January 2002

doc.: IEEE 802.11-02/041r0

IEEE P802.11
Wireless LANs

RC4 stream cipher variants and their use in IEEE P802.11 WLAN

Date:
January 23, 2002

Author:
René Struik

Certicom Corp.

5520 Explorer Drive, 4th Floor
Mississauga,

Ontario, Canada L4W 5L1

Phone: +1 (905) 501-6083

Fax: +1 (905) 507-4230

E-mail: rstruik@certicom.com

Abstract

This paper introduces RC4*, a variant of the RC4 stream-cipher that does not seem to succumb to the so-called Fluhrer-Mantin-Shamir [1] attack in practical environments. Whereas previous proposals like TKIP [2] focussed on preventing the exploitation of the bias caused by the key-scheduling algorithm of RC4, this proposal removes (virtually) all the bias itself, thus thwarting the Fluhrer-Mantin-Shamir attack based on information theoretical arguments. We show that RC4* is backward compatible with RC4, while requiring only two bytes of temporal extra storage, and virtually avoiding any extra computational overhead when compared with RC4 itself. Moreover, RC4* does not require a frequent re-keying procedure with all the caveats associated herewith.

1 Introduction

Recently, Fluhrer, Mantin, and Shamir [1] discovered a weakness in the key-scheduling algorithm of RC4 that can be exploited (see, e.g., [3], [6]) to severely compromise the security of the Wired Equivalent Privacy (WEP) protocol of the IEEE 802.11 wireless LAN standard. In this paper, we propose RC4*, a slight variant of RC4 which is secure against the Fluhrer-Mantin-Shamir attack in practical environments.

The solution has the following attributes:

1) Changes with respect to RC4. RC4* is obtained from RC4 by a re-definition of the initial value of the counter pair used in the Pseudo-Random Generation Algorithm (PRGA), one of the two components of RC4.

2) Security basis. The security of RC4* is based on an information theoretical argument, which revolves around virtually eliminating all the bias caused by the key scheduling algorithm of RC4.

3) Storage requirements. RC4* requires only 2 bytes of additional temporary storage when compared to RC4.

4) Processing cost. RC4* virtually does not add any computational cost when compared to RC4. According to some initial tests on an 8-bit processor the extra overhead of the Key Scheduling Algorithm of RC4*, the first stage of RC4, is only 8.4%. There are no other computational costs.

5) Update frequency master key. RC4* does not base its security on re-keying master keys more frequently (i.e., delegation of security responsibilities); instead, it is based on removing the bias that was the cause of the problems with RC4 and WEP. The update frequency is as follows, for use of RC4* in the so-called pre-fix mode, i.e., with keys of the form (IV || K), where IV is a publicly known vector and where K is a fixed long-term key (this is the same mode as the one WEP uses).
a) Conservative scenario. If one uses IVs of 4 bytes or less, the Fluhrer-Mantin-Shamir attack has no chance of succeeding at all, no matter how many IVs are passively recorded by the attacker. Re-keying is only necessary if the space from which IVs are drawn is exhausted (to prevent stream-ciphers from re-using the same key). This follows from the bounds on the expected number of chosen IVs one has to inject in order to correctly recover the first unknown key-byte.
b) Optimistic scenario. If one uses IVs of length 6, then re-keying is required roughly after 243.2 = 1013= 10,000 billion random IVs have been used. Even if one assumes the device to generate 60,000 packet IVs per second, this requires an attacker to capture all IVs for 5 years to be successful, which is approximately the complete lifecycle of the device. This follows from the bounds on the expected number of IVs one has to passively monitor in order to correctly recover the first unknown key-byte.

The reason for having such widely ranging estimates is that the ‘optimistic’ results are based on some preliminary MAPLE computations only and still have to be independently verified based on large-scale simulations, rather than on my mathematical model.

6) Compatibility RC4* and RC4 (with or without TKIP key mixing). RC4* is backward compatible with RC4, since RC4 is a special instance of RC4, with the initial value of the counter pair of the Pseudo-Random Generation Algorithm PRGA* forced to (0,0), rather than some particular pseudo-random value (as in RC4*).
2 RC4* Specification

The formal specification of RC4 can be found in Appendix C to this paper. The rest of the document contains security remarks.

3Concluding remarks
RC4* has some attributes that could make it an attractive long-term solution to the confidentiality problem with WEP. It could remove the need for block ciphers such as AES for confidentiality that are on the current roadmap for IEEE 802.11 WLAN and it does not require a redesign of major portions of the standard (or hardware). Having stated this, one should say that the security claims should be independently verified on at least the following two levels:

· Theoretical analysis. Analyis by the cryptographic community with respect to the claimed immunity of RC4* to the Fluhrer-Mantin-Shamir attack. This includes a more detailed analysis of the number of IVs that would be required to correctly recover an unknown key byte based on observing IVs. Given the large range between the numbers of known vs. chosen IVs required to correctly reconstruct an unknown key byte, this area deserves special attention. Based on the original Fluhrer et al. paper and some sound statistical assessments one would expect that the figures given for the number of known IVs required to compromise the security of a secret key byte seem to be not far off reality.

· Practical analysis. Analysis of the practical feasibility of Fluhrer-Mantin-Shamir type attacks on RC4*. The security claims are based on a mathematical model of the statistical behaviour of RC4*, which is an idealization of the real-world scenario. Hence, extensive simulations must be performed to verify whether or not these mathematical models faithfully reflect reality. (Note: the mathematical models are the same as the ones Fluhrer, Mantin, and Shamir implicitly assume in their landmark paper [1].

Everybody is invited to partcipate in this!

INFORMAL SECURITY ANNEX

(A more formal security argument will be provided in a forthcoming paper by the author [5])

RC4 Stream-Cipher Variants and their Immunity Against the Fluhrer-Mantin-Shamir Attack

1 Introduction

Recently, Fluhrer, Mantin, and Shamir [1] discovered a weakness in the key-scheduling algorithm of RC4 that can be exploited (see, e.g., [3], [6]) to severely compromise the security of the Wired Equivalent Privacy (WEP) protocol of the IEEE 802.11 wireless LAN standard. In this paper, we shortly describe some characteristics of this attack and analyze to what extent their attack is applicable to RC4*, a variant of the RC4 stream-cipher. It turns out that RC4* is far less susceptible to the Fluhrer-Mantin-Shamir attack than one would expect given its similarity to RC4 itself: it seems to allow an RC4-type operation in pre-fix mode with IVs of length up to 4-6 bytes while still being immune against the mentioned attack. Moreover, the design of RC4 would allow backward compatibility with the existing RC4 stream-cipher at negligible extra cost.

2 RC4 and the Fluhrer-Mantin-Shamir Attack

RC4 is one of the most widely used stream-ciphers in software applications. It was designed by Ron Rivest in 1987 and was kept as a trade secret till it leaked out in 1994. An informal description of RC4 follows (for a detailed description, see Appendix B).

Description of RC4

Generation of the key stream is done in a two-stage process and involves (in order):

1. A Key Scheduling Algorithm (KSA), which derives the initial state of the stream-cipher from a variable size key;

2. A Pseudo-Random Generation Algorithm (PRGA), which generates the key stream, based on the initial state of the stream-cipher and the initial value of a pair of counters. (In RC4, the initial value of this pair is always (0,0).)

Attack on RC4

In [1], the authors describe a number of exploitable weaknesses of RC4, including:

1) Predictability of a sizable proportion of the initial state of the stream-cipher if the key is of a particular form (the so-called invariance weakness).

2) Leakage of part of the secret key from the initial output word of the key stream, if RC4 is used with a large number of keys that are all an easy combination of a fixed long-term secret key and some publicly known string (the so-called IV weakness). This leakage of keying material is shown in each of the following cases:

a) Prefix mode. The keys used consist of a fixed secret K preceded by a publicly known string IV, i.e., these have the form (IV || K);

b) Postfix mode. The keys used consist of a fixed secret K followed by a publicly known string IV, i.e., these have the form (K || IV).

In both cases, leakage of keying material results from a bias in the statistical distribution of the candidate secret keys that becomes manifest when observing the first output of the key stream. By feeding the system with sufficiently many publicly known strings IV (while the secret key K remains fixed) this bias can be exploited to correctly determine the key.

For our purposes, only the attack that exploits leakage of keying material is relevant.

Applicability of the attack

Note that the attack arises in how RC4 is being used. The WEP standard uses RC4 in a way vulnerable to the attack: it uses keys of the form (IV || K), where the publicly known string IV is a 3 byte word and where the long-term secret key K is fixed during multiple RC4 sessions. In this case, the observation of a relatively low number of IVs of a specific form (roughly 60 per key byte) turns out to suffice in determining the secret key, byte by byte.

Not all protocols using RC4 are vulnerable to the attack. As an example, the SSL standard uses RC4 but is not vulnerable to the attack. The reason for this is that, in the SSL standard, a completely new and random key is used for each session of RC4. The WEP standard, in contrast, uses related keys for subsequent sessions of RC4, of the previously mentioned form (IV || K). Hence, the SSL and WEP standards differ by their modes of operation of RC4.

The WEP standard's mode of operation combined with the use of the RC4 stream-cipher creates a very serious vulnerability because of Fluhrer et al.'s attack.

Our understanding of the attack

· Prefix mode. We have confirmed and understood the attack on the WEP standard's mode of operation of RC4 (the so-called ‘prefix mode’ described above). We analyzed and implemented part of the attack and found the attack to be as effective as Fluhrer et al. claim. One should note that the attack requires the publicly known strings IV to be selected of a particular form. If one is free to choose these IVs to one's own liking, then only roughly 60 different IV values are needed to correctly determine each key byte. In fact, we found that the number of IVs required for determining each subsequent key byte decreases once one already recovered the initial part of the secret key (see Table 1). (Note: In WEP, the IV consists of 3 bytes.)

(Table 1: Maple postscript file could not be imported in Word format)

(Results similar to those in Fluhrer-Mantin-Shamir paper [1])

Table 1. Prefix attack on RC4 with chosen IVs. The expected number of IVs needed to correctly determine the leftmost unknown key byte of the secret key, as a function of the length z (in bytes) of the known pre-fix of the secret key.

If the IVs are randomly distributed but are beyond the attacker's control, then far more (84,000 to 1,310,000) IV values are required to successfully execute the attack, since only a small portion of the IVs is of the specific form useful to launch the attack (quantities still seem to be reasonably small to launch an attack, however). An interesting feature of the attack is that one can easily verify whether IVs are of the particular form needed in the attack.

· Postfix mode. We have confirmed and understood the attack on the so-called postfix mode of RC4. Also here, we analyzed and implemented part of the attack and found the attack as effective as Fluhrer et al. claim. In fact, we found that the postfix attack is very similar to the prefix attack, something that is not directly clear from studying the paper alone (the description of the postfix attack in the paper is quite intuitive). In contrast to the prefix attack, the postfix attack requires the key K to be of a particular form. If the key is of this form, then only roughly 60 different IV values are needed to correctly determine the entire key (rather than a single key byte, as is the case in the prefix attack). If the key K is not of this particular form, the attack fails. One should note, however, that one can extend the attack such that it succeeds in correctly recovering the complete key if the key is in one of a number of particular formats (the probability of which depending on the length of the publicly known string IV). For IVs consisting of 3 or more words the probability that the attack succeeds reaches over 10%.

Thwarting the attack

Fluhrer et al. recommend thwarting both the prefix and the postfix attack by avoiding these modes of operation altogether and using the RC4 algorithm with as key the secure hash (e.g., using SHA-1) of the fixed long-term key K and the publicly known string IV, i.e., by using as key the string k=h(K|| IV). To do away with the predictability of a sizable proportion of the initial state of the stream-cipher (cf. §2), they recommend discarding the first 256 bytes of the generated key stream.

3 RC4* and the Fluhrer-Mantin-Shamir attack

RC4* is a variant of the stream-cipher RC4 that was designed to prevent the Fluhrer-Mantin-Shamir attack.

An informal description follows (for a detailed description, see Appendix C).

Description of RC4*

Recall that with RC4, the generation of the key stream is a two-stage process and involves the subsequent execution of a Key Scheduling Algorithm (KSA) and a Pseudo-Random Generation Algorithm (PRGA). RC4* uses the same KSA as RC4, but uses a modified version of the PRGA of RC4, which we will coin PRGA*. These are the only differences between RC4 and RC4*.

The PRGA and the PRGA* differ in the following main aspect: In RC4*, the pair of counters used in the PRGA* of RC4* is initialized as (i0, j0) rather than as (0,0), such as is the case in the PRGA of RC4. The modified initialization value (i0, j0) is computed somehow during the execution of the key-scheduling algorithm.

Our understanding of the applicability of the attack to RC4*

RC4* is a (slight) variation of the original RC4 stream-cipher. Thus, the attack on the original version of RC4 does not directly apply to the RC4*. We discovered, however, that Fluhrer et al.'s attack can be extended to apply to RC4* and its modes of operation as well. However, the attack turns out to be far less effective in the setting of RC4* than in the original setting of RC4. We considered both the prefix mode and the prefixed XOR mode. Details are as follows.

· Prefix mode. We discovered that the attack on the so-called prefix mode of operation on RC4 (described in §2) extends to RC4*. We analyzed and implemented part of the attack and found the attack on RC4* to be far less effective than the corresponding attack on the original version of RC4. Similar to the attack on RC4, our attack on RC4* requires the publicly known strings IV to be selected of a particular form. If one is free to choose these IVs to one's own liking, then roughly 600 million different IV values are needed to correctly determine each key byte, which is a factor 10 million higher than the required number of chosen IVs in the attack on the original version of RC4. Again, we found that the number of IVs required for determining each subsequent key byte decreases once one already recovered the initial part of the secret key (see Table 2). (Note: In WLAN, the IV consists of 3 bytes.)

(Table 2: Maple postscript file could not be imported in Word format)

(Numerical table with results included instead)

	z
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10

	#IVs ((109)
	75.7
	18.5
	8.02
	4.41
	2.75
	1.87
	1.34
	1.00
	.773
	.612

Table 2. Prefix attack on RC4* with chosen IVs. The expected number of IVs needed to correctly determine the leftmost unknown key byte of the secret key, as a function of the length z (in bytes) of the known pre-fix of the secret key.

If the IVs are randomly distributed but are beyond the attacker's control, then far more IV values are required to successfully execute the attack, since a far smaller proportion of the IVs is of the specific form useful to launch the attack than when one can choose the values of the IVs at will (see Table 3, which shows data results for several scenarios). An interesting feature of the attack on RC4* – which sets it apart from the attack on RC4 – is that one cannot verify whether IVs are of the particular form needed in the attack due to the uncertainty over the initial value of the pair of counters (i0,j0) used in the Pseudo-Random Generation Algorithm of RC4*. Instead, one can merely estimate the probability that it is of the required form. Due to this uncertainty, the bias in the statistical distribution of the candidate secret keys that becomes manifest when observing the first output of the key stream is quite marginal when compared with that observed when using the original version of RC4.

(Table 3: Maple postscript file could not be imported in Word format)

(Numerical table with preliminary results included instead)

	z
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10

	#IVs ((1013)
	496
	53.8
	13.1
	4.62
	2.01
	1.00
	.549
	.324
	.203
	.133

Table 3. Prefix attack on RC4* with random IVs. The expected number of IVs needed to correctly determine the leftmost unknown key byte of the secret key, as a function of the length z (in bytes) of the known pre-fix of the secret key. The graphs represent the required number of IVs when the proportion of the random IVs of the specific form needed in the attack compared to that of chosen IVs are estimated via a statistical model. Cautionary remark: these are preliminary results only! The true figures need to be based on large-scale simulations, rather than on a mathematical model, although one might expect the results not to differ materially.

· Prefixed XOR mode. In this mode, the key is of the form (K (IV || K), rather than of the form (IV||K) such as is the case in the prefix mode. This mode is also attacked in the paper (for the original version of RC4). The attack described in the paper uses the observation that if one guesses the first few bytes of the key K correctly, then the key (K (IV || K) reduces to a key of the form (IV' || K') for some publicly known string IV'. The prefix attack of RC4 then enables the correct reconstruction of the key K' and, herewith, of the key K. It should be noted that the workload of this attack is bigger than that of the prefix attack, since it requires executing this attack for all possible guesses of the initial few bytes of the key K simultaneously. This attack naturally extends to the RC4* setting. Notice, however, that there is a trade-off between the number t of initial bytes of the key K to be guessed before the prefix attack is launched and the expected number of IVs needed in the prefix attack to correctly determine the (t+1)st byte of the key.

Thwarting the attack

Both the prefix and the postfix attack are based on leakage of keying material resulting from a bias in the statistical distribution of the candidate secret keys that becomes manifest when observing the first output of the key stream. In both cases, this bias can be exploited to correctly determine the key by feeding the system with sufficiently many publicly known strings IV (while the secret key K remains fixed). Obviously, these attacks are not feasible in any of the following scenarios:

1. Change the long-term key K so frequently that not enough IVs are available to the attacker.

2. Do not make the first output of the key stream available to the attacker. Note that this requires either discarding the first outputs of the key stream or ensuring oneself that the plain-text encrypted using the initial bytes of the key stream to be truly randomized and kept secret (for otherwise observed cipher-text leaks information on the key stream).

3. Abandon the prefix and the postfix method altogether and use a secure hash function to derive the key for RC4 instead (this method is recommended by Fluhrer et al., cf. also the end of §2).

The following methods for thwarting the Fluhrer-Mantin-Shamir attack could prove to be effective:

1) Enforce sufficiently frequent updates of the long-term key K. This measure is feasible, since the long-term key of RC4* can be updated. Re-keying is necessary only in each of the following two cases:

a) Exhaustion of the space from which IVs are drawn (to prevent the stream-cipher from reusing the same key);

b) Sufficiently many IVs have been monitored to launch a successful attack.

The update frequency depends on the number of IVs generated every day and the number of IVs needed to launch a successful attack (and should be at least the ratio between the two). Thus, if the attack requires monitoring IVs for a month, the long-term key of RC4* needs to be changed at least every month.

 (1

	z
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10

	#needed IVs (log2) (
	52.1
	48.9
	46.9
	45.4
	44.2
	43.2
	42.3
	41.6
	40.9
	40.3

	#needed IVs (log2) (
	36.1
	34.1
	32.9
	32.0
	31.4
	30.8
	30.3
	29.9
	29.5
	29.2

	#possible IVs (log2)
	8
	16
	24
	32
	40
	48
	56
	64
	72
	80

 (2

Table 4. Prefix attack on RC4* with chosen IVs and random IVs. The expected number of IVs needed to correctly determine the leftmost unknown key byte of the secret key, as a function of the length z (in bytes) of the pre-fix of the secret key, both if the pre-fix is known (upper figure) and if it is chosen (lower figure). Cautionary remark: for known IVs, these are preliminary results only! The true figures need to be based on large-scale simulations, rather than on a mathematical model, although one might expect the results not to differ materially.

As for now, the analysis of the prefix attack on RC4* suggests the following conclusions:

a) Cautionary scenario (Arrow 1 in Table 4). If one uses IVs of 4 bytes or less, the Fluhrer-Mantin-Shamir attack has no chance of succeeding at all, no matter how many IVs are passively recorded by the attacker. Re-keying is only necessary if the space from which IVs are drawn is exhausted (to prevent stream-ciphers from re-using the same key). This follows from the bounds on the expected number of chosen IVs one has to inject in order to correctly recover the first unknown key-byte.
b) Optimistic scenario (Arrow 2 in Table 4). If one uses IVs of length 6, then re-keying is required roughly after 243.2 = 1013= 10,000 billion random IVs have been used. Even if one assumes the device to generate 60,000 packet IVs per second, this requires an attacker to capture all IVs for 5 years to be successful, which is approximately the complete lifecycle of the device. This follows from the bounds on the expected number of IVs one has to passively monitor in order to correctly recover the first unknown key-byte. Note, that if these preliminary results are correct, one might be able to just use one fixed master key per device (thus allowing one key management layer to be stripped). Prudence would dictate, however, to always provide facilities for key update. Cautionary remark: for known IVs, these are preliminary results only! The true figures need to be based on large-scale simulations, rather than on a mathematical model, although one might expect the results not to differ materially.
2) Discard the first output(s) of the key stream. This measure would prevent the Fluhrer-Mantin-Shamir attack, since this attack depends on the capability of intercepting the first output byte from the stream-cipher for many different IV values. It is possible, however, to extend their attack to the case where the attacker is capable of intercepting the second, third, fourth output byte, rather than the first byte, with slightly declining probabilities.

3) Abandon the RC4* mode of operation and use a secure hash, such as SHA-1, to derive the key for RC4 instead. This is quite an expensive solution. Moreover, from our analysis, it follows that if one follows the cautionary scenario above, one has to re-key roughly every 4 billion random IVs; if one would follow the optimistic scenario, one would have to re-key every 10,000 billion random IVs. Thus, if one follows the cautionary scenario, one does not need to use a secure hash to prevent the Fluhrer-Mantin-Shamir attack from succeeding; using RC4* instead would also prevent this attack from succeeding, at lower computational cost.

APPENDIX – SPECIFICATION

A Notational conventions

In this appendix, we use the following notation:

	ZN
	set of integers modulo N, i.e., the set {0,1,(,N-1}

	x+y
	x+y (modulo N)

	x·y
	x·y (modulo N)

	Σ t=0N-1 at
	a0+a1+ (+ aN-1

	f (g
	function composition, i.e., (f (g)(x)=f(g(x)) for all x

	IdN
	identity map on ZN, i.e., IdN (x)=x for all x (ZN

	i (j
	permutation that leaves all elements invariant, but exchanges elements i and j

	S: swap(i,j)
	array obtained from S by interchanging the elements hereof indexed by i and j

	x||y
	concatenation of the strings x and y

	(x)n
	result of truncating the (nonempty) string x||x||x||(after n symbols from ZN

B Description of RC4

RC4 is a stream-cipher that operates on strings of symbols over the alphabet ZN, the set of integers modulo N. Encryption and decryption of message strings is performed component-wise, by combining corresponding symbols of the message string and the key stream generated by the stream-cipher using addition and subtraction modulo N or some other suitable operator. Thus, encryption of the plaintext M to the ciphertext C is defined as

C(M,K):= M (RC4(K),

where RC4(K) is the key stream generated by RC4 with key K and where (denotes the operator of choice.

In practical applications, one typically takes N=2n, thus allowing the symbols of ZN to be represented as binary n-tuples and, henceforth, allowing the implementation of encryption and decryption using binary addition, rather than addition and subtraction modulo N.

The generation of the key stream of RC4 is a two-stage process involving the subsequent execution of a Key Scheduling Algorithm (KSA), which derives the initial state of the stream-cipher from a variable size key, and a Pseudo-Random Generation Algorithm (PRGA), which generates the key stream, based on the initial state of the stream-cipher and the initial value of a pair of counters. Both algorithms are depicted in Table 5. An informal description follows.

	KSA(K):
	PRGA(S):

	S:=IdN; {the identity map on ZN}
	

	(i,j):=(0,0);
	(i,j):=(0,0);

	do i (N
	do true

	(
	(i:=i+1;

	 J:=j+S[i]+Ki;
	 j:=j+S[i];

	 S: swap(i,j);
	 S: swap(i,j);

	 I:=i+1
	

	
	 output (S(S[i] +S[j]);

	od

	od

Table 5. The Key Scheduling Algorithm (KSA) and the Pseudo-Random Generation Algorithm (PRGA) of RC4.

The KSA computes a pseudo-random permutation of ZN={0,1,(, N-1} by performing an ordered sequence of transformations on the state vector S, a permutation of ZN initialized as the identity permutation. Each transformation of the state vector involves a swap of two indices (i,j) hereof. Since i assumes all values in {0,1(,N-1} exactly once, each index of the state vector is involved in at least one swap operation (although possibly with itself). All indices determined by the values of j computed along the execution of the algorithm are involved in further swaps. Note, that the value of j computed during the t-th transformation step of the algorithm depends on all the leftmost t words K0, K1,(, Kt-1 of the key K. Henceforth, if the key K is selected uniformly at random, each swap of the indices i and j of S constitutes a swap of S[i] with some randomly generated element S[j].

The PRGA generates the subsequent words of the key stream as a function of the current value of the state vector S and three indices hereof. The state vector is initialized as the state vector computed by the KSA and transformed each time an output word has been computed. Each transformation of the state vector involves a swap of two indices (i,j) hereof, which are computed similarly as in the KSA. The output word determined during the i-th transformation step of the algorithm is based upon this pair (i,j) of indices and assumes the current value of the state vector S indexed by S[i]+S[j].

For future reference, we give a combinatorial, rather than an algorithmic description of the relevant quantities of RC4. This description allows a concise yet precise analysis of properties of the stream-cipher at hand. The initial state SN of the stream-cipher is the permutation of ZN defined recursively by

S0(IdN {the identity map on ZN}, (i0,j0)=(0,0);

St+1=St ({it (jt+1}, where it+1=it+1 and where jt+1=jt + St[it] + Kt (with t, 0(t <N).

The key stream RC4(K)={Out[t] | t=0, 1, 2, (} generated by the stream-cipher is defined by

Out[t]=S't(S't[i't+1] +S't[j't+1]),

where the triple (S't, i't, j't) is defined recursively by

S0’(SN {the output state of the KSA}, (i0’,j0’)=(0,0);

St+1’=St’ ({it’ (jt+1’}, where it+1’=it’+1 and where jt+1’=jt’ + St’[it’] (with t, 0(t).

Remark

Our description of RC4 is slightly more general than the one commonly found in the literature. The original stream-cipher RC4, as invented by Ron Rivest in 1987, with key K, corresponds to our definition of RC4, but now with as key the string Key:=(K)N, i.e., the result of truncating the nonempty string (K||K||() after N symbols from ZN.

C Description of RC4*

RC4* is a variant of the stream-cipher RC4 described in Appendix B. Recall that with RC4, the generation of the key stream is a two-stage process and involves the subsequent execution of a Key Scheduling Algorithm (KSA) and a Pseudo-Random Generation Algorithm (PRGA). RC4* uses the same KSA as RC4, but uses a modified version of the PRGA of RC4, which we will coin PRGA*. These are the only differences between RC4 and RC4*. Both algorithms are depicted in Table 6.

	KSA(K):
	PRGA*(S,i’,j’,c):

	S:=IdN; {the identity map on ZN}
	

	(i,j):=(0,0);
	(i,j):=(i’,j’);

	[(I’,j’):=(0,0);]
	

	do I (N
	do true

	(
	(i:=i+c·1;

	 J:=j+S[i]+Ki;
	 j:=j+S[i];

	 [(i’,j’):=(i’,j’)+(S[i],S[j]);]
	

	 S: swap(i,j);
	 S: swap(i,j);

	 I:=I+1
	

	
	 Output (S(S[i]+S[j]);

	Od

	Od

Table 6. The Key Scheduling Algorithm (KSA) and the Pseudo-Random Generation Algorithm (PRGA*) of RC4*. The computations in square brackets in the KSA solely serve to illustrate how the initial value of the pair (i’,j’) as used in the PRGA* could be computed during the execution of the KSA. The constant c in the PRGA* is an integer that is co-prime with respect to N (i.e., gcd(c,N)=1).

A comparison of Table 6 with Table 5 yields that RC4* differs from RC4 in the following aspects:

1. The pair of counters (i,j) as used in the PRGA* of RC4* is initialized as (i’,j’) rather than as (0,0), as is the case in the PRGA of RC4. Here, the modified initialization value (i’,j’) is computed somehow during the execution of the key-scheduling algorithm.

2. The value of the counter i as used in the PRGA* of RC4* is incremented by c, rather than by 1 at a time, as is the case in the PRGA of RC4. Here, the constant c is an integer that is co-prime with respect to N (i.e., gcd(c,N)=1).

For future reference, we give a combinatorial, rather than an algorithmic description of the relevant quantities of RC4*. This description allows a concise yet precise analysis of properties of the stream-cipher at hand. The initial state SN of the stream-cipher is the permutation of ZN defined recursively by

S0(IdN {the identity map on ZN}, (i0,j0)=(0,0);

St+1=St ({it (jt+1}, where it+1=it+1 and where jt+1=jt + St[it] + Kt (with t, 0(t <N).

The key stream RC4*(K)={Out[t] | t=0, 1, 2, (} generated by the stream-cipher is defined by

Out[t]=S't(S't[i't+1] +S't[j't+1]),

where the triple (S't, i't, j't) is defined recursively by

S0’(SN {the output state of the KSA};

St+1’=St’ ({it’ (jt+1’}, where it+1’=it’+c and where jt+1’=jt’ + St’[it’] (with t, 0(t).

The constant c in the definition of it is an integer that is co-prime with respect to N (i.e., gcd(c,N)=1). The pair (i0’,j0’) is determined during the execution of the KSA of RC4* and is defined by

i0’=Σ t=0N-1 St[it] and j0’=Σ t=0N-1 St[jt+1].

Remark 1 (on the choice of the value of the constant c)

Our description of RC4* does not specify how the constant c that is used in the PRGA* should be computed. For efficiency reasons, this value should be easy to compute from publicly known information and the key K. For security reasons, one should require that gcd(c,N)=1, since the security can be expected to decrease if c and N have a nontrivial common factor. The ‘optimal’ value of this constant depends on whether or not the keys used with the RC4* stream-cipher are correlated and, if so, how.

Remark 2 (on the choice of the initial value of the pair of counters in the PRGA*)

Our description of RC4* did specify a single method for computing the initialization value(i’,j’) used in the PRGA*. In reality, there are many options for specifying this initial value; our choice just seemed to be the most efficient one
. From a security perspective, the main requirement is that the initialization values (i’,j’) should be unpredictable and uncorrelated if one does not have access to the keys used with RC4*. In addition, it should be noted that the main argument used in [1] does not seem to work any more, once one takes the initial value (i’,j’) of the counter pair such that i’ is sufficiently big (details are omitted, but will appear in [5].

Remark 3 (relationship between RC4 and RC4*)

It is easy to see that RC4* reduces to RC4, as defined in Appendix B, if one takes c=1 and forces (i’,j’):=(0,0). It reduces to the original stream-cipher RC4, as invented by Ron Rivest, if – in addition – one takes as key the string Key:=(K)N, where K is the key used with the actual stream-cipher RC4. Thus, one can use (almost) the same logic to realize the original RC4 stream-cipher, RC4 as defined in Appendix B, and RC4*, as defined in Appendix C.

Remark 4 (further variations of RC4)

One can easily generalize RC4* even further, e.g., by making the actions of the PRGA* dependent on the key K as well. It is not a priori clear, however, whether the likely (?) marginal security benefits hereof would justify the added implementation complexity and increased cost of executing different variants of RC4 on the same platform.

References

1. S. Fluhrer, I. Mantin, A. Shamir, Weaknesses in the Key Scheduling Algorithm of RC4, in the Workshop Record of SAC 2001 – Eighth Annual Workshop on Selected Areas in Cryptography, August 16-17, 2001, Toronto, pp. 3-25.

2. R. Housley, D. Whiting, Temporal Key Hash, submission to IEEE 802.11 TGi, IEEE doc.nr: IEEE 802.11-01/550r2, December 4, 2001.

3. R. Rivest, RSA Security Response to Weaknesses in Key Scheduling Algorithm of RC4, 2001, see RSA Laboratories' web site: http://www.rsasecurity.com/rsalabs/technotes/wep.html.

4. A. Roos, A Class of Weak Keys in the RC4 Stream Cipher, Preliminary Draft, September 22, 1995, see http://www.tik.ee.ethz.ch/~mwa/RC4/WeakKeys.txt.

5. R. Struik, RC4 Stream-Cipher Variants and their Immunity Against the Fluhrer-Mantin-Shamir Attack, in preparation.

6. A. Stubblefield, J. Ioannidis, A.D. Rubin, Using the Fluhrer, Mantin, and Shamir Attack to Break WEP, AT&T Labs Technical Report TD-4ZCPZZ, Revision 2, August 21, 2001.

7. D. Wagner, Re: Weak Keys in RC4, posted as article 40389 on sci.crypt, September 25, 1995, see http://www.cs.berkeley.edu/daw/my-posts/my-rc4-weak-keys.

� Suitable choices include replacing the step i’:=i’+ S[i] in the KSA by i’:=f(i’, S[i]), where f: ZN (ZN(ZN is an efficiently computable bijection in both of its arguments (and replacing the step j’:=j’+ S[j] in a similar way). Our choice seems to be quite efficient on a wide variety of computing platforms, including those without a multiplication instruction. In most practical scenarios one has N=2n, so one could opt for binary addition instead, i.e., f (x,y):= x (y.

Submission
page 1
John Doe, Somwhere Company

