February 2002

doc.: IEEE 802.11-02/001r2

IEEE P802.11
Wireless LANs

AES Encryption & Authentication Using CTR Mode & CBC-MAC

Date:
March 5, 2002

Authors:

Doug Whiting

Hifn

5973 Avenida Encinas, #110

Carlsbad, CA 92009

Phone: +1 760-827-4502

E-mail: DWhiting@hifn.com

Russ Housley

RSA Laboratories

918 Spring Knoll Drive

Herndon, Virginia 20170

Phone: +1 703-435-1775

E-mail: RHousley@rsasecurity.com

and

Niels Ferguson

MacFergus BV

Bart de Ligtstraat 64

1097 JE Amsterdam, Netherlands

Phone: +31 20 643 0977

E-mail: Niels@ferguson.net

Abstract

Use of AES is desired as part of the IEEE 802.11i, the Specification for Enhanced Security. A combination of counter mode encryption and CBC-MAC authentication is proposed here. These modes have been used and studied for a long time, with well-understood cryptographic properties, and no known patent encumbrances. They provide for good security and performance, whether implemented in hardware or software. Sample source code and test vectors are provided.

1 Motivation

IEEE Std 802.11-1999 is the wireless LAN standard. AES has many properties that are desirable for securing traffic on wireless networks. However, any encryption algorithm can be used in many different ways, each of which will have different performance and security characteristics. Important criteria for comparison of cryptographic algorithms and protocols include:

	· Patent Status
	· Cleartext Integrity Coverage

	· Size of Implementation
	· Simplicity of Key Management

	· Power Consumption
	· Packet Overhead

	· Speed
	· Crypto Confidence

These criteria are discussed in a separate presentation (IEEE 802.11-01/634r1). In that presentation, the use of OCB mode is compared to this proposal, called CTR+CBC-MAC. Since that presentation was created, we have started calling the proposal CCM for short. The purpose of this document is to completely specify CCM, allowing the transforms to be evaluated and implemented with confidence.

To allow CCM to be used for other security functions within the 802.11 arena we first specify a generic CCM mode suitable for a large number of applications. We then specify the exact manner in which the CCM mode is used to secure 802.11 MPDUs.

2 Generic CCM mode

CCM is a generic authenticate-and-encrypt block cipher mode. CCM is currently only defined for use with block ciphers with a 128-bit block size, such as AES. The CCM ideas can easily be extended to other block sizes, but this will require further definitions.

For the generic CCM mode there are two parameter choices to be made. The first choice is M, the size of the authentication field. The choice of the value for M involves a trade-off between message expansion and the probability that an attacker can undetectably modify a message. Valid values are 4, 6, 8, 10, 12, 14, and 16 octets. The second choice is L, the size of the length field. This value requires a trade-off between the maximum message size and the size of the Nonce. Different applications require different trade-offs, so L is a parameter. Valid values are 2 to 8 octets (the value L=1 is reserved).

	Name
	Description
	Field Size
	Encoding of field

	M
	Number of octets in authentication field
	3 bits
	(M-2)/2

	L
	Number of octets in length field
	3 bits
	L-1

Parameters of CCM mode

2.1 Inputs

To send a message the sender must provide the following information:

· An encryption key K suitable for the block cipher.

· A nonce N of 15-L octets. Within the scope of any encryption key K, the nonce value shall be unique. That is, the set of nonce values used with any given key shall not contain any duplicate values. Using the same nonce for two different messages encrypted with the same key destroys the security properties of this mode.

· The message m, consisting of a string of l(m) octets where 0 (l(m) < 28L. The length restriction ensures that l(m) can be encoded in a field of L octets.

· Additional authenticated data a, consisting of a string of l(a) octets where 0 (l(a) < 264. This additional data is authenticated but not encrypted, and is not included in the output of this mode. It can be used to authenticate plaintext headers, or contextual information that affects the interpretation of the message. Users who do not wish to authenticate additional data can provide a string of length zero.

	Name
	Description
	Field Size
	Encoding of field

	K
	Block cipher key
	Depends on block cipher
	String of octets.

	N
	Nonce
	15-L octets
	Not specified

	m
	Message to be encrypted and sent
	l(m) octets
	String of octets.

	a
	Additional authenticated data
	l(a) octets
	String of octets.

2.2 Authentication

The first step is to compute the authentication field T. This is done using CBC-MAC. We first define a sequence of blocks B0, B1, ... Bn and then apply CBC-MAC to these blocks.

The first block B0 is formatted as follows.

	Octet no:
	0
	1 ... 15-L
	16-L ... 15

	Contents:
	Flags
	Nonce N
	l(m)

The value l(m) is encoded in most-significant-byte first order.

The Flags field is formatted as

	Bit no:
	7
	6
	5
	4
	3
	2
	1
	0

	Contents:
	Reserved
	Adata
	
	M
	
	
	L
	

The Reserved bit is reserved for future expansions and should always be set to zero. The Adata bit is set to zero if l(a)=0, and set to one if l(a)>0. The M field encodes the value of M as (M-2)/2. As M can take on the even values from 4 to 16, the 3-bit field can take on the values from 1 to 7. The L field encodes the size of the length field used to store l(m). The parameter L can take on the values from 2 to 8 (the value L=1 is reserved). This value is encoded in the 3-bit field using the values from 1 to 7 by choosing the field value as L-1 (the zero value is reserved).

If l(a)>0 (as indicated by the Adata field) then one or more blocks of authentication data are added. These blocks contain l(a) and a encoded in a reversible manner. We first construct a string that encodes l(a).

If 0 < l(a) < 216-28 then the length field is encoded as two octets which contain the value l(a) in most-significant-byte first order.

If 216-28 (l(a) < 232 then the length field is encoded as six octets consisting of the octets 0xff, 0xfe, and four octets encoding l(a) in most-significant-byte-first order.
If 232 (l(a) < 264 then the length field is encoded as ten octets consisting of the octets 0xff, 0xff, and eight octets encoding l(a) in most-significant-byte-first order.

This is summarized in the following table. Note that all fields are interpreted in most-significant-byte first order.
	First two octets
	Followed by
	Comment

	0x0000
	
	Reserved

	0x0001 ... 0xFEFF
	
	For 0 < l(a) < 216 - 28

	0xFF00 ... 0xFFFD
	
	Reserved

	0xFFFE
	four octets l(a)
	For 216 - 28 (l(a) < 232

	0xFFFF
	eight octets l(a)
	For 232 (l(a) < 264

Length encoding for additional authentication data

The blocks encoding a are formed by concatenating this string that encodes l(a) with a itself, and splitting the result into 16-octet blocks, padding the last block with zeroes if necessary. These blocks are appended to the first block B0.

After the (optional) additional authentication blocks have been added, we add the message blocks. The message blocks are formed by splitting the message m into 16-octet blocks, padding the last block with zeroes if necessary. If the message m consists of the empty string, then no blocks are added in this step.

The result is a sequence of blocks B0, B1, ..., Bn. The CBC-MAC is now computed by:

X1 := E(K, B0)

Xi+1 := E(K, Xi (Bi) for i=1, ... , n
T := first-M-bytes(Xn+1)

where E() is the block cipher encryption function and T is the MAC value. Note that the last block Bn is XORed with Xn and encrypted with the block cipher to give T.

2.3 Encryption

To encrypt the message data we use CTR mode. We first define the key stream blocks by

Si := E(K, Ai)

for i=0, 1, 2,

The values Ai are formatted as

	Octet no:
	0
	1 ... 15-L
	16-L ... 15

	Contents:
	Flags
	Nonce N
	Counter i

where i is encoded in most-significant-byte first order.

The Flags field is formatted as

	Bit no:
	7
	6
	5
	4
	3
	2
	1
	0

	Contents:
	Reserved
	Reserved
	
	0
	
	
	L
	

The Reserved bits are reserved for future expansions and shall be set to zero. Bit 6 corresponds to the Adata bit in the B0 block, but as this bit is not used here, it is reserved. Bits 3, 4, and 5 are set to 0. This ensures that all the A blocks are distinct from B0, which has the non-zero encoding of M in this position. Bits 0, 1, and 2 contain L, using the same encoding as in B0.

The message is encrypted by XORing the octets of message m with the first l(m) octets of the concatenation of S1, S2, S3, Note that S0 is not used to encrypt the message.

The authentication value U is computed by encrypting T with the key stream block S0 and truncating it to the desired length.

U := T (first-M-bytes(S0)

2.4 Output

The final result c consists of the encrypted message m, followed by the encrypted authentication value U.

2.5 Decryption

To decrypt a message the following information is required:

· The encryption key K.

· The nonce N.

· The additional authenticated data a.

· The encrypted and authenticated message c.

Decryption starts by recomputing the key stream to recover the message m and the MAC value T. The message and additional authentication data is then used to recompute the CBC-MAC value and check T.

If the T value is not correct, the receiver shall not reveal any information except for the fact that T is incorrect. In particular, the receiver shall not reveal the decrypted message, the value T, or any other information.

2.6 Restrictions

All implementations shall limit the total amount of data that is encrypted with a single key. The sender shall ensure that the total number of block cipher encryption operations in the CBC-MAC and encryption together shall not exceed 261. (This allows close to 264 octets to be encrypted and authenticated using CCM, which should be more than enough for most applications.) Receivers that do not expect to decrypt the same message twice may also implement this limit.

The recipient shall verify the CBC-MAC before releasing any information such as the plaintext. If the CBC-MAC verification fails, the receiver shall destroy all information, except for the fact that the CBC-MAC verification failed.

2.7 Security claim

We claim that this block cipher mode is secure against attackers limited to 2128 steps of operation if the key K is 256 bits or larger. There are fairly generic precomputation attacks against all block cipher modes that allow a meet-in-the-middle attack on the key K. If these attacks can be made, then the theoretical strength of this, and any other, block cipher mode is limited to 2n/2 where n is the number of bits in the key. The strength of the authentication is of course limited by M.

Users of smaller key sizes (e.g. 128-bits) should take precautions to make the precomputation attacks more difficult. Repeated use of the same nonce value (with different keys of course) should be avoided. Random nonce values are ideal for this purpose. However, as the nonce is of limited size this can only give a limited amount of extra security.

2.8 Security proof

Jakob Jonsson from RSA Laboratories is working on a security proof of CCM. Work is still in progress, but current results show that CCM is provably secure to the same security bound as OCB mode. The proof is much simpler than the OCB proof of security. We are investigating whether this proof can be extended to prove significantly better security bounds for the authentication.
2.9 Rationale

The main difficulty in specifying this mode is the trade-off between nonce size and counter size. For a general mode we want to support large messages. Some applications use only small messages, but would rather have a larger nonce. Introducing the L parameter solves this issue. The parameter M gives the traditional trade-off between message expansion and probability of forgery. We recommend choosing M at least 8.

The CBC-MAC is computed over a sequence of blocks that encode the relevant data in a unique way. Given the block sequence it is easy to recover N, M, L, m, and a. The length encoding of a was chosen to be simple and efficient when a is empty and when a is small. We expect that many implementations will limit the maximum size of a.

The encryption is a straightforward application of CTR mode. As some implementations will support a variable length counter field, we have ensured that the least significant octet of the counter is at one end of the field. This also ensures that the counter is aligned on the block boundary.

By encrypting T we avoid all the collision attacks on CBC-MAC mode. If the block cipher behaves as a pseudo-random permutation, then the key stream is indistinguishable from a random string. Thus, the attacker gets no information about the CBC-MAC results. The only avenue of attack that is left is a differential-style attack, which has no significant chance of success if the block cipher is a pseudo-random permutation.

To simplify implementation we use the same block cipher key for the encryption and authentication functions. In our design this is not a problem. All the A blocks are different, and they are different from the B0 block. If the block cipher behaves like a random permutation, then the outputs are independent of each other, up to the insignificant limitation that they are all different. The only places where the inputs to the block cipher can overlap is an overlap between an intermediate value in the CBC-MAC and one of the other encryptions. As all the intermediate values of the CBC-MAC computation are essentially random (because the block cipher behaves like a random permutation) the probability of such a collision is very small. Even if there is a collision, these values only affect T, which is encrypted so that an attacker cannot deduce any information, or detect any collision.

Care has been taken to ensure that the blocks used by the authentication function match up with the blocks used by the encryption function. This should simplify hardware implementations, and reduce the amount of byte-shifting required by software implementations.

2.10 Suggestions for the nonce value

The main requirement is that, within the scope of a single key, the nonce values are unique for each message. A common technique is to number messages sequentially, and to use this number as the nonce. Sequential message numbers are also used to detect replay attacks and to detect message reordering, so in many situations (e.g., IPsec ESP) the sequence numbers are already available.

Users of CCM, and all other block cipher modes, should be aware of precomputation attacks. These are effectively collision attacks on the cipher key. Let us suppose the key K is 128 bits, and the same nonce value N0 is used with many different keys. The attacker chooses a particular nonce N0. She chooses 264 different keys at random and computes a table entry for eack K that she chose containing a pair of the form (K,S1). (Given the key and the nonce, computing S1 is easy.) She then waits for messages to be sent with nonce N0. We will assume the first 16 bytes of each message are known so that she can compute S1 for each message. She looks in her table for a pair with a matching S1 value. She can expect to find a match after checking about 264 messages. Once a match is found, the other part of the matched pair is the key in question. The total workload of the attacker is only 264 steps, rather than the expected 2128 steps. Similar precomputation attacks exist for all block cipher modes.

The main weapon against precomputation attacks is to use a larger key. Using a 256-bit key forces the attacker to perform at least 2128 precomputations, which is infeasable. In situations where using a large key is not possible or desirable (e.g., due to the resulting performance impact), users can use part of the nonce to reduce the number of times any specific nonce value is used with different keys. If there is room in the nonce, the sender could add a few random bytes, and send these random bytes along with the message. This makes the precomputation attack much harder, as the attacker now has to precompute a table for each of the possible random values. An alternative is to use something like the sender’s Ethernet address. Note that due to the widespread use of DHCP and NAT, IP addresses are rarely unique. Including the Ethernet address forces the attacker to perform the precomputation specifically for a specific source address, and the resulting table could not be used to attack anyone else. Although these solutions can all work, they need careful analysis and almost never entirely prevent these attacks. Where possible, we recommend using a larger key, as this solves all the problems.

2.11 Efficiency

Encrypting and authenticating the empty message, without any additional authentication data, requires 2 block cipher encryptions. For each block of additional authentication data one extra encryption is required (if you include the length encoding). Each message block, requires 2 encryptions. The worst-case situation is when both the message and the additional authentication data are a one-octet string. In this case, CCM requires 5 encryptions.

CCM results in the mimimal possible message expansion; the only bits added are the authentication bits.

Both the CCM encryption and CCM decryption operations require only the AES encryption function. In AES, the encryption and decryption algorithms have some significant differences. Thus, using only the encrypt operation can lead to a savings in code size or hardware size.

2.12 Patents

The authors hereby explicitly release any intellectual property rights to CCM to the public domain. Further, the authors are not aware of any patent or patent application anywhere in the world that covers CCM mode. It is our belief that CCM is a simple combination of well-established techniques, or as the patent lawyers would say: it is obvious to a person of ordinary skill in the arts.

3 CCM for IEEE 802.11 MAC security

For the security-enhanced IEEE 802.11 MAC, we propose the use of CCM with AES as the block cipher and the parameters L=2 and M=8. This gives us a nonce of 13 octets.

Given the recent discussions on the IEEE 802.11 mail list, we allow for a 48-bit IV value. Details of the nonce construction are easily adapted to different situations.

The nonce N consists of a single “reserved” octet with value zero, followed by the 6-octet IV field, followed by the 6-octet Address 2 field of the MPDU. The Address 2 field of the MPDU is always the MAC address of the physical transmitter.

The message m consists of the MPDU payload, from the first octet following the IV field to the last data octet.

The additional authenticated data a consists of the entire MAC header starting with the Frame Control word and up to but not including the IV field. (This is called the MAC header in the IEEE 802.11 specifications.) Mutable fields in this sequence of octets are set to zero, irrespective of their value in the MAC header. The following fields are mutable:

· The retry bit in the Frame Control word. Not authenticating this bit allows retries to be retransmitted. If this bit were included in the authentication then the MPDU would have to be re-encrypted with the new bit value, and this requires a new nonce. In other words, we would have to assign a new IV value, with all the associated problems. Note that recomputing the authentication with a different additional authentication data but the same nonce is not allowed by the CCM specifications.

· The 2-octet Duration field. This is a purely PHY-level field, and might change if the packet is retransmitted at a different PHY speed. Thus it is excluded for the same reason as the retry bit.

Any fields added in future to the MAC header are automatically included by this definition. Mutable portions of any new MAC header fields are set to zero for the authentication calculation. That is, mutable values are zeroed before passing them as additional authentication data to the CCM encryption/decryption function.

The current MAC header has up to 30 octets, which together with the 2 length octets fits in 2 blocks. This means that, in total, three AES encryptions are required before processing of the actual message data starts. If the two-octet QOS field is added, this can increase to four AES encryptions, but only for wireless AP-to-AP traffic that requires the four-address frame format.

3.1 Rationale

For IEEE 802.11i, we really want a nonce that contains both the IV and the transmitter’s MAC address. Together these ensure that the nonce is unique, even for the broadcast key, and it allows each sender to keep its own IV counters. The choice L = 2 is the simple to implement on many platforms, and it allows for future extensions of the packet size up to 216-1 octets. The extra octet left over in the nonce is set to a fixed value. Care has been taken to keep a reasonable alignment of all the fields in the nonce compared to the 128-bit block in which the nonce appears.

The choice M = 8 gives a reasonable compromise between bandwidth overhead and security.

The choice of a is a simple one. If the header fields are not authenticated, then they cannot be relied upon. It might be possible to create a big list of which fields to authenticate for each type of message. Such an approach, although theoretically more efficient, is bound to lead to problems in interoperability, implementation, security, and future extensions. Our choice only excludes mutable fields to allow retransmission without assigning a new IV value.

4 CCM for EAPOL messages

To be specified.

4.1 Rationale

As CCM is perfectly suitable to use as encryption and authentication for key exchange messages it is far preferable to use CCM over some other alternative. Using CCM simplifies implementations, and reduces the number of primitives that have to be analysed.

5 Appendix A: list of symbols

	Name
	Description
	Size
	Comment

	a
	Additional authenticated data
	l(a) octets
	Use empty string if not desired.

	Ai
	Counter block to generate key stream
	16 octets
	Contains block counter, nonce, and flags.

	Bi
	Input block for CBC-MAC
	16 octets
	Together encode N, L, M, m, and a uniquely.

	c
	Ciphertext
	l(m) + M octets
	Includes the encrypted MAC

	K
	Block cipher key
	N/A.
	At least 128 bits, preferably 256 bits.

	L
	Number of octets in length field
	3 bits
	Values 1 ... 8, encoded in 3 bits as L-1.

	m
	Message to be encrypted and sent
	l(m) octets
	Subject to 0 (l(m) < 28L

	M
	Number of octets in authentication field
	3 bits
	Values 4, 6, 8, ..., 16. Encoded value is (M-2)/2

	N
	Nonce
	15-L octets
	Nonce should never be repeated for same key.

	Si
	Block of the encryption key stream
	16 octets
	Use S0, S1, S2, ... to encrypt m and T.

	T
	Unencrypted authentication tag
	M octets
	

	U
	Encrypted authentication tag
	M octets
	Appended to the message after encryption

	Xi
	Intermediate value of CBC-MAC
	16 octets
	

6 Appendix B: test vectors

TBD

7 Appendix C: reference code

TBD

Submission
page 1
Rus Housley,et.al.

