May 2003

doc.: IEEE 802.11-03/171r5

IEEE P802.11
Wireless LANs

MIB enhancement for Radio Resource Measurement

Date:
May 7, 2003

Author:
Byoung-Jo “J” Kim

AT&T Labs-Research

200 Laurel Ave., A5 1C32, Middletown, NJ 07748

Phone: 732-420-9028

e-Mail: macsbug@research.att.com

With contributions from


Tony Collins

Cognio 


e-Mail: acollins@cognio.com

Mike Moreton
 
Synad


e-Mail: Mike.Moreton@synad.com
Abstract

This submission describes a proposed update to the 802.11 MIB to include radio resource measurement variables developed by TGk.
This particular submission contains the description and the related MIB text for a new table under MAC branch of the current MIB, dot11staStatsTable, which contains per-STA counters and measurements that are passively obtainable during the routine MAC operations. Along with the MIB text, a set of descriptions for variables in the table and their envisioned usages are included. 171ar2 and 273r0 contain additional details and usage scenarios.
1. Characteristics and Purpose of per STA statistics table

The proposed per STA statistics table, named dot11staStatsTable, is a functional extension of the existing dot11CounterTable that keeps track of various counters per interface. As the current dot11CounterTable contains variable that are updated during routine MAC operations, the proposed dot11staStatsTable also contains variables that can be updated as part of the routine local MAC operations, entirely passively observed. However, the difference is, as in the name, the variables are kept per-STA, instead of per-interface. This table is being placed under the MAC branch of the overall 802.11 MIB, along with the existing dot11CounterTable.

This table contains variables that are passively and locally observed and counted during routine MAC operations, regardless of the BSS that a particular STA belongs to. This table does not involve any active measurements,  and over-the-air signaling.
Some potential uses of per-STA statistics are described in doc# 03-273r0. The examples in doc 273 are mainly from the perspective of enterprise network management, accessing per-STA statistics via SNMP from APs, and running various algorithms on the collected data to perform network management and optimization. Also, most of the examples are impossible to implement with only per-interface counters, and shows that even a set of basic variable, when updated per-STA, can enable a wide-variety of interesting solutions for 802.11 network management.

Some of the examples are...

· Detect Rogue: MAC addresses for STA/AP outside of BSS

· Detect Potentially Overlapping BSS: # of STAs outside of BSS and # packets from them

· Detect Potential Coverage Problems: consistently low signal strength and/or quality from a set of STAs in BSS
· Potential Interference Problems: Signal quality and strength comparisons 

· Identify new AP locations

· Long-term Load monitoring/balance, Coarse location tracking

· Usage data for upgrade planning

· System-wide Frequency Selection based on long-term stats

· System-wide Power adjustment

· Identify Trouble Makers: e.g., too much multicast from a STA

· Supplement Accounting information

· Distinguish system-wide problem from link-specific problem

· Remote diagnosis of STAs and APs

There already exist several proprietary implementations of per-STA statistics recording in MIB variables, mostly found in high-end enterprise APs, thus demonstrating the feasibility and the perceived utility of per-STA statistics. As with the current MIB, the implementation of the proposed table may be observable only in high-end APs implementing an SNMP agent, despite the standard is written to apply to all STAs and APs. The implementation of this table or a subset of this table in some memory structure may be observable locally in STAs as evidenced by the NDIS 802.11 objects reflecting some of the current MIB counters. This is overviewed in doc # 03-172r1. Nonetheless, the proposal shall be mandatory for all STAs (which includes APs). The conformance specifications are under development.
Additionally in this proposal, simple CCA fraction monitoring variables per interface is added to the existing Phy tables to provide more accurate estimate of the medium usage on an interface overall. Although based on the TGh CCA measurement, this CCA monitoring does not require any special actions or signaling frames. It reports activities only at the local interface, including its own transmissions so that network managers can easily estimate the channel usage/load and interference, etc.

Below is the proposed Normative Texts which include detailed descriptions for each variables.

After the normative texts, some usage and purpose for the variables are presented for informational purposes as well as suggestions for additional updates by TGk.
2. Proposed Normative Texts
Annex D (normative) ASN.1 encoding of the MAC and PHY MIB

Update following MIB entries in Annex D:
1. Insert the marked change in the MAC part of the “Major Sections” of 802.11MI: This is an update to the existing major section descriptions that are commented-out for reference purposes and readibility, and not part of the functioning MIB.  
dot11mac OBJECT IDENTIFIER ::= { ieee802dot11 2 }

      --  MAC GROUPS

      --  reference IEEE Std 802.1f-1993

         --  dot11OperationTable   
    
::= { dot11mac 1 }

         --  dot11CountersTable    
    
::= { dot11mac 2 }

         --  dot11GroupAddressesTable 
::= { dot11mac 3 }

      -- >> J Kim: TGk addition begins

         --  dot11staStatsTable
   
::= { dot11mac 4 }

      -- >> J Kim: TGk addition ends

2. Insert the marked attributes at the end of the SMT Station Config table dot11StationConfigEntry definition: This variable specifies the minimum time to maintain an entry in the since the last activity from a particular STA, so that old entries can be purged out to conserve memory if needed and maintain fresheness.
dot11staStatsTableAgingTime
     Unsigned32

dot11staStatsTableAgingTime OBJECT-TYPE



SYNTAX Unsigned32



MAX-ACCESS read-write



STATUS current



DESCRIPTION

" This attribute holds the minimum time in seconds

to maintain an entry in the dot11staStatsTable, since the

last activity to and from the STA that the entry is 
referring to."

::= { dot11StationConfigEntry 24 }

3. Insert the following MIB table after Group Address Table of the 802.11 MIB.
-- **********************************************************************

-- *    dot11staStatsTable TABLE

-- **********************************************************************

dot11staStatsTable OBJECT-TYPE

        SYNTAX SEQUENCE OF Dot11staStatsEntry

        MAX-ACCESS not-accessible

        STATUS current

        DESCRIPTION

            "The table contains the statistics for each STA/AP with


    which this STA/AP is directly communicating or observed 


    any traffic from it as a 3rd party.


    All stats in this table are collected during normal routine 


    operation of THIS STA (the STA where this MIB table resides)


    and do not require any special actions or signaling,


    such as scanning or keeping the receiver on all the time, 


    although it can be configured to do so.


    Both STA and AP are referred to as STA.


    Some variables under this table may not apply to cases when


    THIS STA is not part of a particular conversation. They are


    evident from their descriptions.


    Variables with 'To3rd' in their names explicitly are different


    in that THIS STA has merely decoded the header of a packet destined


    to a 3rd STA other than itself.


    In this case, this table only keeps track of the transmitters.


    All counters are initialized to zero or null as specified below


    when each entry is first created, except those counters that 


    triggered the creation of the entry, which should reflect 


    the values from the initial activity. 


    All other values are initialized to null, except when their


    values are known from the initial activity.


    "

    ::= {  dot11mac 4 }

dot11staStatsEntry OBJECT-TYPE

        SYNTAX Dot11staStatsEntry

        MAX-ACCESS not-accessible

        STATUS current

        DESCRIPTION

            "An entry in the dot11staStatsEntry Table.

            Indexed by dot11staAddress"

        INDEX {dot11staAddress}

    ::= {  dot11staStatsTable 1 }

Dot11staStatsEntry ::= SEQUENCE {

            dot11staAddress


   

MacAddress,

            ifIndex



   

Integer32,

            dot11staBSSID


   

MacAddress,

            dot11staSSID


   

OCTET STRING, 

            dot11staMPDUToCount       


Counter32,

            dot11staMPDUFromCount



Counter32,

            dot11staGroupMSDUToCount    


Counter32,

            dot11staGroupMSDUFromCount  


Counter32,

            dot11staMSDUToCount       


Counter32,

            dot11staMSDUFromCount



Counter32,

            dot11staMPDUTo3rdFromCount


Counter32,

            dot11staByteToCount



Counter32,


    dot11staByteFromCount



Counter32,


    dot11staByteTo3rdFromCount


Counter32,

            dot11staFailedMSDUToCount



Counter32,

            dot11staRetryMPDUToCount



Counter32,

            dot11staRetryMPDUFromCount


Counter32,

            dot11staRetryMPDUTo3rdFromCount


Counter32,

            dot11staRTSSuccessCount



Counter32,

            dot11staRTSFailureCount



Counter32,

            dot11staACKFailureCount



Counter32,

            dot11staWEPUndecryptableCount


Counter32,

            dot11staLatestRSSIFrom

   

Integer32,

            dot11staBeaconFromCount

   

Counter32,

            dot11staState
   



INTEGER,

            dot11staCurrentChannel

   

INTEGER,


    dot11staTxRateTo


   

Unsigned32,


    dot11staRxRateFrom


   

Unsigned32,


    dot11staRoamed
   



INTEGER,


    dot11staLastActivity
   


TimeTicks}

dot11staAddress OBJECT-TYPE


    SYNTAX MacAddress


    MAX-ACCESS read-only


    STATUS current


    DESCRIPTION


        "The MACAddress of the STA/AP whose statistics are recorded


        in this entry of the dot11staStatsTable.


        This is the MACAddress of AP/STA which THIS STA is directly 


        communicating with, as well as the MACAddress of STAs from which


        THIS STA decoded any packets successfully during routine operation.


        This entry can be a group addresses."


::= { dot11staStatsEntry 1 }

dot11staBSSID OBJECT-TYPE


    SYNTAX MacAddress


    MAX-ACCESS read-only


    STATUS current


    DESCRIPTION


        "The BSSID of the dot11staAddress of this entry.


         It is known if THIS STA is in the same BSS as dot11staAddress


         or if via passive observation if THIS STA is not in the same BSS,


         such as MAC header decoding results.


         THIS STA is not required to actively discover the BSSID.


         If unknown, the value should be null."


::= { dot11staStatsEntry 3 }

dot11staSSID OBJECT-TYPE


    SYNTAX OCTET STRING


    MAX-ACCESS read-only


    STATUS current


    DESCRIPTION


        "The SSID of dot11staAddress, if known via observation 


        of frames containing SSID transmitted by the dot11staAddress,


        such as beacons, probe response, and association response.


        Probe Request and Association request are not suitable, 


        since they usually precede an association.


        The SSID is known, if THIS STA and the dot11staAddress are associated to 


        each other or in direct communication in an IBSS.


        THIS STA is not required to actively discover the SSID.


        If unknown or not applicable, the value should be null."


::= { dot11staStatsEntry 4 }

dot11staMPDUToCount OBJECT-TYPE

        SYNTAX Counter32

        MAX-ACCESS read-only

        STATUS current

        DESCRIPTION

            "This counter shall be incremented for an unicast MPDU/MMPDU

            transmitted TO the dot11staAddress in the current entry for

            all types of MPDUs by THIS STA, regardless of success or failure

            including retries for the same MPDU.

            This variable is null if the dot11staAddress is a group address.

            "

    ::= { dot11staStatsEntry 5 }

dot11staMPDUFromCount OBJECT-TYPE

        SYNTAX Counter32

        MAX-ACCESS read-only

        STATUS current

        DESCRIPTION

            "This counter shall be incremented for each successfully

            received unicast MPDU of all types of MPDU/MMPDUs 

            FROM the dot11staAddress directed to THIS STA.

            This variable is null if the dot11staAddress is a group address."

    ::= { dot11staStatsEntry 6 }

dot11staGroupMPDUToCount OBJECT-TYPE

            SYNTAX Counter32

            MAX-ACCESS read-only

            STATUS current

            DESCRIPTION

                "This counter shall increment when a non unicast

                MSDU/MMPDU is sent to the dot11staAddress regardless

                of the sender. 

                This variable is null if the dot11staAddress is not 

                a group address."

    ::= { dot11staStatsEntry 7 }

dot11staGroupMPDUFromCount OBJECT-TYPE

            SYNTAX Counter32

            MAX-ACCESS read-only

            STATUS current

            DESCRIPTION

                "This counter shall increment when an MSDU/MMPDU 

                sent to any group address by the dot11staAddress

                is observed."

    ::= { dot11staStatsEntry 8 }

dot11staMSDUToCount OBJECT-TYPE

        SYNTAX Counter32

        MAX-ACCESS read-only

        STATUS current

        DESCRIPTION

            "If the dot11staAddress is not a group address,

            this counter shall be incremented for any unicast MSDU

            successfully transmitted TO the dot11staAddress 

            for all types of MSDUs by THIS STA.

            If the dot11staAddress is a group address, this

            counter shall be increamented for any 

            broadcast/multicast MSDU transmitted to the 

            dot11staAddress by THIS STA.

            "

    ::= { dot11staStatsEntry 9 }

dot11staMSDUFromCount OBJECT-TYPE

        SYNTAX Counter32

        MAX-ACCESS read-only

        STATUS current

        DESCRIPTION

            "This counter shall be incremented for each successfully

            received unicast MSDU of all types FROM the dot11staAddress

            in the current entry by THIS STA."

    ::= { dot11staStatsEntry 10 }

dot11staMPDUTo3rdFromCount OBJECT-TYPE

        SYNTAX Counter32

        MAX-ACCESS read-only

        STATUS current

        DESCRIPTION

            "This counter shall be incremented for each successfully

            decoded header of an unicast MPDU/MMPDU of all types FROM the 

            dot11staAddress sent to a 3rd STA other than THIS STA."

    ::= { dot11staStatsEntry 11 }

dot11staByteToCount OBJECT-TYPE

        SYNTAX Counter32

        MAX-ACCESS read-only

        STATUS current

        DESCRIPTION



"This counter indicates the total number of octets in MSDU 



body successfully sent to the dot11staAddress by THIS STA.



If the dot11staAddress is a group address, this counts only



broadcast or multicast bytes to that particular group address."

    ::= { dot11staStatsEntry 12 }

dot11staByteFromCount OBJECT-TYPE

        SYNTAX Counter32

        MAX-ACCESS read-only

        STATUS current

        DESCRIPTION



"This counter indicates the total number of octets in MSDU 



body successfully received by THIS STA from the dot11staAddress



This excludes multicast and broadcast, since a group address



cannot be a transmitter."

    ::= { dot11staStatsEntry 13 }

dot11staByteTo3rdFromCount OBJECT-TYPE

        SYNTAX Counter32

        MAX-ACCESS read-only

        STATUS current

        DESCRIPTION



"This counter indicates the total number of octets in MPDU 



body sent from the dot11staAddress to a 3rd STA other than



THIS STA. Obviously, this counter cannot reflect whether the



intended 3rd receiver has successfully received or not, hence 



the use of MPDU instead of MSDU.



This excludes multicast and broadcast, since a group address



cannot be a transmitter."

    ::= { dot11staStatsEntry 14 }

dot11staFailedMSDUToCount  OBJECT-TYPE                

        SYNTAX Counter32

        MAX-ACCESS read-only

        STATUS current

        DESCRIPTION

            "This counter shall be incremented for a failed delivery of an MSDU

            transmitted TO the dot11staAddress by THIS STA for

            all types of MSDUs by THIS STA.

            This counter obviously does not apply to broadcast and multicast.

            "

    ::= { dot11staStatsEntry 15 }

dot11staRetryMPDUToCount OBJECT-TYPE

        SYNTAX Counter32

        MAX-ACCESS read-only

        STATUS current

        DESCRIPTION

            "This counter shall increment when an MPDU/MMPDU is transmitted

            TO the dot11staAddress by THIS STA with the Retry bit set."

    ::= { dot11staStatsEntry 16 }

dot11staRetryMPDUFromCount OBJECT-TYPE

        SYNTAX Counter32

        MAX-ACCESS read-only

        STATUS current

        DESCRIPTION

            "This counter shall increment when an MPDU/MMPDU is received

            from the dot11staAddress by THIS STA with the Retry bit set."

    ::= { dot11staStatsEntry 17 }

dot11staRetryMPDUTo3rdFromCount OBJECT-TYPE

        SYNTAX Counter32

        MAX-ACCESS read-only

        STATUS current

        DESCRIPTION

            "This counter shall increment when an MPDU/MMPDU is observed

            sent by the dot11staAddress to a 3rd STA other than THIS STA

            with the Retry bit set."

    ::= { dot11staStatsEntry 18 }

dot11staRTSSuccessCount OBJECT-TYPE

        SYNTAX Counter32

        MAX-ACCESS read-only

        STATUS current

        DESCRIPTION

            "This counter shall increment when a CTS is received from

            the dot11staAddress in response to an RTS from THIS STA."
    ::= {  dot11staStatsEntry 19 }

dot11staRTSFailureCount OBJECT-TYPE

        SYNTAX Counter32

        MAX-ACCESS read-only

        STATUS current

        DESCRIPTION


        "This counter shall increment when a CTS is not received from


        the dot11staAddress in response to an RTS from THIS STA."

    ::= { dot11staStatsEntry 20 }

dot11staACKFailureCount OBJECT-TYPE

        SYNTAX Counter32

        MAX-ACCESS read-only

        STATUS current

        DESCRIPTION

            "This counter shall increment when an ACK is not received

            when expected from the dot11staAddress in response to a frame

            from THIS STA."

    ::= {  dot11staStatsEntry 21 }

dot11staWEPUndecryptableCount OBJECT-TYPE

        SYNTAX Counter32

        MAX-ACCESS read-only

        STATUS current

        DESCRIPTION


        "This counter shall increment when a frame is received from the


        dot11staAddress with the WEP subfield of the Frame Control field


        set to one and the WEPOn value for the key mapped to the 


        dot11staAddress indicates that the frame should not have been 


        encrypted or that frame is discarded due to decrryption failure."

    ::= { dot11staStatsEntry 22 }

dot11staLatestRSSIFrom  OBJECT-TYPE

        SYNTAX Integer32

        MAX-ACCESS read-only


STATUS current


DESCRIPTION



"This contains the RSSI value of the most recent MPDU from



the dot11staAddress in the current entry, regardless of its



destination."

     ::= { dot11staStatsEntry 23 }

dot11staBeaconFromCount OBJECT-TYPE

        SYNTAX Counter32

        MAX-ACCESS read-only

        STATUS current

        DESCRIPTION

            "This counter shall be incremented for each successfully

            received MPDU of type Management, subtype Beacon from 

            the dot11staAddress."

    ::= { dot11staStatsEntry 24 }

dot11staState OBJECT-TYPE

        SYNTAX INTEGER

        MAX-ACCESS read-only


STATUS current


DESCRIPTION



"The state of the dot11staAddress relative to this STA and this ifIndex as



specified in 802.11 standard, release 1999, Sec 5.5. i.e., 



1 = State 1: unauthenticated, unassociated



2 = State 2: authenticated, unassociated



3 = State 3: authenticated, associated



If the dot11staAddress is not in the same BSS, the value shall be 0.



If the dot11staAddress is a group address, the value shall be null."

    ::= { dot11staStatsEntry 25 }

dot11staCurrentChannel OBJECT-TYPE

        SYNTAX INTEGER

        MAX-ACCESS read-only


STATUS current


DESCRIPTION



"This attribute contains the channel number of the dot11staAddress in the



current entry. The channel number should be consistent with the interface



designated by the ifIndex in this entry.



If in the same (I)BSS as in THIS STA, the Current channel is the 



same as that of THIS STA. If not in the same (I)BSS for DSSS PHY, 



since DSSS packets are decodable sometimes even not on the exact 



same channel, the variable shall be determined only when packets 



with channel number explicitly included is decoded from the dot11staAddress, 



such as beacon, probe response, and association response.



OFDM does not have this issue. Thus, this can only be determined during scans 



or other activities away from the current channel, if the dot11staAddress does 



not have the same BSSID.



If the channel number is not conclusively known or the dot11staAddress is



a group address, this variable should be null."

    ::= { dot11staStatsEntry 26 }

dot11staTxRateTo OBJECT-TYPE


SYNTAX Unsigned32 (0..127)


MAX-ACCESS read-only


STATUS current


DESCRIPTION



"Provides a weighted average of the rates at which



recent frames were sucessfully transmitted.  Every time



a frame is sent with an address1 field equal to the value of



dot11staAddress for this row, this value is



modified as follows.  If R is the variable used to store



this value, and T was the rate at which the acknowleged



frame was sent, then




R = R * 0.7 + T * 0.3 



R should be initialised to the maximum supported rate at



which frames can be sent to the station in question, and



should be held in a format of sufficient accuracy to allow



convergence.  R should be rounded to the nearest integer



before being returned as the value of this object.



The units for T are the same as those for rates as



described in the 'Supported Rates' Information Element.



"


::= { dot11staStatsEntry 27 }

dot11staRxRateFrom OBJECT-TYPE


SYNTAX Unsigned32 (0..127)


MAX-ACCESS read-only


STATUS current


DESCRIPTION



"Provides a weighted average of the rates at which



recent frames were sucessfully received.  Every time



a frame is received with an address2 field equal to the value 



of dot11staAddress for this row, this value is



modified as follows.  If R is the variable used to store



this value, and T was the rate at which the frame was 



received, then




R = R * 0.7 + T * 0.3 



R should be initialised to the maximum supported rate at



which frames can be received from the station in question, and



should be held in a format of sufficient accuracy to allow



convergence.  R should be rounded to the nearest integer



before being returned as the value of this object.



The units for T are the same as those for rates as



described in the 'Supported Rates' Information Element.



"


::= { dot11staStatsEntry 28 }

dot11staRoamed OBJECT-TYPE

        SYNTAX INTEGER

        MAX-ACCESS read-only


STATUS current


DESCRIPTION



"This attribute indicates whether the dot11staAddress is roamed or not,



and applies only when THIS STA is an AP.



0: the dot11staAddress is still part of the (I)BSS of THIS STA 



1: the dot11staAddress is no longer part of the BSS: roamed, 



   due to inactivity, or explicitly as determined by THIS STA.



null: Not applicable, e.g., the dot11staAddress was not part of BSS



   to begin with, or it is a group address.



"

    ::= { dot11staStatsEntry 29 }

dot11staLastActivity OBJECT-TYPE

        SYNTAX TimeTicks

        MAX-ACCESS read-only



STATUS current



DESCRIPTION



"The timetick of the last activity of the dot11staAddress.



This variable can be compared to RFC 1213 SysUpTime to derive



the actual time of last activity.



If SystemUpTime is not available, the change of this variable



between successive queries can be used to determine if there has



been any activity since the previous query.



This value and dot11staStatsTableAgingTime can be also used




to determine whether this table entry can be purged to save memory



as needed."

     ::= { dot11staStatsEntry 30 }

-- **********************************************************************

-- *    end of dot11staStatsTable

-- **********************************************************************
4. Insert the following MIB variables at the end of the dot11PhyFHSS definitions and update the sequence definition for that table accordingly. The following three additions are CCA fraction monitoring per Interface, not per STA, and adds to the existing Phy tables.
dot11FHCCABusyFraction OBJECT-TYPE

        SYNTAX INTEGER (0..255)

        MAX-ACCESS read-only

        STATUS current

        DESCRIPTION

            "CCA Busy Fraction shall contain the fractional duration over which 

            CCA indicated the channel was busy during the last monitoring duration. 

            It is defined as Ceiling (255 * [Duration CCA indicated channel was busy] / 

            [Monitor duration]).

            The monitoring includes the transmission by this interface

            and does not require stopping the normal activities, i.e., CCA during

            normal operations.

            The monitoring duration is should be started at a TU boundary and 

            last as long as the number of TUs specified in the MonitorDuration, 

            excluding power-save periods, i.e., count TUs only when the receiver is on

            , assessing the channel.

            The monitoring process repeats after the last one, and this variable 

            reports the lastest results. 

            If no result is available or the MonitorDuration is 0, the variable 

            should be null."

    ::= { dot11PhyFHSSEntry 17 }

dot11FHCCAMonitorDuration OBJECT-TYPE

        SYNTAX Integer32

        MAX-ACCESS read-write

        STATUS current

        DESCRIPTION

            "The Measurement Duration over which 

            the above CCA was measured, expressed in TUs.

            The value 0 indicates the CCA monitoring is disabled."

    ::= { dot11PhyFHSSEntry 18 }

5. Insert the following MIB variables at the end of the dot11PhyDSSS definitions and update the sequence definition for that table accordingly.
dot11DSCCABusyFraction OBJECT-TYPE

        SYNTAX INTEGER (0..255)

        MAX-ACCESS read-only

        STATUS current

        DESCRIPTION

            "CCA Busy Fraction shall contain the fractional duration over which 

            CCA indicated the channel was busy during the last monitoring duration. 

            It is defined as Ceiling (255 * [Duration CCA indicated channel was busy] / 

            [Monitor duration]).

            The monitoring includes the transmission by this interface

            and does not require stopping the normal activities, i.e., CCA during

            normal operations.

            The monitoring duration is should be started at a TU boundary and 

            last as long as the number of TUs specified in the MonitorDuration, 

            excluding power-save periods, i.e., count TUs only when the receiver is on

            , assessing the channel.

            The monitoring process repeats after the last one, and this variable 

            reports the lastest results. 

            If no result is available or the MonitorDuration is 0, the variable 

            should be null."

    ::= { dot11PhyDSSSEntry 5 }

dot11DSCCAMonitorDuration OBJECT-TYPE

        SYNTAX Integer32

        MAX-ACCESS read-write

        STATUS current

        DESCRIPTION

            "The Measurement Duration over which 

            the above CCA was measured, expressed in TUs.

            The value 0 indicates the CCA monitoring is disabled."

    ::= { dot11PhyDSSSEntry 6 }
6. Insert the following MIB variables at the end of the dot11PhyOFDM definitions and update the sequence definition for that table accordingly.
dot11OFDMCCABusyFraction OBJECT-TYPE

        SYNTAX INTEGER (0..255)

        MAX-ACCESS read-only

        STATUS current

        DESCRIPTION

            "CCA Busy Fraction shall contain the fractional duration over which 

            CCA indicated the channel was busy during the last monitoring duration. 

            It is defined as Ceiling (255 * [Duration CCA indicated channel was busy] / 

            [Monitor duration]).

            The monitoring includes the transmission by this interface

            and does not require stopping the normal activities, i.e., CCA during

            normal operations.

            The monitoring duration is should be started at a TU boundary and 

            last as long as the number of TUs specified in the MonitorDuration, 

            excluding power-save periods, i.e., count TUs only when the receiver is on

            , assessing the channel.

            The monitoring process repeats after the last one, and this variable 

            reports the lastest results. 

            If no result is available or the MonitorDuration is 0, the variable 

            should be null."

    ::= { dot11PhyOFDMEntry 4 }

dot11OFDMCCAMonitorDuration OBJECT-TYPE

        SYNTAX Integer32

        MAX-ACCESS read-write

        STATUS current

        DESCRIPTION

            "The Measurement Duration over which 

            the above CCA was measured, expressed in TUs.

            The value 0 indicates the CCA monitoring is disabled."

    ::= { dot11PhyOFDMEntry 5 }
7. Insert the following MIB variables at the end of the dot11PhyHRDSSS definitions and update the sequence definition for that table accordingly.
dot11HRCCABusyFraction OBJECT-TYPE

        SYNTAX INTEGER (0..255)

        MAX-ACCESS read-only

        STATUS current

        DESCRIPTION

            "CCA Busy Fraction shall contain the fractional duration over which 

            CCA indicated the channel was busy during the last monitoring duration. 

            It is defined as Ceiling (255 * [Duration CCA indicated channel was busy] / 

            [Monitor duration]).

            The monitoring includes the transmission by this interface

            and does not require stopping the normal activities, i.e., CCA during

            normal operations.

            The monitoring duration is should be started at a TU boundary and 

            last as long as the number of TUs specified in the MonitorDuration, 

            excluding power-save periods, i.e., count TUs only when the receiver is on

            , assessing the channel.

            The monitoring process repeats after the last one, and this variable 

            reports the lastest results. 

            If no result is available or the MonitorDuration is 0, the variable 

            should be null."

    ::= { dot11PhyHRDSSSEntry 6 }

dot11HRCCAMonitorDuration OBJECT-TYPE

        SYNTAX Integer32

        MAX-ACCESS read-write

        STATUS current

        DESCRIPTION

            "The Measurement Duration over which 

            the above CCA was measured, expressed in TUs.

            The value 0 indicates the CCA monitoring is disabled."

    ::= { dot11PhyHRDSSSEntry 7 }

2. Usage examples of proposed variables

How these variables are used is out of the scope of TGk, but to help understand the reasoning behind the choices, some usage examples are roughly described here.

Most variables are useful on their own in providing current  BSS status. Many of them can be correlated to similar variables from other AP/STAs to provide system-wide status estimates.
These examples are by no means all the possible uses of these variables. The variables are chosen to cover elementary information as opposed to application specific types, so that they can be used for various purposes beyond what is desribed here. 
· dot11staBSSID : By identifying STAs in different BSS, overlapping BSS can be identified, assisting coverage, coexistence and rogue identification by monitoring this variable system-wide.
· dot11staSSID : Serves similar purpose as above, but explicitly identifies, when possible, other networks in the same area and which STAs belong to them.
· dot11staMPDUToCount  & dot11staMPDUFromCount: Traffic and load information per STA in direct communication.  Useful for various purposes such as capacity planning, QoS configs, usage accounting, upgrade planning, etc. By counting MPDUs regardless of their success, they reflect the medium usage more accurately than just counting successful frames, and it is easier to implement as there is no need to track which fragments constitue frames.
· dot11staGroupMSDUToCount & dot11staGroupMSDUFromCount : Provides insights into multicast and broadcast usage of the bandwidth, similarly to the previous variables. Useful in diagnosing performance issues or misconfigured devices by knowing who is multicasting how much. Along with the table entries for group addresses, these provide fairly complete picture of broadcast and multicast usages. 
· dot11staMSDUToCount & dot11staMSDUFromCount : Successful frame exchanges are also useful for similar purposes as the above two sets. 
· dot11staMPDUTo3rdFromCount : This is an observation of communication between two STAs other than itself and provides additional information on who is consuming how much of the resources. This often is useful for STAs belonging to a different BSS, since there is little direct communication to them, yet if their traffic is heard and affects the usage of the current channel. An STA is not required to capture all packets between two 3rd parties, but to count only those whose headers it decoded during normal contention resolution or other MAC operations. Here only MPDU/MMPUD headers are counted, since MSDU may require keeping track of fragments. 
· dot11staByteToCount & dot11staByteFromCount : The actual payload transferred along with packet counts provides more complete picture of the resource usage, and can also lead to detecting misconfigurations, or inefficient usage by unnecessarily small packet sizes. These apply to direct communications.
· dot11staByteTo3rdFromCount : Similar to the above two sets.
· dot11staFailedMSDUToCount, dot11staRetryMPDUToCount, dot11staRetryMPDUFromCount, & dot11staRetryMPDUTo3rdFromCount : Relevant retry and failure counts to serve similar purposes as the several previous sets as well as system-wide and link specific radio performance estimation. Retry counts combined with signal strength/quality measures can indicate noise, interference, or collision problems. Retry is counted more simply than the dot11RetryCount in the dot11CounterTable by counting MPDUs with retry bit set, which does not require keeping track of fragments and frames for retries.
· dot11staRTSSuccessCount, dot11staRTSFailureCount, & dot11staACKFailureCount :  Combined with the above set and signal strength/quality measures, these counters can elude to the potential cause of performance problems, system-wide or link specific, such as noise, interference, collision, excessive backoffs, etc. These apply to direct communications.
· dot11staWEPUndecryptableCount : Can potentially indicate configuration problems or security threats. This may be covered by new MIBs by TGi in the future. In tha case, this variable should be removed.
· dot11staLatestRSSIFrom : Indicates the signal strength and can be used to estimate the link quality, rough location, etc.. Still need absolute scale as being discussed in TGk. Also, it is vastly more useful if accompanied by a signal quality measure, also being discussed in TGk.
· dot11staBeaconFromCount : Rogue detection, coverage, locationing, etc. Useful in IBSS, indicating who is providing beacons.
· dot11staState  & dot11staCurrentChannel : Additional information on specific STAs. Useful for debugging, frequency planning, rogue detection, etc.
· dot11staTxRateTo & dot11staRxRateFrom : Performance indicator, useful for system monitoring, diagnosis, planning, etc. The definition used in the MIB is suggested by Mike Moreton, Synad described in doc # 02-652r1-RRM.
· dot11staRoamed : More information on the state of STAs. Correlating with stats from other AP/STAs can lead to movement estimation. Frequent changes indicate ping-pong handoffs or other performance issues. 
· dot11staLastActivity : Freshness of the current stats.

· Phy table addition of dot11####CCABusyFraction and dot11####CCAMonitorDuration : These are per-interface CCA status monitoring. This is similar to CCA measurements by TGh, but this one is just local observation during norming operations including local transmissions. These reflect the medium usage by 802.11 and non 802.11 sources that directly affect the MAC operations. Useful in performance monitoring, problem diagnosis, capacity planning, etc.


Submission
page 13
Byoung-Jo “J” Kim, AT&T Labs-Research


