
[image: image134.wmf]³

LINK and linkType[m,k]
[image: image135.wmf]³

LINK

and isBackboneNode[k] and cnxTree[k]
[image: image136.wmf]º

0) {

cnxTree[k] = m+2;

treeSize++;

BuildCnxTree (k);

}

}
} // End of BuildCnxTree
ChooseBCN()

{ // Choose BB with fewest neighbors – low id for ties

if (isBackboneNode[i]) {

backboneConnectionNode[i] = i;

return;

}

minNeighbors = n;

bestBCN = NO_APID;

numNeighbors = 0;

for (
[image: image137.wmf]"

k
[image: image138.wmf]Î

 N) {

if (isBackboneNode[k] and

linkType[i,k]
[image: image139.wmf]³

LINK and

linkType[k,i]
[image: image140.wmf]³

LINK) {

for (
[image: image141.wmf]"

m
[image: image142.wmf]Î

 N) {

if (linkType[k,m]
[image: image143.wmf]³

LINK and

linkType[m,k]
[image: image144.wmf]³

LINK)

numNeighbors++;

}

if (numNeighbors< minNeighbors) {

bestBCN = k;

minNeighbors = numNeighbors;

}

}

}

if (bestBCN
[image: image145.wmf]º

 NO_APID) return;

backboneConnectionNode[i] = bestBCN;

} // End of ChooseBCN
6.3 Routing

6.3.1 All 1’s (ff:ff:ff:ff:ff:ff) traffic routing

When an “all 1’s” broadcast message is received (address ff:ff:ff:ff:ff:ff), either from the upper protocol layer or from the physical layer, the host node forwards it as follows. Every AP forwards the broadcast to its BSS members. In addition, when a non-backbone AP sources an all 1’s broadcast message, it marks it to be sent to its current BCN. A back​bone node forwards (or sources) an all 1’s broadcast message by marking it to be sent to all its current backbone AP neighbors and to each non-backbone AP for which it is the BCN , except the one it came from (if it is being relayed).
6.3.2 Unicast traffic routing

To be supplied in future draft.
6.3.3 IP multicast traffic routing

IP multicast traffic, whose group membership is unknown by the subnet, is relayed as if it were an all 1’s broadcast.
6.3.4 Subnet multicast traffic routing

Table 2 identifies several subnet multicast group addresses, which are used as follows.

Local, DS announcement – This multicast APID is used to indicate that the frame is to be transmitted without regard to any specific destination node. This frame is never relayed.

Local, DBS broadcast – This multicast APID is used to indicate that the frame is to be sent to the node’s bidirectional, AP neighbors. This traffic does not need to be relayed.

Local, DBS backbone broadcast – This multicast APID is used to indicate that the frame is to be sent to the node’s backbone neighbors. This traffic is not relayed.
DBS backbone broadcast – This multicast APID is used to indicate that the frame is to be sent to all the APs that are currently assigned the role of backbone node. A non-backbone node marks this traffic for forwarding to its BCN. A backbone node that is sourcing this traffic marks this traffic to send to all neighboring backbone nodes. A backbone node that is relaying this traffic marks this traffic to send to all neighboring backbone nodes except the one from which it was received.
DS broadcast – This multicast APID is used to indicate that the frame is to be delivered to all APs in the adhoc DS. A non-backbone node marks this traffic to send to its BCN. A backbone node that is sourcing this traffic marks this traffic to send to all neighboring backbone nodes and to each non-backbone AP for which it is the BCN. A backbone node that is relaying this traffic marks this traffic to send to all neighboring backbone nodes and to each non-backbone AP for which it is the BCN, except the one from which was received.
ESS broadcast – This multicast APID is used when sending an all 1’s broadcast.
6.4 Message handling

To be supplied in future draft.
6.5 Address management
To be supplied in future draft.

� The AID is contained in the least significant 14 bits. The most significant bits are set to 00 (binary), which is different from the IEEE 802.11 specification where these bits are set to 11 in the AID field.

Submission
page 19
Dennis Baker and James Hauser, NRL

_1109750386.unknown

_1110018836.unknown

_1119886246.unknown

_1119886157.unknown

_1110716937.unknown

_1110015767.unknown

_1110015941.unknown

_1110008309.unknown

_1110008355.unknown

_1110009580.unknown

_1109767006.unknown

_1107178740.unknown

_1109664073.unknown

_1109747916.unknown

_1109673939.unknown

_1107344129.unknown

_1107346552.unknown

_1107591588.unknown

_1107346539.unknown

_1107326766.unknown

_1107262170.unknown

_1107168792.unknown

_1107178693.unknown

_1107178412.unknown

_1106739101.unknown

_1106651899.unknown

