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Abstract

We present the design process and specification of Michael, a MIC for TKIP.


Introduction

IEEE 802.11 is a wireless communication standard specified in [3]. It is in widespread use at speeds up to 11 Mb/s. The standard includes a security protocol called WEP with the aim to provide security `equivalent' to that provided by physical wiring. Unfortunately, the WEP protocol is seriously flawed [1,2,5]. The main flaws are:

· The re-use of IV values which lead to the re-use of key streams.

· The linear un-keyed MIC (Message Integrity Code) which allows modification of packets and injection of new packets. Effectively, the MIC provides hardly any authentication functionality.

· A correlation between the RC4 key and the first key stream byte, which leads to a key recovery attack.

· A seriously flawed authentication protocol.

Each of these flaws is a serious problem, and together they allow an attacker to circumvent WEP almost completely. The publicly available program airsnort eavesdrops on 802.11 wireless networks and recovers the key material.

As the security currently provided by WEP is entirely insufficient, there is an ongoing effort in IEEE 802.11 TGi to develop the next generation WEP protocol which will address all these problems. There will be two new security protocols. An entirely new one based on AES will be used for future devices. To allow existing devices to be upgraded, a lightweight protocol called TKIP is being developed. TKIP can be implemented on existing hardware platforms while still providing acceptable security in the short term future. 

Intersil has requested Niels Ferguson to assist with this work. The main result described in this report is a new MIC function that provides adequate security and is suitable for implementation on existing devices.

This work is based on public sources, as well as the following confidential information:

· Discussions with various people involved in 802.11 TG-I.

· DISC Architecture Specification version 1.01(B), dated 1995-06-16.

· CHOICE-W Architecture Specification, Version 2.01, dated 1999-04-14.

Note: In 802.11 the acronym MAC refers to Media Access Control; the protocol used to manage the transmission and reception of data over the media. This is completely unrelated to the term Message Authentication Code used by cryptographers. In 802.11 terminology authentication is provided by the MIC, or Message Integrity Code. We will use the 802.11 terminology in this document.

The problem

TKIP must take the installed base into account. There are millions of 802.11 devices in the field at the moment, and it is highly desirable that TKIP can be implemented on the existing devices in the field.

Most 802.11 devices contain at least two CPUs. The first CPU is in the MAC chip that also implements the rest of the wireless protocol. The second CPU we will call the `host CPU'. This is the CPU of the laptop, or the CPU that runs the access point.

The MAC CPU is fairly small and limited; typically it consists of a 16-bit CPU capable of executing around 10 MIPS. MAC CPUs are highly specialised; there is a limited number of suppliers and only a handful of different designs in the field. The host CPU is often far more powerful (e.g. in a laptop PC). Even the AP CPU is typically a 32-bit CPU capable of around 20 MIPS. The number of different host platforms greatly exceeds the number of different MAC CPUs.

TKIP could be implemented on the MAC CPU or the host CPU. Putting any extra functionality in the host CPU is far more complicated than putting it in the MAC CPU. It requires modification to the application code and the drivers. Due to the diversity of products and host CPUs, there are far more host CPU/OS/driver combinations in the field than there are different versions of MAC chips. A successful upgrade to TKIP would be much easier if we could restrict the upgrade to the MAC CPU.

The aim of TKIP is to find an acceptable protocol that can be implemented on most MAC chips without any modifications to the application code or driver code. These improvements will probably result in a loss of performance. Implementers are free to implement (part of) TKIP on the host CPU to reduce the loss of performance. This can be done for the most common equipment in the field, and the most common host CPU/OS/driver combinations. Other equipment can then be upgraded with a MAC CPU software upgrade, although this will reduce the available bandwidth for those devices.

Key distribution

The first required improvement is a proper key distribution protocol. The current idea is to use the 801.1X key exchange protocols. Details of the key distribution are outside the scope of this document. However, in this report we do assume that a suitable key distribution system is in use. This system establishes session keys, and refreshes these keys regularly.

Encryption

Most MAC chips have a hardware RC4 encryption engine to perform the encryption. To allow the same encryption engine to be used, RC4 encryption will have to be used again. (Performing the encryption in software would incur an unacceptable loss of performance, especially on many APs.)

The attacks on the encryption scheme can be avoided by using the following countermeasures (proposed by Doug Whiting and others):

· Never use the same IV value more than once for any particular session key.

· Use incrementing IV values. Receivers discard any packets whose IV value is less or equal to the last successfully received packet encrypted with the same key.

· Regularly generate a new random session key before the IV counter overflows. The current design limits IV values to 0,..., 216-1.

· Provide a more thorough mixing of the IV value and the session key to derive the packet's RC4 key.

The first two fixes are fairly straightforward to implement in the MAC software. Generating new session keys simply reuses the key distribution protocol already required. The mixing of the IV and session key to derive a packet encryption key will introduce a per-packet overhead. However, as the encryption key is relatively small, this will probably not lead to any significant loss of performance.

Authentication

This is the hard problem. Up to now most proposals have suggested implementing the MIC functionality on the host CPU. For reasons outlined above, it would be far preferable to at least have the option of implementing the MIC on the MAC CPU. This document proposes a MIC function suitable for both the MAC CPU and host CPUs.

Authentication requirements

As there us a very limited amount of CPU power available on the MAC CPU and some AP host CPUs, we first investigate the minimum requirements of the MIC and its surrounding systems.

We use the standard design of computing the MIC over the message and appending it to the message. The message is then processed by the existing WEP hardware using the pre-mixed packet key. The existing WEP hardware will add a 32-bit CRC (called the ICV) to the message/MIC string, and encrypt the result with RC4. The physical layer adds another 32-bit CRC and an error-correcting code to the data. The ICV is retained from the existing WEP because many existing hardware implementations do not have an option of leaving it off.

Keys

To perform both encryption and authentication we need separate keys for each. There are many ways to generate these. The encryption functions require a 128 bit key, the MIC function a 64-bit key.

The current per-packet key mixing ensures that different encryption keys are used for the two directions of traffic. The MIC keys should also be different for the two directions of traffic. The phase-1 mixing function is the obvious place to derive the MIC keys from the temporal key.

Unlike the RC4 encryption keys, the MIC key is used directly without further processing. Thus the keys should be computationally random, and not have any statistical correlations with each other or with the encryption keys.

The phase 1 will therefore have to be extended to not only generate two encryption keys, but also two MIC keys. A straightforward solution is to use the existing phase 1 mixing for the encryption keys, and to AES-encrypt the all-zero plaintext with the temporal key to derive 128 bits which are then

split into the two 64-bit MIC keys. Each of these keys is used for one direction of communication.

Whatever solution is chosen, the authentication keys should satisfy the following requirements:

· different keys for the two directions of communication.

· keys computationally independent of the encryption keys used.

· keys unknown to, and unpredictable for, any third party.

Data to be authenticated

In order to allow the MIC to be computed either in the host or the MAC CPU, the MIC is computed over the entire message before fragmentation at the MAC layer. This is essential because in most implementations the host CPU never sees the fragments, and therefore cannot handle a per-fragment MIC. As the MAC provides the fragmentation/defragmentation functionality, the MIC can be put at the defragmented level in the MAC CPU.
 

The MIC computation must include at least the payload of the packet. Other fields can be included as well, such as SA, DA, IV, and QOS information. A more detailed analysis of which fields are to be included is outside the scope of this document. Note that some fields are used in the derivation of the per-packet RC4 key; this might make it unnecessary to include them in the MIC as well, although such a dependency would require a careful evaluation of the security implications.

Existing CRCs

In this particular application we do not expect to get any accidental failures when checking the MIC at the receiver. Any noise or interference on the radio channel will first be corrected by the error-correcting code. After that a randomly perturbed packet has only a 2-32 chance of having a correct CRC. Let us assume there are 100 packets per second that are perturbed by noise too much for the error correction to handle. We can then expect one accidentally modified packet to pass the CRC check every 232/100 seconds, or less than  once a year. An extremely unreliable link might have 1000 CRC errors per second. Even then, we expect only one packet every 50 days to pass the CRC accidentally. Note that this network will be very unreliable, and that the devices will most likely switch back to a slower speed to reduce the error rate in noisy situations like this.

Next there is the 32-bit WEP ICV. Unfortunately this is a CRC checksum that uses the same polynomial as the physical layer CRC. If the accidentally modified packet passes the outer CRC it most likely also passes the inner CRC check. However, the WEP ICV does provide another type of check. If there is any error in the key distribution (e.g. the transmitter and receiver are using different keys) then the WEP ICV check will most likely fail. In that sense the WEP ICV checks for a proper key setup.

Only packets that satisfy both these CRC checks will get to the point where the MIC is verified.

Countermeasures

Given the limited computing power of the devices that have to implement the MIC, it is not feasible to create a fast and highly secure MIC. We are therefore forced to use a MIC that is much weaker than desirable. To achieve an acceptable security level, we combine a fairly weak MIC with countermeasures that limit the attacker's actions in other ways.

One important class of attacks on a MIC involves the attacker sending many fraudulent packets in the hope that at least one of them passes the MIC test. In our case this type of attack is easy to detect as most packets will fail the MIC test. This very high detection rate coupled with the very low rate of accidental MIC failures allows the receiver to take some active countermeasures. These countermeasures are aimed at slowing down the attacker, logging the attempted attack, and ensuring that no key material is compromised.

The countermeasures consist of two steps. The first step is to detect the active attack. The second step is to take active countermeasures.

Detection of active attack

The simplest way of detecting an active attack is to assume an active attack is in progress any time you get a MIC verification failure. Alternatively, we can ignore the first MIC verification failure, and call it an active attack after the second MIC verification failure.

Given the very low rate of accidental MIC failures, there is no reason not to assume an active attack at the first MIC failure. Even under the very worst of circumstances, this will only lead to a false positive once per 50 days (assuming 1000 CRC errors per second, 24 hours a day).

A refinement to our countermeasures ensures that a single MIC failure does not lead to a long outage, but that repeated MIC failures incur the full countermeasures.

Active countermeasures

Once we have detected an active attack, we can take countermeasures. These countermeasures should achieve the following goals:

· The current authentication key and encryption key must be deleted and not used again. This prevents the attacker from learning anything about those keys from the MIC failure.

· Significant effort should be made to log the event as a security-relevant matter. A MIC failure is an almost certain indication of an active attack, and warrants a follow-up by the system administrator.

· The rate of MIC failures must be kept below one per minute. This implies that devices will have to shut down if they frequently receive packets with forged MICs. The slowdown makes it impossible for the attacker to make a large number of attempts in a short time.

Before verifying the MIC, the receiver should check the CRC, ICV, and IV. Packets with the wrong CRC, ICV, or with an IV that is less or equal to the IV of the last successfully received packet should be discarded before checking the MIC. This avoids unnecessary MIC failure events. Checking the IV before the MIC makes countermeasure-based DOS attacks harder to perform. Note that the `IV of the last successfully received packet' should only be updated after the MIC has been verified successfully.

BSS case

We define a new event: the MicFailureEvent. The AP keeps track of how long ago the last MicFailureEvent was. The AP uses this timer to ensure that at most one MicFailureEvent per minute is allowed. If any part of the system desires to generate a new MicFailureEvent and the previous one was not at least a minute ago, then this part of the system will have to wait for the minute to run out. If multiple MicFailureEvents are received, the waiting queue can get very long.

If an AP detects a MIC failure on a packet it receives, the following steps are to be taken:

1. Delete the authentication and encryption key in question.

2. Disassociate the STA the packet came from. This should only include sending the disassociation notification; no further exchanges with the STA should be attempted.

3. Create a log item and/or SNMP trap with details.

4. Disable both the transmitter and the receiver. This (temporarily) stops all RF traffic.

5. Generate a new MicFailureEvent. If the previous MicFailureEvent was less than a minute ago, wait for time to pass to satisfy the one-minute rule.

6. Enable the transmitter and receiver.

7. The STA in question will automatically associate again with the AP.

Note that the steps 4-6 can be collapsed if there has not been a MicFailureEvent in the last minute. The formulation here is a canonical form that satisfies all criteria. The sole purpose of these steps is to stop the packet flow until one full minute has passed since the last MicFailureEvent. Only when the new MicFailureEvent (generated by this MIC failure) is accepted by the one-minute rule can the packet flow be resumed.

OPEN QUESTION: What do we do with the beacon during this delay time? The AP could keep sending it, but as the AP isn't listening no traffic will be possible anyways.

If a STA detects a MIC failure, the following steps are to be taken:

8. STA deletes the authentication and encryption key in question.

9. STA disassociates from the AP.

10. STA sends a management message to the AP detailing the MIC failure event. The AP uses this information to create a log item and/or SNMP trap.

11. STA associates anew with a MicFailure flag set in the association message. On receipt of such an associate message, the AP generates a MicFailureEvent. If the time to the previous MicFailureEvent is less than one minute, the association request is delayed or discarded as no new MicFailureEvent is allowed to be generated at this point in time. ((Open problem: how do we authenticate the MicFailureEvent flag in the association request? We must prevent the attacker from resetting this flag. Can we include this in the authentication of the key negotiation protocol?))

12. Once the new association is established, STA and AP resume their communications.

Again, the MicFailure flag and the AP's timer ensure that at most one MicFailureEvent per minute is allowed in the entire BSS. This harsh system makes it impossible for an attacker to try to forge large number of packets. The beauty of this particular solution is that the very occasional accidental MIC failure only leads to a very short interruption of communications.

IBSS case

Currently there are no proposals for appropriate countermeasures in an IBSS. The problem is that there is no central point like the AP to keep the MicFailureEvent rate below a guaranteed value. This remains an area for further study.

Denial of service attacks

One problem of the countermeasures is that it allows a denial-of-service (DOS) attack. Repeated forgery attempts will bring down the network as the MicFailureEvent one-minute rule takes effect. The optimal strategy for the attacker is to forge packets with a bogus MIC and send them to the AP.

The fact that DOS attacks are possible is nothing new. All RF systems are vulnerable to jamming. The problem here is that the attack is very `light-weight'. A single (forged) packet every minute is enough to take down the network. The fear is that it will be significantly harder to track down this attacker than an attacker that simply jams the band.
 This is no doubt true. However, the existing system already has medium-weight jamming modes. A consistent jamming of the physical layer CRC of the beacon will take down the network. This requires about 10 very short jamming bursts per second; something that is relatively simple to do, and very hard to track down. Jamming the TCP/IP ack packets (recognisable by their size) and sending fake MAC-layer acknowledgements will effectively halt the TCP connection. In the case of TCP/IP the timeouts quickly increase in duration. Repeated application of this attack will take down the network. Note that it only requires a very occasional disruption of the TCP protocol to make web browsing so slow as to effectively stop it. Alternatively, the attacker could target DNS, ARP, DHCP, or other critical types of packets.

The countermeasures open up a new DOS attack opportunity. However, this is not a significant added threat, as similar threats already exist in the basic 802.11 design. The countermeasures do not enable a new class of attacks, they just gives one more way in which an already existing style of attack can be done. Furthermore, the MIC failures are unmistakably caused by an active attacker. With many log entries being generated it is not something that will pass unnoticed. This will obviously spark a hunt for the active attacker. The more subtle delete-TCP-ack-packets attack, which cannot be prevented at all, leaves no clear traces and just makes the wireless network seem extremely unreliable. A serious attacker intent on causing maximum harm should choose this style of attack, rather than the MIC-forgery route.

So how hard is it to do this DOS attack? To trigger the countermeasures, the forged packet has to pass the CRC, ICV and IV sequence tests. The CRC check is easy to pass. The ICV check is more difficult, as it provides a redundancy of the plaintext after decryption. As long as the encryption is secure, it is not possible to just generate a ciphertext that will pass the ICV checks. The only way to pass this check is to take an existing packet (which has a proper ICV value) and modify it. The linearity of the ICV allows the ICV to be updated despite the encryption [1].

The IV check in turn means that the existing packet that the attacker uses to derive the forged packet from must not have been received. (If it were received properly, the forged packet would be rejected by the IV check.)

The countermeasures-based DOS attack therefore requires existing traffic to be intercepted, the physical layer CRC to be jammed to avoid reception by the intended recipient, modifying the packet, and sending the forged packet to the recipient. If the hardware allows this attack, all that is required is a suitable piece of software. Hopefully most fielded hardware will not support the CRC jamming, in which case this attack becomes much harder to implement.

MIC security level

We can now consider the required security level of the MIC. For a security level k bits the chance of a successful forgery on the first attempt may not exceed 2-k.

The best the attacker can do is to try forging a single packet. Every failure triggers the countermeasures, which erase the keys in use. The countermeasures ensure that the attacker can try at most one forged packet per minute.

If we have a MIC with a security level of 16 bits, then the attacker can expect to need 215 failed attempts before a successful attempt. Thus the expected time until the first successful forgery is 215 minutes, or about three weeks.

A security level of 16 bits for the MIC is too low. The original purpose of WEP is to provide a security level comparable to that of ethernet wires in the office or home. A 16-bit MIC is insufficient, although the effort required for the attack comes close to that of breaking into the office or home.

Even a small increase in the security level of the MIC tips this balance in our favour. With a security level of 20 bits the expected time to first forgery is about a year. This satisfies the original WEP requirements, and certainly makes this attack highly impractical. A security level of 24 bits is sufficient for almost all purposes.

Keep in mind that this is a proposal for the short-term fix for WEP. An AES-based encryption and authentication mode is being developed as a long-term solution. This should provide an authentication security level in the order of 64--128 bits. Furthermore, users that are serious about security should consider running IPSec over 802.11 and use both the security protocols in a layered defence.

MIC speed

Ideally the MIC computation should take no time at all. Realistically there will be a significant overhead for the MIC computation on the MAC CPU. Suppose we can compute the MIC in 10 instructions per byte of the message. At the typical clock speed of 11 MHz this means that the MIC computation is the same speed as the highest physical data rate in 802.11b.

The MAC CPU has many tasks in managing the MAC layer. It is unrealistic to assume that the full CPU can be used for MIC computation. On the other hand, most of the MAC CPU's work is on a per-packet basis and not so much on a per-byte basis as most of the actual data-handling is typically done in dedicated hardware. When there are many packets, the packets are small and the payload over which the MIC has to be computed is a relatively small part of the bandwidth. In the high-bandwidth situations the packets are typically much larger, which reduces the MAC CPU overhead and frees up more cycles for the MIC computation.

Real-world performance of the 802.11b network at 11 Mb/s RF data rate is that around 6 Mb/s of data is actually transferred. If we can compute the MIC at 11 Mb/s then the additional overhead will slow this down somewhat, but it does not lead to an unacceptable slowdown. Newer devices for 802.11a use higher speeds, but presumably have faster processors as well. 

Note that any particular implementation can always choose to compute the MIC on the host CPU. In many situations the host CPU is so powerful that the MIC computations are an insignificant burden. Computing the MIC on the host CPU requires a significant re-design of the driver and MAC API to support the additional functionality. We expect that the most common platforms will take this route, and that only low-data rate platforms will compute the MIC on the MAC CPU.

An earlier proposal for the MIC was slightly more efficient on MAC CPUs but far less efficient on host CPUs. Based on the feedback we came to the current design. The biggest problem is posed by the existing APs, which often have a fairly limited host CPU. As virtually all traffic is to or from the AP, the MIC computations on the AP will be one of the major bottlenecks. Therefore, our final proposal is more efficient on 32-bit CPUs than the earlier ones, at the cost of a small slowdown on the MAC-CPU. 

MIC attack analysis

Against what kind of attacks should the MIC protect? A general MIC function would be at least 80 bits long, and quite likely be about as long as the encryption key, i.e. 96-128 bits. We cannot afford such a strong MIC, so we will have to use a weaker one which relies on the environment to help restrict the attacker in other ways.

Passive attacks

A passive attacker can intercept all the wireless traffic. In TKIP both the message and the MIC value are encrypted. As is standard, we assume that the attacker knows the plaintext of all packets. We will further assume that the encryption system (based on RC4 encryption with rapid re-keying and a per-packet pre-mixing) is secure, which implies that the MIC value is encrypted securely. Also, every time the temporal key is changed we derive both a new encryption and a new MIC key. This ensures that the attacker cannot collect too much information about any one MIC key.

WARNING: These assumptions imply that our MIC function can only be used with a secure encryption system. This rules out the use of the MIC without rapid re-keying or without per-packet RC4 key mixing.

Because the MIC value is encrypted, the attacker cannot learn anything from the wireless traffic about the MIC value or the MIC key. Any conjectured property of the MIC value or MIC key is hidden by the encryption, and as long as the RC4 key stream cannot be (partially) predicted by the attacker she cannot learn anything about MIC values.

We can thus discount the passive attacker and only look at active attacks.

Active attacks

The active attacker must construct a wireless message that will pass the MIC checks performed by the receiver. The simplest thing to do is to use a random MIC value in the forged message. The chances of a successful forgery for a k-bit MIC value is 2-k, which is secure enough if k>20. Our design has a 64-bit result so this attack is out of the question.

The attacker can also base her attack on an existing message. The attacker chooses two messages m1 and m2. She convinces one party to send a packet containing m1, intercepts the authenticated and encrypted packet, and tries to change its contents to m2. To be successful she must predict the xor-difference between the MIC of m1 and m2. (All other structure is hidden by the RC4 encryption.) An important special case of this attack is to try to find two messages m1 and m2 that lead to the same MIC value for a significant fraction of all authentication keys.

We only need to consider the probability of forging the first packet successfully, as our countermeasures ensure that, once a forgery attempt has failed, all the key material used is discarded. This invalidates any information the attacker might have collected.

There is one more pathological case where the MIC key is smaller than the MIC value. In that case the attacker can take a wireless message with a known plaintext, guess the MIC key, compute the MIC value, derive the corresponding key stream bits, modify the message, compute the new MIC value, and compute the appropriate ciphertext bits. We will avoid this situation by ensuring that the MIC key is at least as large as the MIC value.

MIC requirements

We can now formulate the requirements for the MIC function. The inputs to the MIC function are the MIC key, and a string of message bytes. The result is the MIC value. Both the key and the MIC value must be at least 20 bits long, and preferably 24 bits or more.

An attacker should not be able to generate a triple (m1, m2, () such that MIC( K, m1 ) = MIC( K, m2 ) ( ( for more than 2-20 of all keys K. In particular, the case (=0 should be taken into account.

The MIC function should be computable in the least number of cycles possible on a typical MAC CPU and host CPU.

I want to make it quite clear that this MIC function is only useful in this very special situation, where the MIC value is encrypted, the countermeasures are in place, and the aim of the security protocol is to provide security equivalent to that of a physical wire in an office building or home. This MIC function should not be used in any other application without a very thorough review of the security consequences.

Michael

After evaluating a long series of candidate functions, Michael seems to offer the best performance in our situation. It is based on many of the earlier designs (including Mickey and Michelle) and uses ideas from the Helix design (unpublished) that came out of the Twofish project. 

Michael is a 64-bit MIC, with a design strength of 20 bits. The key is an 8-byte value k0,..., k7. This is converted to two key words K0 and K1 of 32 bits each. Throughout the Michael design, all conversions between bytes and 32-bit words are done using the least-significant-byte-first convention.

The message consists of the bytes m0,..., mn-1 where n is the number of bytes in the message. The IV value is coded into the first few bytes of the message, with the other fields following in some fixed order. This order is important. By processing the IV first, we make sure that every message starts with a new value, and avoid repeating Michael states from other messages. The choice of exactly how the IV is encoded into the first few bytes is left to the people who have to implement this efficiently.

The message is first padded at the end with a single byte with the value 0x5a and then between 4 and 7 zero bytes. The number of zero bytes is chosen so that the overall length of the message plus the padding is a multiple of 4. The message is then converted to a sequence of 32-bit words M0, ..., MN-1 where N := ((n+5)/4(. Astute readers will have noticed that MN-1 = 0 (( MN-2 ( 0.

The MIC value is computed iteratively by starting with the key value and applying the block function b for every message word as shown in algorithm 1. Note that the loop runs a total of N times (i takes on the values 0 to N-1 inclusive). The resulting two words are converted to a sequence of eight bytes using the least-significant-byte-first convention. It is then appended to the message to be sent.

The block function is given in algorithm 2. It is a Feistel-type construction with alternating additions and xor operations. We use <<< to denote the rotate-left operator on 32-bit values, >>> for the rotate-right operator, and XSWAP for a function that swaps the position of the two least significant bytes and the position of the two most significant bytes in a word.

Speed

Michael is about 20% slower than an earlier draft design that used only three additions per block function. This earlier version did not meet the security goals.

A very quick estimate of Michael's speed:

· 5--6 clock cycles per byte for a 486.

· 13 clock cycles per byte for the MAC CPU.

· 3.5 clock cycles per byte on an ARM7.

All of these speeds need to be verified by actual implementation. The estimates are for optimised assembly implementations.

Analysis

As we discussed earlier, the attacker needs to find a triple (p1, p2, () with p1 ( p2 such that MIC( K, p1 ) = MIC( K, p2 ) ( ( for more than 2-20 of all keys K. This is effectively a differential attack. This section assumes that the reader has some background knowledge in differential cryptanalysis.

In a differential attack we only look at p1 ( p2. Strictly speaking, the actual value of p1 and p2 could affect the probabilities, but as a block function is applies to the state between the injection of each of the message words, we expect the values at the injection point to be effectively random. This argues that the only important thing is the difference between the two messages, and not their actual value.

Thus, our analysis concentrates on differential attacks. The obvious choice is to use xor-based differences, which require the approximation of the additions. The only other reasonable choice is to use additive differences. We conjecture that approximating an addition under xor-differentials is as hard as approximating a xor under additive differentials. As there are more xor operations than additions, and as rotation requires an approximation for additive differentials but not for xor differentials, the additive differences seem much less useful for Michael than xor-based differences. Michael was deliberately designed to favour xor differentials as we know exactly how additions behave under xor-differentials due to a very useful paper by Lipmaa and Moriai [4]. We know of no comparable result for the approximation of xor under additive differentials. Our analysis is restricted to xor-based differences.

We ran extensive computer searches to find the best differential characteristics of the block function b. To be quite clear: our search looked for differential characteristics, not differentials. A differential only specifies the input and output differences. A differential characteristic specifies the difference at each point in the computation. The standard assumption is that the most likely differential will be dominated by one (or at most very few) differential characteristics so that a search for characteristics gives useful information about the best differentials. Our search engine constructs the differential characteristics bit by bit, and uses bounds derived from Lipmaa and Moriai's work to cut off the search when the probability of the characteristic becomes too low.

As is usual in this type of analysis, our model treats the differential approximation of every addition operation independently. If the values in the additions were statistically independent this would be an accurate model. In Michael the values are highly correlated: the output of one addition is one of the inputs of the next. We ran several tests comparing the theoretical probability of differential characteristics with the actual probability of the associated differential. In several cases we found small deviations. Most differentials are somewhat more likely to occur than the associated differential characteristic suggest. This is to be expected as there are other differential characteristics that lead to the same differential. Each of these characteristics adds its own probability to the overall probability of the differential.

Other differentials do not occur at all. We traced this back to the correlation between the values of the additions. For example, suppose the first addition has a differential of (1,4) ( 7 with probability 2-3. A subsequent addition used this 7 difference in the approximation (7,8) ( 1 with probability 2-4. Let us now look at these differences as additive differences. The xor-difference 1 corresponds to an additive difference ( 1. The xor-difference 4 corresponds to an additive difference ( 4. The additive output difference of the first addition must therefore be ( 3 or ( 5. In the second difference the xor difference 1 corresponds to an additive difference of ( 1 and the 8 to ( 8. This implies that the xor difference 7 must be ( 7 or ( 9 additively. It is now clear why the combined differential has probability 0 instead of the expected 2-7: the additive difference of the 7 cannot match up.

The deviation between theory and practice is very small for differentials with very low Hamming weight, as it does not occur as long as the one-bits in the differentials are separated from each other. We did not find any differentials whose probability greatly exceeded the probability of the characteristic we found. Still, this deviation between our theoretical analysis and the actual behaviour is cause for concern. It diminishes the accuracy of our analysis. This was the major reason to add one more Feistel cycle to the Michael block function; when the analysis is less accurate we need a larger security margin.

This table gives the best differential characteristics that we found for the relevant patterns.

	Form
	Best diff.
	theor.
	actual

	(A,0) ( (C,D)
	(80000000,00000000) ( (a0804001,24814005)
	2-16
	2-17

	(A,0) ( (C,D)
	(80000000,00000000) ( (a1804001,24814005)
	2-17
	2-16

	(A,B) ((C,0)
	(10800000,b0802100) ( (c0000000,00000000)
	2-9
	2-8.5

	(A,B) ((C,D)
	(00800000,80800100) ( (20000000,a0000000)
	2-2
	2-2

	(A,0) ( (C,0)
	?
	(2-31
	?


Best differential characteristics with their theoretical and actual probabilities

This is not a complete list, there are several more differential characteristics with the same probability for the (A,B) ( (C,0) case. Note that we did not find any differentials of the type (A,0) ( (C,0).

We experimentally verified the most likely differentials of each type. For differentials with a relatively high probability (> 2-10) the theoretical and experimental probability are in close agreement. The lower the probability, the larger the deviations. The top two lines of the table show two very similar differential characteristics. This is an example of when the experimental and theoretical probabilities are different. Their only difference is a single bit in the approximation to the last addition. The difference between the theoretical and actual probability is probably due to a correlation with the probability of the previous addition. The experimental probability is still fairly close to the theoretical one. In this particular case the difference through the previous addition provided an input pattern to the last addition that made the second differential more likely by a factor of 2, and the first one less likely by a factor of 2. We computed the actual probability of all differentials of the form (A,0) ( (C,D) with theoretical probability ( 2-19. The second line is the differential with the highest actual probability that we found. The probability deviations were all within a factor of 4, so this gives us good reason to believe that the second line is the best differential of this form.

We can use these results to derive information about the best differential attacks on Michael itself. We ignore attacks where the two messages are of unequal length. There does not seem to be any way to generate two messages of different length that have a related MIC value, so we only discuss the case where the two messages are of equal length. We split the attacks into three cases: a difference in two consecutive message words that cancel each other, a difference in more than two consecutive message words that cancel each other, and a difference in the last message word that leads to a difference ( in the final result.

The first case requires a differential of the form (A,0) ( (C,0) through the block function. Our search turned up no such differentials with a theoretical probability larger than 2-31. This is well within the security goal of Michael, even if there is a small difference between the theoretical probability and the actual probability.

If the difference occurs in 3 or more message words, then the Michael differential characteristic can be built up from 2 or more block differentials. The first of these has the form (A,0) ( (C,D). The last one has the form (A,B) ( (C,0). There can be additional blocks between these with a general differential of the form (A,B) ( (C,D). The first differential has a probability of at most 2-16, and the last one of at most 2-8.5, giving us an upper bound of 2-24.5 for the probability of the overall differential. In practice these two `best' differentials do not match; the difference left in R by the first `best' differential does not match the difference in R required by the second one. Our computer search generated all differential characteristics of the form (A,0) ( (C,D) with theoretical probability ( 2-21, of the form (A,B) ( (C,0) with probability ( 2-14, and of the form (A,B) ( (C,D) with probability ( 2-12. A second program tried all possible combinations to build a multi-block differential for Michael. The best differential found used two differentials with theoretical probabilities 2-18 and 2-13 respectively, for an overall theoretical probability of 2-31. Experimentally the two differentials have a probability of about 2-18.5 and 2-11.5 respectively, for an overall probability of about 2-30. We did not check the probability of the combination experimentally. All in all the best overall probabilities are well below our requirement of 2-20.

Finally, we have to consider two messages that only differ in their last message byte, which ends up being a difference in MN-2, the next-to-last message word. In this case the the attacker tries to predict the difference in the MIC value appended to the message. Note that MN-2 is xorred into L, and the block function is applied twice (MN-1=0). Thus we need a differential through two blocks. The same program used above searched for two differentials, the first of the form (A,0) ( (C,D) and the second of the form (A,B) ( (C,D) which match in the sense that the difference in R that the first differential leaves is the difference in R that the second differential wants. Interestingly enough, the best solution found was exactly the solution discussed in the previous paragraph. This does not show that this is the best solution; we did not have the list of all general differentials with probabilities between 2-12 and 2-14. Still, it shows that this type of attack has a theoretical probability of at most 2-29. Our search only requires that the difference in R matches, whereas in actual fact the difference has to match in both L and R. This will only lead to an even lower probability for this type of attack. We conclude that this type of attack is unattractive and unlikely to succeed. The probability certainly falls well within our requirement.

Our results show that Michael more than achieves the 20-bit security level that is required. Our best estimate is that the actual security level of Michael is in the region of 30 bits. This gives us even a small margin, which is good to have in such an aggressive design. Of course, there might be other avenues of attack that we did not consider. Still, with a bit of luck this MIC function will actually achieve the 20-bit security level in practice.

The sins of Michael

We must realise that we are committing some major cryptographic sins in this project:

· Designing a new cryptographic primitive.

· Using a new structure for the primitive.

· Designing a primitive with marginal security.

· Fielding an untested design.

· Relying on other system properties to achieve the security goals.

Any cryptographic review of TKIP will list these points as major critical comments. All of them are bad. Together they cast serious doubt on the overall security achieved by the upgraded system. However, given our situation there does not seem to be a better solution. All other MIC proposals are significantly slower, and in real life a slower MIC function will result in more administrators switching off the security for their network because it slows things down. The end effect of a more conservative MIC function will be to reduce overall security in typical installations.

We should all realise that TKIP is really a kludge. We are trying to make the best of a difficult situation, but TKIP should be phased out as soon as possible. We strongly recommend that the AES-based primitives be implemented in all new devices, and that TKIP only be used for interacting with older devices incapable of the AES-based primitives.

Once again, we stress that Michael relies on the rest of the system to perform properly. Any relaxation of the security of the rest of the system can lead to a compromise of the authentication. For example, re-using an IV value can lead to immediate compromise of the authentication key. A known-plaintext attack will reveal the key stream for that IV, and if the second packet encrypted with the same IV is shorter than the first one, the MIC value is revealed, which can then be used to derive the authentication key. Any weakness in the encryption system similarly reveals information about the authentication key.

Other proposals

There have been a few other proposals for the MIC function. We will describe the major functional differences between these and Michael.

MPH

This proposal from Doug Whiting is based on interpreting the message as a large integer and taking it modulo a secret prime. This function cannot be computed on the average MAC CPU at any acceptable speed. It is therefore limited to host CPUs.

MPH has a lot of advantages, especially the provable security properties. It is very fast on certain host CPUs, especially Pentiums and strongARMs.

I have serious doubts about the suitability of MPH for 802.11. An AP with a 386 or 486 as host CPU will have a very hard time computing the MPH function, as these processors have a very slow multiplier. The same is true of any other AP or STA which does not have a fast multiplier. During the AES process there were extensive investigations into the speed of the various finalists. The RC6 proposal depends heavily on 32-bit multiplications. RC6 is fast on Pentium-related CPUs, but much much slower on many other CPUs. Compared to the proposals that did not use multiplication, RC6 performance varied by a factor of 2-3 depending on the exact CPU on which it was implemented. MPH will exhibit similar erratic performance numbers.

It is possible to implement MPH using table lookups. This is the best implementation method on CPUs without a good multiplier, but it is still quite slow. Furthermore, the table has to be recomputed for every MIC key. Given the rapid re-keying this is likely to overwhelm an AP with many stations and a limited 486 CPU. Such APs are also liable to run out of table space, as each MPH key requires a 1 kB table. For an AP with 200 stations, and different MPH keys for both directions of traffic, the tables require 400 kB of memory.

MPH with a 32-bit result still requires the countermeasures to be implemented. As the MPH proposal shows, the 32-bit version does not achieve the security goals without countermeasures. A 64-bit version would be better, but that is twice as slow, and requires twice the table sizes for APs without a fast multiplier.

MMH

Another interesting proposal is to use MMH. It is also a nice design, but it too requires the use of a multiply instruction. This will not be implementable at any reasonable speed on the MAC CPU, and it will be slow on 486s etc. In many ways MMH has all the disadvantages of MPH, and it lacks the option of using tables to speed up the computations.

Michael

Compared to these other proposals, Michael is fast and flexible, but it does not have provable security properties and it is an entirely new design. This means that there is a greater risk of a cryptanalytical attack on Michael.

Conclusion

We have discussed the problem of designing an improved WEP protocol for 802.11. We propose Michael as the MIC function. Our analysis indicates that Michael, when combined with secure encryption and suitable countermeasures, achieves an acceptable security level. Michael is specifically designed to be efficient on the relevant host and MAC CPUs, and seems to be more suitable than any other proposal we know of.

References

[1]
Nikita Borisov, Ian Goldberg, and David Wagner. Intercepting mobile communications: The insecurity of 802.11. In Proc. International Conference on Mobile Computing and Networking, pages 180--189. ACM, July 2001.

[2]
Scott Fluhrer, Itsik Mantin, and Adi Shamir. Weaknesses in the key schedule algorithm of RC4. In Proceedings Fourth Annual Workshop on Selected Areas in   Cryptography, 2001. To appear.

[3]
IEEE. Wireless LAN Medium Access Control (MAC) and Physical Layer   (PHY) Specifications;, 1999. Also known as ANSI/IEEE Std 802.11, 1999 Edition and ISO/IEC 8802-11:1999(E).

[4]
Helger Limpaa and Shiho Moriai. Efficient algorithms for computing differential properties of  addition. In Mitsuru Matsui, editor, Fast Software Encryption 2001, Lecture Notes in Computer Science. Springer-Verlag, To appear, 2001. Available from http://www.tcs.hut.fi/~helger/papers/lm01/.

[5]
Adam Stubblefield, John Ioannidis, and D. Rubin. Using the Fluhrer, Mantin, and Shamir attack to break WEP.  AT&T Labs Technical Report TD-4ZCPZZ, AT&T Labs, August 2001.

Appendix A: Test vectors

To ensure correct implementation of Michael, here are some test vectors. These test vectors still have to be confirmed by an independent implementation.

Block function

Here are some test vectors for the block function.

	input
	# times
	output

	(00000000, 00000000)
	1
	(00000000, 00000000)

	(00000000, 00000001)
	1
	 (c00015a8, c0000b95)

	(00000001, 00000000)
	1 
	(6b519593, 572b8b8a)

	(01234567, 83659326)
	1 
	(441492c2, 1d8427ed) 

	(00000001, 00000000)
	1000 
	(9f04c4ad, 2ec6c2bf)


The first four rows give test vectors for a single application of the block function b. The last row gives a test vector for 1000 repeated applications of the block function. Together these should provide adequate test coverage.

Michael

Here are some test vectors for Michael.

	key
	message
	output

	0000000000000000
	""
	82925c1ca1d130b8

	82925c1ca1d130b8
	"M”
	434721ca40639b3f

	434721ca40639b3f
	"Mi “
	E8f9becae97e5d29

	e8f9becae97e5d29
	"Mic"
	90038fc6cf13c1db

	90038fc6cf13c1db
	"Mich"
	d55e100510128986

	d55e100510128986
	"Michael"
	0a942b124ecaa546


Note that each key is the result of the previous line, which makes it easy to construct a single test out of all of these test cases.

Appendix B: Example code

C

//

// Michael.h    Reference implementation for Michael

//

// Copyright (c) 2001 by MacFergus BV

// All rights reserved,

//

//

// A Michael object implements the computation of the Michael MIC.

//

// Conceptually, the object stores the message to be authenticated.

// At construction the message is empty. 

// The append() method appends bytes to the message.

// The getMic() method computes the MIC over the message and returns the result.

// As a side-effect it also resets the stored message 

// to the empty message so that the object can be re-used 

// for another MIC computation.

class Michael 

    {

public:

    // Constructor requires a pointer to 8 bytes of key

    Michael( Byte * key );

    // Destructor

    ~Michael();

    // Clear the internal message, 

    // resets the object to the state just after construction.

    void clear();

    // Set the key to a new value

    void setKey( Byte * key );

    // Append bytes to the message to be MICed

    void append( Byte * src, int nBytes );

    // Get the MIC result. Destination should accept 8 bytes of result.

    // This also resets the message to empty.

    void getMIC( Byte * dst );

    // Run the test plan to verify proper operations

    static void runTestPlan();

private:

    // Copy constructor declared but not defined, 

    //avoids compiler-generated version.

    Michael( const Michael & );

    // Assignment operator declared but not defined, 

    //avoids compiler-generated version.

    void operator=( const Michael & );

    // A bunch of internal functions 

    // Get UInt32 from 4 bytes LSByte first

    static UInt32 getUInt32( Byte * p );

    // Put UInt32 into 4 bytes LSByte first

    static void putUInt32( Byte * p, UInt32 val );

    // Add a single byte to the internal message

    void appendByte( Byte b );

    // Conversion of hex string to binary string

    static void hexToBin( char *src, Byte * dst );

    // More conversion of hex string to binary string

    static void hexToBin( char *src, int nChars, Byte * dst );

    // Helper function for hex conversion

    static Byte hexToBinNibble( char c );

    // Run a single test case 

    static void runSingleTest( char * cKey, char * cMsg, char * cResult );

    UInt32  K0, K1;         // Key 

    UInt32  L, R;           // Current state

    UInt32  M;              // Message accumulator (single word)

    int     nBytesInM;      // # bytes in M

    };

//

// Michael.cpp  Reference implementation for Michael

//

// Copyright (c) 2001 by MacFergus BV

// All rights reserved,

//

// Adapt these typedefs to your local platform

typedef unsigned long UInt32;

typedef unsigned char Byte;

#include <assert.h>

#include <stdio.h>

#include <stdlib.h> 

#include <string.h>

#include "Michael.h"

// Rotation functions on 32 bit values

#define ROL32( A, n ) \

    ( ((A) << (n)) | ( ((A)>>(32-(n)))  & ( (1UL << (n)) - 1 ) ) )

#define ROR32( A, n ) ROL32( (A), 32-(n) )

UInt32 Michael::getUInt32( Byte * p )

    // Convert from Byte[] to UInt32 in a portable way

    {

    UInt32 res = 0;

    for( int i=0; i<4; i++ )

        {

        res |= (*p++) << (8*i);

        }

    return res;

    }

void Michael::putUInt32( Byte * p, UInt32 val )

    // Convert from UInt32 to Byte[] in a portable way

    {

    for( int i=0; i<4; i++ )

        {

        *p++ = (Byte) (val & 0xff);

        val >>= 8;

        }

    }

void Michael::clear()

    {

    // Reset the state to the empty message.

    L = K0;

    R = K1;

    nBytesInM = 0;

    M = 0;

    }

void Michael::setKey( Byte * key )

    {

    // Set the key

    K0 = getUInt32( key );

    K1 = getUInt32( key + 4 );

    // and reset the message

    clear();

    }

Michael::Michael( Byte * key )

    {

    setKey( key );

    }

Michael::~Michael()

    {

    // Wipe the key material

    K0 = 0;

    K1 = 0;

    // And the other fields as well. 

    //Note that this sets (L,R) to (K0,K1) which is just fine.

    clear();

    }

void Michael::appendByte( Byte b )

    {

    // Append the byte to our word-sized buffer

    M |= b << (8*nBytesInM);

    nBytesInM++;

    // Process the word if it is full.

    if( nBytesInM >= 4 )

        {

        L ^= M;

        R ^= ROL32( L, 17 );

        L += R;

        R ^= ((L & 0xff00ff00) >> 8) | ((L & 0x00ff00ff) << 8);

        L += R;

        R ^= ROL32( L, 3 );

        L += R;

        R ^= ROR32( L, 2 );

        L += R;

        // Clear the buffer

        M = 0;

        nBytesInM = 0;

        }

    }

void Michael::append( Byte * src, int nBytes )

    {

    // This is simple

    while( nBytes > 0 )

        {

        appendByte( *src++ );

        nBytes--;

        }

    }

void Michael::getMIC( Byte * dst )

    {

    // Append the minimum padding

    appendByte( 0x5a );

    appendByte( 0 );

    appendByte( 0 );

    appendByte( 0 );

    appendByte( 0 );

    // and then zeroes until the length is a multiple of 4

    while( nBytesInM != 0 )

        {

        appendByte( 0 );

        }

    // The appendByte function has already computed the result.

    putUInt32( dst, L );

    putUInt32( dst+4, R );

    // Reset to the empty message.

    clear();

    }

void Michael::hexToBin( char *src, Byte * dst ) 

    {

    // Simple wrapper

    hexToBin( src, strlen( src ), dst );

    }

void Michael::hexToBin( char *src, int nChars, Byte * dst )

    {

    assert( (nChars & 1) == 0 );

    int nBytes = nChars/2;

    // Straightforward conversion

    for( int i=0; i<nBytes; i++ ) 

        {

        dst[i] = (Byte)((hexToBinNibble( src[0] ) << 4) 

            | hexToBinNibble( src[1] ));

        src += 2;

        }

    }

Byte Michael::hexToBinNibble( char c ) 

    {

    if( '0' <= c && c <= '9' ) 

        {

        return (Byte)(c - '0');

        }

    // Make it upper case

    c &= ~('a'-'A');

    assert( 'A' <= c && c <= 'F' );

    return (Byte)(c - 'A' + 10);

    }

void Michael::runSingleTest( char * cKey, char * cMsg, char * cResult )

    {

    Byte key[ 8 ];

    Byte result[ 8 ];

    Byte res[ 8 ];

    // Convert key and result to binary form

    hexToBin( cKey, key );

    hexToBin( cResult, result );

    // Compute the MIC value

    Michael mic( key );

    mic.append( (Byte *)cMsg, strlen( cMsg) );

    mic.getMIC( res );

    // Check that it matches

    assert( memcmp( res, result, 8 ) == 0 );

    }

void Michael::runTestPlan()

    // As usual, test plans can be quite tedious but this should ensure that the

    // implementation runs as expected.

    {

    Byte key[8] ;

    Byte msg[12];

    int i;

    // First we test the test vectors for the block function 

    // The case (0,0)

    putUInt32( key, 0 );

    putUInt32( key+4, 0 );

    putUInt32( msg, 0 );

    Michael mic( key );

    mic.append( msg, 4 );

    assert( mic.L == 0 && mic.R == 0 );

    // The case (0,1)

    putUInt32( key, 0 );

    putUInt32( key+4, 1 );

    mic.setKey( key );

    mic.append( msg, 4 );

    assert( mic.L == 0xc00015a8 && mic.R == 0xc0000b95 );

    // The case (1,0)

    putUInt32( key, 1 );

    putUInt32( key+4, 0 );

    mic.setKey( key );

    mic.append( msg, 4 );

    assert( mic.L == 0x6b519593 && mic.R == 0x572b8b8a );

    // The case (01234567, 83659326)

    putUInt32( key, 0x01234567 );

    putUInt32( key+4, 0x83659326 );

    mic.setKey( key );

    mic.append( msg, 4 );

    assert( mic.L == 0x441492c2 && mic.R == 0x1d8427ed );

    // The repeated case

    putUInt32( key, 1 );

    putUInt32( key+4,0 );

    mic.setKey( key );

    for( i=0; i<1000; i++ )

        {

        mic.append( msg, 4 );

        }

    assert( mic.L == 0x9f04c4ad && mic.R == 0x2ec6c2bf );

    // And now for the real test cases

    runSingleTest( "0000000000000000", ""         , "82925c1ca1d130b8" );

    runSingleTest( "82925c1ca1d130b8", "M"        , "434721ca40639b3f" );

    runSingleTest( "434721ca40639b3f", "Mi"       , "e8f9becae97e5d29" );

    runSingleTest( "e8f9becae97e5d29", "Mic"      , "90038fc6cf13c1db" );

    runSingleTest( "90038fc6cf13c1db", "Mich"     , "d55e100510128986" );

    runSingleTest( "d55e100510128986", "Michael"  , "0a942b124ecaa546" );

    }

Java

/*

 * Michael.java

 *

 * Reference implementation for Michael, the proposed MIC for 802.11

 * Created on 16 December 2001, 02:54

 */

import java.lang.*;

/**

 * Class that holds an authentication key and computes MIC values.

 * We use Strings to hold strings of bytes, but these are restricted

 * to contain characters in the range 0..255.

 * This is easier than using byte[] which cannot be appended easily.

 * 

 * @author  Niels

 * @version 1.0

 */

public class Michael extends Object {

    /** First half of key */

    private int K0;

    /** Second half of key */

    private int K1;

    /**

     * Clear the state and wipe all key material.

     */

    private void clear() {

        // Clear the key to 0.

        K0 = 0;

        K1 = 0;

    }

    /**

     * Finalization method to clear the state.

     *

     * It is important that all key material is wiped and none is left

     * about in memory. Unfortunately, Java does not guarantee to call

     * the finalize method of all objects at the end of the process.

     * There's litte we can do locally to fix this.

     */

    protected void finalize() {

        clear();

        // Print a message to check the finalization process

        System.out.print( "Finalised Michael object\n" );

    }

    /** 

     * Read 4 bytes from a String and convert it to an integer using 

     * LSBfirst convention.

     * The 4 characters of the String should be in 0..255

     *

     * @param src   byte array containing the four bytes

     * @return  integer constructed from the four byte argument

     */

    private int stringToInt( String src ) {

        // Simple direct computation

        return src.charAt(0) + (src.charAt(1)<<8) + 

            (src.charAt(2)<<16) + (src.charAt(3)<<24);

    }

    /**

     * Convert an integer to a 4 byte String using LSByte first convention.

     *

     * @param   value integer value to be converted

     * @return  String containing four bytes (all chars in range 0..255)

     */

    private String intToString( int value ) {

        // Create the four chars and append them in a string

        return String.valueOf(  (char)( value        & 0xff)) +

                                (char)((value >>  8) & 0xff) +

                                (char)((value >> 16) & 0xff) +

                                (char)((value >> 24) & 0xff);

    }

    /**

     * Circular rotate to the left on 32-bit integers.

     *

     * @param value integer value to be rotated

     * @param cnt   number of bit positions to rotate

     * @return      the rotated integer

     */

    private int rol( int value, int cnt ) {

        // Note the use of >>> to ensure 0-fill from the left

        return (value << cnt) | (value >>> (32-cnt) );

    }

    /**

     * Implement the Michael XSWAP function.

     * 

     * @param value integer to be XSWAPped

     * @return      XSWAPped value

     */

    private int xswap( int value ) {

        // Note the use of >>> to ensure 0-fill from the left.

        int res = ((value & 0xff00ff00) >>> 8) | ((value & 0x00ff00ff) << 8);

        return res;

    }

    /**

     * Set the key.

     * 

     * @param key   String containing 8 bytes of key

     */

    public void setKey( String key ) {

        // Check that key has correct length

        if( key.length() != 8 ) {

            throw  new IllegalArgumentException( "Michael(): wrong size key" );

        }

        // Store the two key words.

        K0 = stringToInt( key.substring( 0, 4 ) );

        K1 = stringToInt( key.substring( 4, 8 ) );

    }

    /**

     * Creates a new Michael object given a key.

     * 

     * @param key   String containing 8 bytes of key

     */

    public Michael( String key ) {

        // Simple

        setKey( key );

    }

    /**

     * Compute the MIC on a message using the internal key.

     *

     * @param msg   array of bytes containing the message.

     * @return  array of 8 bytes containing the MIC value.

     */

    public String MIC( String msg ) {

        // Append the 0x5a and four zero bytes

        msg = msg + "\u005a\u0000\u0000\u0000\u0000";

        // Append zero bytes until the length is a multiple of 4

        while( msg.length() % 4 != 0 ) {

            msg = msg + "\u0000";

        }

        // The main loop, directly from the specs

        int L = K0;

        int R = K1;

        // we've padded msg, so N = len(msg)/4

        int N = msg.length() / 4;

        for( int i=0; i<N; i++ ) {

            L ^= stringToInt( msg.substring( 4*i, 4*i + 4 ) );

            R ^= rol( L, 17 );

            L += R;

            R ^= xswap( L );

            L += R;

            R ^= rol( L, 3 );

            L += R;

            R ^= rol( L, 30 );

            L += R;

        }

        // Construct the return value

        return intToString( L ) +  intToString( R );

    }

    /**

     * Main function that allows the Michael class to be executed directly.

     * Runs the test plan.

     * @param   args    arguments of program, these are ignored.

     */

    public static void main(String args[])

    {

    System.out.print( "Testing Michael..." );

    runTestPlan();

    System.out.print( "done\n" );

    // Force a garbage collect and the calling of the finalization methods.

    // This gives us a fighting chance that the Michael objects will get

    // finalized, and will wipe their key material.

    // Not a guarantee, but it works on most platforms.

    System.gc();

    System.runFinalization();

    }

    /**

     * Run the test plan for Michael.

     */

    static void runTestPlan() {

        // The zero key

        String zero = "\u0000\u0000\u0000\u0000\u0000\u0000\u0000\u0000";

        // Create new Michael object that uses the all-zero key

        Michael mic = new Michael( zero );

        // Run the Michael test vectors in sequence.

        // We use the fact that each key is the result of the previous test,

        // and only test the final value.

        // This should catch all errors.

        String res;

        res= mic.MIC( "" );

        mic.setKey( res );

        res = mic.MIC( "M" );

        mic.setKey( res );

        res = mic.MIC( "Mi" );

        mic.setKey( res );

        res = mic.MIC( "Mic" );

        mic.setKey( res );

        res = mic.MIC( "Mich" );

        mic.setKey( res );

        res = mic.MIC( "Michael" );

        // Useful printing code during debugging.

        /*

        for( int i=0; i<res.length()*2; i++ ) {

            System.out.print( "0123456789abcdef".charAt( 

                    15 & (res.charAt(i/2) >> (4*(~i&1))) ) );

        }

        */

        // The first character of the literal string should be \u000a 

        // but you can't write that as it is interpreted 

        // as an end-of-line character :-(.

        // Even in the comment I have to make sure it is at the end of a line.

        // I've replaced it by a \n which is the right value

        if( !res.equals( "\n\u0094\u002b\u0012\u004e\u00ca\u00a5\u0046" ) ) {

            System.out.print( "Michael test vector failed" );

        }

    }

}

Algorithm 1: Michael message processing


Input: Key (K0, K1) and message M0,...,MN


Output: MIC value (V0, V1)


MICHAEL((K0, K1) , (M0,...,MN))


	(L,R) ( (K0, K1)


	for i=0 to N-1


	    L ( L ( M�i


	    (L, R) ( b( L, R )


	return (L,R)





Algorithm 2: Michael block function


Input: (L,R)


Output: (L,R)


b(L,R)


	R ( R ( (L <<< 17)


    	L ( (L + R) mod 232


	R (R ( XSWAP(L)


	L ( (L + R) mod 232


	R (R ( (L <<< 3)


	L ( (L + R) mod 232


	R (R ( (L >>> 2)


	L ( (L + R) mod 232


	return (L,R)








� Once we use AES for this step, we can also use it for the phase 1 mixing.


� This fragmentation is independent of IP level fragmentation. 802.11 has its own physical-layer fragmentation system, which is the fragmentation we are talking about here. Whether the message is an entire IP packet or an IP fragment is not relevant here.


� Although it is unclear what can be done once the attacker has been tracked down. 802.11 operates in an unlicensed band, and the jamming might be perfectly legal.


� Even though all packets are encrypted, it is often possible to recognise their type by traffic-analysis data such as size, timing, or sequence in the packet flow.


� On 16-bit CPUs this is accomplished by byte-swapping each half. On 32-bit CPUs this can be done using masks and shifts, or using a function that converts between little-endian and big-endian values followed by a rotation by 16 bits.
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