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Abstract

This paper suggests text for inclusion in the TGi draft to address 802.11 rekeying via 802.1X.

Make the following changes in the draft:

Major contributions were received from the following individuals:

Arun Ayyagari

Bernard Aboba

Tim Moore

Dan Simon

1 2. Normative references

Add the following text to clause 2:

FIPS PUB XXX, Advanced Encryption Standard (AES), 2001 August xx

IEEE Draft 802.1X, Standards for Local and Metropolitan Area Networks: Port Based Access Control, January 16, 2001

OCB Mode, April 1, 2001, http://www.cs.ucdavis.edu/~rogaway/ocb/ocb.pdf.

T. Dierks, and C. Allen, "The TLS Protocol Version 1.0", RFC 2246, November 1998.

H. Krawczyk, et al, "HMAC: Keyed-Hashing for Message Authentication", RFC 2104, February 1997.

1.1.1 5.9.2  IEEE 802.11 usage of 802.1X

In the Upper Layer Authentication model, 802.11 depends upon 802.1X to control the flow of MSDUs between the DS and unauthorized stations by use of the controlled/uncontrolled port model outlined above. Stations are required to associate without any MAC sublayer authentication, so as to allow the Upper Layer Authentication process to take place. Authentication packets (contained in 802.11 MAC data frames) are passed via the 802.1X uncontrolled port. Non-authentication packets are passed (or blocked) via the controlled port. Each association between a pair of stations creates a unique 802.1X “port,” and authentication takes place relative to that port alone. The association exists only for a period of time sufficient for authentication to take place. Should authentication not be completed within that time, the station noticing the delay will disassociate its peer.

In the Upper Layer Authentication model, 802.11 depend upon 802.1X to change the MAC keys. 802.1X may choose to change the keys for a variety of reasons. Some of the reasons include a time period or when a certain number of packets have been transmitted or received or when the sequence number space for a MAC key is running out. The last is required because security will be compromised when the sequence numbers are re-used. Since 802.1X drives the re-keying, 802.1X needs access to the sequence numbers that have been used for each MAC key. This is done by adding a MIB variable for each key which contains the last sequence number used with this MAC key. Since security is compromised when the sequence number space is exhausted if the station is in power save mode when the sequence number space is exhausted encryption needs to be paused until the station wakes up and the keys are updated. In addition, if the sequence number space is exhausted for the available default keys while a station is in power save mode no packets can be sent to the station using the default keys until all the new default keys are sent to the station.

Editorial note: We need to define a MIB variable to control this “period of time.” Clause 8.2.5 is probably the right place to describe the operation of this, as this appears to be the place where we decided to document the interaction of ULA with the MAC sublayer.

5.9.2.1 IEEE 802.11 usage of 802.1X in IBSS

For Upper Layer Authentication to be used in an IBSS, an authenticator must be available on each station. In this environment each station authenticates the stations that wish to communicate with it. The authentication method depends on the environment but a number of methods are available including self-signed certificates and pre-shared master keys. The use of pre-shared master keys with 802.1X is described in 8.2.4.  Between each pair of stations it is the responsibility of the IEEE 802.1X authenticator with the lower BSSID to generate EAPOL-Key messages for key mapping keys and the responsibility of the station generating beacons to generate EAPOL-key messages for default keys. When a station transmits a beacon it evaluates whether a new default key should be sent. If it decides a new default key is to be sent it must start sending EAPOL-Key messages before the next beacon period.
1.2 7.2.3.5 Association Response frame format

Add the following rows to the end of Table 8 in Clause “7.2.3.5 Associate Response frame format”:

	7
	Authentication Suite Element
	When utilized, the Authentication Suite Element conveys a single Authentication Suite Selector to indicate the selected Authentication Suite.



	8
	Unicast Cipher Suite Element
	When utilized, the Unicast Cipher Suite Element conveys a single Cipher Suite Selector to indicate the selected Unicast Cipher Suite.

	9
	Multicast Cipher Suite Element
	When utilized, the Multicast Cipher Suite Element conveys a single Cipher Suite Selector to indicate the selected Multicast Cipher Suite.

	10
	Nonce Element
	If included, provides a pseudo-random value to be consumed by MAC-sublayer key derivation.

	11
	Authenticator Element
	If included, specifies the nonce to be used with the next reassoication authenticator signature


7.2.3.6 Reassociation Request frame format

Add the following rows to the end of Table 9 in Clause “7.2.3.6 Reassociate Request frame format”:

	8
	Authentication Suite Element
	If included, specifies it’s the STA’s authentication preferences, ordered from the Selector of the most preferred first to least preferred.

	9
	Unicast Cipher Suite Element
	If included, specifies it’s the STA’s unicast cipher suite preferences, ordered from the selector of the most preferred suite first to least preferred.

	10
	Nonce Element
	If included, provides a pseudo-random value to be consumed by MAC-sublayer key derivation.

	11
	Authenticator Element
	If included, specifies the authenticator signature that the old and new Access Points may validate


7.2.3.7 Reassociation Response frame format

Add the following rows to the end of Table 10 in Clause “7.2.3.7 Reassociation Response frame format”:

	7
	Authentication Suite Element
	If included, the STA uses this element to specify the authentication selected for this association.

	8
	Unicast Cipher Suite Element
	If included, specifies the unicast cipher suite selected.

	9
	Multicast Cipher Suite Element
	When utilized, the Multicast Cipher Suite Element conveys a single Cipher Suite Selector to indicate the selected Multicast Cipher Suite.

	10
	Nonce Element
	If included, provides a pseudo-random value to be consumed by MAC-sublayer key derivation.

	11
	Authenticator Element
	If included, specifies the authenticator signature that the station may validate


7.3.2.21 Authenticator information element

This information element is designed to enable authentication of the Reassociation-Request and Reassociation-Response if an Inter-Access Point Protocol such as IAPP exists. The following rules shall be applied in using this information element:

· If the Access Point does not support IAPP capable of securely transport this information element and the master key for the association to the station then information element shall not be sent by the Access Point. 

· If the information element does not exist in an association response then the station shall not use the information element in the reassoication request. 
· If the old Access Point does not receive the information element from the new AP and the signature is not validated correctly it shall not include the information element or the master key in any response to the new AP.
· If the new Access Point does not receive the information element from the old Access Point then it shall not include an information element containing a signature in the reassoication response. It may include an information element containing a nonce in the reassoication response.
· If the information element is not included in the reassoication request then the Access Point shall enforce IEEE 802.1X authentication to occur and will not include a signature in the reassoication response. 
· If the station does not receive the information element from the new AP or does not validate the signature the station may either enforce IEEE 802.1X authentication to occur or may attempt to reassoication with another AP.
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Figure 1 Authenticator information element usage

The AP includes an Authenticator information element in the Association-Response to supply the STA with a nonce to be used in its next authentication. The STA includes an Authenticator information element in the Reassociation-Request in order to prove possession of the master key used with the old AP and possession of the nonce supplied by the old AP. The new AP transmits this information element to the old AP for validation using an IAPP. If valid, the old AP responds using an IAPP with the information necessary to move the session and an Authenticator Element that contains the signature of the new AP; if the signature is invalid the old AP should not respond. On responding positively to IAPP the old AP shall delete any security information about the station, if the IAPP protocol is not reliable and the security information is lost then the new AP shall enforce IEEE 802.1X authentication. The IAPP needs to transfer the master session key information initially provided to the old Access Point; the IAPP requires a way to securely move this key information between access points.
If the reassociation is successful and the new AP receives a response from the old AP, then it transmits a Reassociation-Response to the STA. The AP includes the Authenticator information element from the old AP in the Reassociation-Response in order to prove possession of the master key used with the old AP as well as the nonce supplied by the STA in the Reassoication-Request. In this way, the STA and the new AP mutually authenticate each other. The AP also supplies a nonce for the STA to use in its next authentication. 
IEEE 802.1X upper layer authentication can only occur after association or reassociation.  If authenticated reassociation is successful, then the AP may send an 802.1X "canned Success" to the STA, providing access to the controlled port. This enables an authenticated fast handoff, without requiring a full IEEE 802.1X authentication to occur on each re-association. This ensures against the interruption of connectivity, and decreases the load on the backend authenticator server.

With IAPP and the Authenticator information element an Access Point can be validated before the data connection moved to the Access Point. If IAPP and the Authenticator information element are not supported then the data connection is moved to the new Access Point and IEEE 802.1X needs to be executed before it is known whether the Access Point is a rogue AP.

The Authenticator Element has the format
[image: image6.emf]non-IEEE 802.1X Environment

Pre-Shared Key used as Master

Key

Derive Master Session Keys

(Does Not Include Liveness)

Derive Session Keys

Master Key Derived from EAP

Authentication Method

Derive Master Session Keys

(Includes Liveness)

Derive Session Keys

IEEE 802.1X Environment

Iteration 1

Truncated Send Session Key

from Iteration 0 used as Master

Key

Derive Master Session Keys

(Includes Liveness)

Derive Session Keys

Iteration 0

Use Truncated Send Session

Key from Iteration 1 as IEEE

802.11 key mapping Key

Iteration 2

Truncated Send Session Key

from Iteration 1 used as Master

Key

Derive Master Session Keys

(Includes Liveness)

Derive Session Keys

Iteration 3

Use Truncated Send Session

Key from Iteration 2 as IEEE

802.11 key mapping Key

Use Truncated Send Session

Key from Iteration 0 as IEEE

802.11 key mapping Key


Figure 2 Authenticator Element format

The length contains the length of the information element which will either be 34 octets if HMAC-MD5 or AES-CBC-MAC signature is used and 16 octets if the algorithm and signature fields are not included in the information element.

The Nonce field contains a nonce supplied by the Access Point or station to be used by the authenticating party on its next authentication. The nonce supplied in the Association response or reassoication response shall be used in the Reassociation request signature. The nonce supplied in the Reassociation request shall be used in the Reassociation response signature.
Note the Access Point will need to keep track of the Nonce per association until it deletes an association’s state.
The algorithm field is two octets and represents the algorithm corresponding to the signature. Values corresponding to HMAC-MD5 and AES-CBC-MAC are defined at this time.

1 - HMAC-MD5
2 – AES-CBC-MAC
The HMAC-MD5 signature shall be used with the TKIP cipersuite and the AES-CBC-MAC signature shall be used with the AES cipersuite.
The signature field contains a keyed message integrity check. When included within a Reassociation-Request, it represents a keyed MIC of the STA MAC address concatenated with the nonce supplied in the previous association response or reassoication response. When included within a Reassociation-Response, it represents a keyed MIC of the new AP MAC address concatenated with the station signature concatenated with the nonce supplied in the reassoication request. The length of the signature field depends on the algorithm chosen. For HMAC-MD5 and AES-CBC-MAC, the signature field is 16 octets in length (128 bits). The key used shall be the signing key used to sign EAPOL-Key messages to the station. Note the station can pre-calculate the signature to be used on the next reassoication.
1.2.1 8.2.4 Interaction of Upper Layer Authentication and MAC for key establishment

Upper Layer Authentication can use a pre-shared master key or use EAP credentials for IEEE 802.1X authentication. When EAP credentials are used an authentication server will be often used to validate the credentials. In this case, when an EAP authentication method that generates keying information is used the master key information will be available at the IEEE 802.1X supplicant and authentication server and the master key information will need to be moved to the authenticator since the encryption and authentication keys are required at the supplicant and authenticator. When the protocol RADIUS is used between the authenticator and authentication server the RADIUS attribute described in Annex K shall be used to move the master session keys.
Since Upper Layer Authentication generates keys there is a point in time when the keys are not available for encryption to occur. Section 8.3.2 describes how the packets are handled, in the case of data packets that are transmitted before keys are established the key entries will be null. There is also the case when roaming occurs, when again keys have not be established between the two stations but in this case the key entries may not be null as there may be keys from a previous upper layer authentication. In the roaming case, there may or may not be an Inter-access point protocol that allows the keys to be transferred from the old access point to the new access point. To allow for both possibilities 802.1X messages are handled specially in 8.3.2.

The Figure 1 illustrates an overview of the IEEE 802.11 key mapping key derivation approach. Section 8.2.4.2 describes the session keys derivation approach when not using IEEE 802.1X authentication for iteration 0. Section 8.2.4.3 describes the session keys derivation approach when using IEEE 802.1X authentication for iteration 0. The common session keys derivation approach for iterations 1 and higher is presented in Section 8.2.4.4.
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8.2.4.1 Key hierarchy

The key hierarchy consists of four levels; the top of the hierarchy is the master key. Derived keys include Master session key, transient session key and Default/Key Mapping keys.
For Default keys the derivation is done by the station sending EAPOL-Key messages, For Key Mapping Maps the station sending EAPOL-Key messages sends the nonce used for key deviation and the actual key derivation is done at each station. Annex F gives a recommended key derivation key for Default keys based on the same key derivation method as used for Key Mapping keys.
8.2.4.1.1 Master key
The key derived between the EAP client and EAP server during the EAP authentication process or is available as a pre-shared secret.

8.2.4.1.2 Master session key

The keys derived from the master key that are subsequently used in generation of the transient session keys for authentication, encryption, and IV-generation. Since the transient session keys may be different in each direction, master session keys are also required in each direction, and are therefore referred to as "asymmetrical".  So that the master session keys are to be usable with any ciphersuite, they are longer than is necessary, and are truncated to fit. The method to derive the Master session key is explained in Annex I.
8.2.4.1.3 Transient session keys

The chosen ciphersuite uses transient session keys for authentication and encryption as well as IVs (if required). The transient session keys are derived from the master session keys, and are of the appropriate size for use with the chosen ciphersuite. Depending on the ciphersuite, the transient session keys may be different in each direction. Annex H explains the derivation method for Transient session keys. 
8,2.4.1.4 Default/Key Mapping Key
The Default or Key Mapping keys are truncated forms of the transient session Keys. The truncation depends on the key length required for the cipersuite.
8.2.4.2 Deriving Sessions Keys when using Pre-Shared Master Key
IEEE 802.1X service consists of the IEEE 802.1X Supplicant state machine and the Key state machine. The IEEE 802.1X Supplicant and Key state machines are asynchronous entities.  While the Key state machine is dependent on the IEEE 802.1X Supplicant state machine, the Supplicant state machine is not dependent on the Key state machine.  

This section describes an algorithm to derive Master Session and Session keys when not using IEEE 802.1X authentication that are equivalent to the keys generated using EAP credentials in an IEEE 802.1X environment. 

In a non-IEEE 802.1X authentication environment, that is a network that is not authenticated using EAP credentials via IEEE 802.1X, the approach shall be to use the Key state machine specified in the IEEE 802.1X specification for key distribution and management. This ensures that both the IEEE 802.11 AP and STA implementations can leverage and rely on a standardized mechanism for key distribution and management.  

The key mapping key derivation at the STA and the AP shall start at iteration 0 when the STA attempts IEEE 802.11 Association or Reassociation. 

All cached information regarding iteration count, master key, master session keys, and session keys will be deleted at the STA and the AP following an IEEE 802.11 Disassociation.  
Note that in the non-IEEE 802.1X authentication environment the Session key derived from iteration 0 is net used for encryption because this session key does not include liveness.
This section describes the algorithm to derive Master Session keys, Session keys, and master key “K” for iteration 1 in a non-IEEE 802.1X environment. 

8.2.4.2.1 Deriving Master Session Keys from Pre-Shared Master Key

When pre-shared key is used between peer wireless stations, for example, an AP and a STA, one configures the same key in the corresponding index at the peer wireless stations thereby ensuring a symmetric key usage. A standard mechanism for the derivation of the master session keys from the user configured symmetric pre-shared key at the peer wireless stations will ensure interoperability across vendors while ensuring its robustness. Note that the configured symmetric pre-shared key at the peer wireless stations must have the same value and length to ensure that the master session keys independently derived at the peer wireless stations is the same.

Authenticator refers to the entity that is initiating the dynamic key distribution and management while Peer refers to the entity with which the Authenticator is communicating with. For example, IEEE 802.11 AP performing the dynamic key distribution and management is designated the Authenticator while the wireless STA it communicates with is designated the Peer. 

Derivation of the master session keys shall follow the key derivation algorithm specified in Annex I. The algorithm for the derivation of the master session keys requires the master key “K” and the value “random” as inputs and their details are given below:

The IEEE 802.11 pre-shared key between the peer wireless stations shall be used as the master key “K”.

The value “random” is defined as the concatenation of the Media Access Control (MAC) addresses of the Authenticator and the Peer (in that order) in their binary form. 

8.2.4.2.2 Deriving Transient Session Keys from Master Session Keys

The master session keys are never used to encrypt or decrypt data; they are only used in the derivation of transient session keys. Derivation of the transient session keys shall follow the key derivation algorithm specified in Annex H. 

The peer encryption key (the first 32 bytes of PRF1 from master session keys derivation) shall be used as the MasterSendKey for the generation of encryption session key.

The authenticator encryption key (the second 32 bytes of PRF1 from master session keys derivation) shall be used as the MasterReceiveKey for the generation of authentication session key.       

The master session keys derived in iteration 0 (Figure 1) does not include liveness. Therefore, the transient session keys derived in iteration 0 from this set of master session keys shall not be used as the IEEE 802.11 WEP key to encrypt and decrypt IEEE 802.11 data transmissions between the peer wireless stations. This set of transient session keys derived in iteration 0 shall be used exclusively as the basis for the derivation of the key mapping key in subsequent iterations (Figure 1). The send session key is truncated to the desired key length value of the IEEE 802.key mapping key. The truncated encryption transient session key shall be used as the master key in the following key derivation iteration.

2 8.2.4.3 Deriving Transient Sessions Keys in IEEE 802.1X Environment

In IEEE 802.1X authentication environment, that is a network that is authenticated using EAP credentials via IEEE 802.1X, the approach shall be to use the Key state machine specified in the IEEE 802.1X specification for key distribution and management.  

The key mapping key derivation at the STA and the AP shall start at iteration 0 when the STA attempts IEEE 802.11 Association or Reassociation. 

The key mapping key derivation at the STA and the AP shall start at iteration 0 following a successful IEEE 802.1X authentication, i.e., authentication and reauthentication.

All cached information regarding iteration count, master key, master session keys, and transient session keys will be deleted at the STA and the AP following an IEEE 802.11 Disassociation.

This section describes the algorithm to derive Master Session, Transient Session, and key mapping keys in an IEEE 802.1X environment. 

2.1 8.2.4.3.1 Deriving Master Session Keys from Keys Obtained from EAP Authentication 

The set of master session keys obtained following a successful EAP authentication in an IEEE 802.1X environment shall be used as the basis for the generation of the IEEE 802.11 key mapping key. The master session keys obtained following a successful EAP authentication are not used to encrypt and decrypt IEEE 802.11 data transmissions between the peer wireless stations, i.e., they are not directly used as encryption keys. 

Roaming from the currently associated AP to another AP will result in either IEEE 802.11 Reassociation or Association. 

If IEEE 802.11 Inter Access Point Protocol (IAPP) is enabled on the APs, it is assumed that on a STA roam from the currently associated AP to another AP within the same ESS via a successful IEEE 802.11 Reassociation the master session keys obtained following the last successful EAP authentication while associated with the prior AP are transferred by the prior AP to the AP that the STA is currently associated with following the roam. The master session keys obtained via IAPP will be used by the currently associated AP to generate key mapping keys for associated STA.

Authenticator refers to the entity that is initiating the dynamic key distribution and management while Peer refers to the entity with which the Authenticator is communicating with. For example, IEEE 802.11 AP performing the dynamic key distribution and management is designated the Authenticator while the wireless STA it communicates with is designated the Peer. 

Derivation of the master session keys shall follow the key derivation algorithm specified in Annex I. The algorithm for the derivation of the master session keys requires the master key “K” and the value “random” as inputs and their details are given below:

The Peer’s MS-MPPE-Send-Key attribute (Vendor-Type = 16) shall be used as the master key “K”.

Note this implies that the Authenticator shall use its MS-MPPE-Recv-Key attribute (Vendor-Type = 17) as the master key “K”.  

The value “random” is a random byte string generated by the Authenticator that includes liveness. The Authenticator shares the value “random” with the Peer. For example in the IEEE 802.1X framework the EAPOL-Key packet shall be used to transmit the value “random” from the AP (Authenticator) to the STA (Peer). 

Note that the nonce, the value “random”, should be random and long to ensure that the likelihood of it being reused is minimal. A timestamp (e.g., NTP time value, see IETF RFC 1305), a large random number, or a sequence number may be used as a nonce. Sequence numbers require a non-volatile state so that the same number is not used between reboots. Random number of 256 bits or greater has negligible likelihood of being reused.

2.2 8.2.4.3.2 Deriving Transient Session Keys from Master Session Keys

The master session keys are never used to encrypt or decrypt data; they are only used in the derivation of transient session keys. Derivation of the transient session keys shall follow the key derivation algorithm specified in Annex H. 

The peer encryption key (the first 32 bytes of PRF1 from master session keys derivation) shall be used as the MasterSendKey for the generation of encryption transient session key.

The authenticator encryption key (the second 32 bytes of PRF1 from master session keys derivation) shall be used as the MasterReceiveKey for the generation of authentication transient session key.     

2.3 8.2.4.3.3 Deriving the Key Mapping Key from Transient Session Keys

The encryption session key truncated to the desired key length value, by taking the last X bits of the transient session key, shall be used as the IEEE 802.11 key mapping key. 

The IEEE 802.11 key index will be specified by the Authenticator (e.g., AP) and conveyed to the Peer (STA) within the EAPOL-Key packet when the value “random” string is transmitted to initiate the IEEE 802.11 key mapping key derivation and configuration at the specified key index position.

Note that in this approach the IEEE 802.11 key mapping key is not explicitly exchanged between the Authenticator and the Peer, for example, the AP and the STA. The IEEE 802.11 key mapping key is independently derived by the Authenticator and Peer and the respective Key index is updated at their respective ends.

3 8.2.4.4 Deriving IEEE 802.11 Key Mapping Key (Iterations 1 and Higher)

In order to allow for the frequent key mapping key updates, the truncated encryption transient session key from the previous iteration shall form the basis for the derivation of the key mapping key for the current iteration.

This section describes the algorithm to derive Master Session and Transient Session keys in a non-IEEE 802.1X and an IEEE 802.1X environments.

3.1 8.2.4.4.1 Deriving Master Session Keys from Transient Session Keys

Derivation of the master session keys shall follow the key derivation algorithm specified in Annex I algorithm for the derivation of the master session keys requires the master key “K” and the value “random” as inputs and their details are given below:

The current truncated encryption transient session key shall be used as the master key “K”.

Note this is the truncated encryption transient session key from the prior iteration.

The value “random” is a random byte string generated by the Authenticator that includes liveness. The Authenticator shares the value “random” with the Peer. For example in the IEEE 802.1X framework the EAPOL-Key packet shall be used to transmit the value “random” from the AP (Authenticator) to the STA (Peer). 

Note that the nonce, the value “random”, should be random and long to ensure that the likelihood of it being reused is minimal. A timestamp (e.g., NTP time value, see IETF RFC 1305), a large random number, or a sequence number may be used as a nonce. Sequence numbers require a non-volatile state so that the same number is not used between reboots. Random number of 256 bits or greater has negligible likelihood of being reused.

3.2 8.2.4.4.2 Deriving Transient Session Keys from Master Session Keys

The master session keys are never used to encrypt or decrypt data; they are only used in the derivation of transient session keys. Derivation of the session keys shall follow the key derivation algorithm specified Annex H. 

The peer encryption key (the first 32 bytes of PRF1 from master session keys derivation [4]) shall be used as the MasterSendKey for the generation of encryption session key.

The authenticator encryption key (the second 32 bytes of PRF1 from master session keys derivation [4]) shall be used as the MasterReceiveKey for the generation of authentication session key.

3.3 8.2.4.4.3 Deriving the Key Mapping Key from Transient Session Keys

The encryption transient session key truncated to the desired key length value, by taking the last X bits of the transient session key, shall be used as the IEEE 802.11 key mapping key. 

The IEEE 802.11 key index will be specified by the Authenticator (e.g., AP) and conveyed to the Peer (STA) within the EAPOL-Key packet when the value “random” string is transmitted to initiate the IEEE 802.11 key mapping key derivation and configuration at the specified key index position.

Note that in this approach the IEEE 802.11 key mapping key is not explicitly exchanged between the Authenticator and the Peer, for example, the AP and the STA. The IEEE 802.11 key mapping key is independently derived by the Authenticator and Peer and the respective Key index is updated at their respective ends. 

4 8.2.4.5 Derivation and Distribution of Default Key

The Authenticator, for example the AP, shall generate a random number that shall be used as the IEEE 802.11 default key. The default key(s) are used by the AP to encrypt broadcast transmission to the associated STAs. The IEEE 802.1X specification EAPOL-Key packet is used to transmit IEEE 802.11 default key(s) from the AP to the associated STA(s).  The AP and the STA shall configure the distributed default key(s) into the specified Key index(es). Annex F describes a key derivation algorithm that can be used to generate default keys.

5 8.2.4.6 Coordination of key mapping key update

The use of 2 key mapping keys between a IEEE 802.11 Source/Destination MAC address pair shall allow for the dynamic distribution and use of the key mapping keys while greatly mitigating the loss in the ongoing data transmissions while the key is being distributed and applied at the peer wireless stations, for example data transmission between AP and STA. 

An example illustrating the approach to coordinate the switch from the current key mapping key to the new key mapping key following a dynamic re-keying follows.

Assume that AP and the particular associated STA allow for 2 key mapping keys at key index 0 and 1 respectively. Also, AP and the particular associated STA are currently using the key mapping key in key index 0 for unicast transmissions.

Key mapping key update steps:

1) AP initiates the dynamic re-keying by transmitting EAPOL-Key packet. The Key descriptor contains the nonce for the new key mapping key derivation and the key index for the derived key mapping key is set to 1.

AP: 

Use the key mapping key in key index 0 for unicast transmissions between the AP and the particular associated STA.

STA: 

Use the key mapping key in key index 0 for unicast transmission between the STA and the associated AP.

2) AP derives the new key mapping key. 

AP: 

Instantiates key index 1 with the newly derived key mapping key. 

If AP receives encrypted transmission from the STA using key mapping key in key index 1

AP shall decrypt the encrypted transmission from STA using the key mapping key in key index 1.

AP shall use key mapping key in key 1 for unicast transmissions between the AP and the particular associated STA.

Note the AP may after a defined time period remove the key mapping key in key index 0 for the particular associated STA.

Else if AP has not received an encrypted transmission from the STA using key mapping key in key index 1

AP shall use the key mapping key in key index 0 for unicast transmissions between the AP and the particular associated STA.

STA:

If STA has instantiated key index 1 with the newly derived key mapping key

STA shall decrypt the encrypted transmissions from AP using the key mapping key in key index 0 that it continues to maintain.

Note the STA may after a defined time period remove the key mapping key in key index 0.

Else if STA has not yet instantiated key index 1 with the newly derived key mapping key

STA shall decrypt the encrypted transmissions from AP using the key mapping key in key index 0 that it continues to maintain.

3) STA derives the new key mapping key.

STA: 

Instantiates key index 1 with the newly derived key mapping key.

STA shall use key mapping key in key index 1 for unicast transmissions between the STA and the associated AP.

STA shall continue to maintain the key mapping key in key index 0 to decrypt unicast transmissions received from the AP using the key mapping key in key index 0.

Note the STA may after a defined time period remove the key mapping key in key index 0.

AP:

AP receives encrypted transmissions from the particular associated STA using key mapping key in key index 1.

If AP has instantiated key index 1 with the newly derived key mapping key

AP shall decrypt the encrypted transmission from STA using the key mapping key in key index 1.

AP shall use key mapping key in key 1 for unicast transmissions between the AP and the particular associated STA.

Note the AP may after a defined time period remove the key mapping key in key index 0 for the particular associated STA.

Else if AP has not yet instantiated key index 1 with the newly derived key mapping key

AP may drop the encrypted transmission from the STA using the key mapping key in key index 1.  

The above example illustrates how the AP and the STA coordinate the use of the newly derived key mapping key starting from the use of key index 0 and transitioning to the use of key index 1. 

The AP and STA would follow the procedure described above for the next iteration cycle when AP initiates a key mapping key update by transmitting an EAPOL-Key packet to the associated STA. The Key descriptor contains the new nonce for the new key mapping key derivation and the key index for the derived key mapping key is set to 0 in order to use the 2 key index in a cyclic manner.

6 8.2.4.7 802.1X Key Descriptors

IEEE 802.1X EAPOL-Key packet messages are used to send default keys and to send the key mapping nonce. The TKIP Key descriptor shall be used for the TKIP cypersuite. The AES Key descriptor shall be used for the AES cypersuite.

7 8.2.4.7 The Pseudorandom function

The pseudorandom function used shall be that described in Section 5 of the TLS Protocol Version 1.0 specification, RFC2246.

8.3.2 Privacy-Related MIB attributes

Update page 66 paragraph 3 to the following

IEEE 802.11 does not require that the same WEP key be used for all STAs. The MIB supports the ability to share a separate WEP key for each RA/TA pair. Key mapping is supported by a MIB attribute that is an array called “dot11WEPKeyMappings.” dot11WEPKeyMappings contains zero, one or two entry for each MAC address, up to an implementation-defined maximum number of entries identified by

dot11WEPKeyMappingLength, and contains three fields for each entry: a boolean “WEPOn”, a Boolean “WEPTx”, a 2 bit KeyID and the corresponding WEPKey. In an infrastructure BSS, the AP’s WEPOn value in the entry in its dot11WEPKeyMapping table corresponding to a STA’s MAC address shall not be set to True for a STA if that STA has not successfully initiated and completed an authentication sequence using an authentication type other than “Open System.” The default value for all WEPOn fields is False. dot11WEPKeyMappings shall be indexed by either RA or TA addresses (since WEP is applied only to the wireless link) and the KeyID, as described below. When an entry in the table exists for a particular MAC address, the values in the dot11WEPKeyMappings attribute shall be used instead of the dot11WEPDefaultKeyID and dot11WEPDefaultKeys variables.

Update decision tree to

if dot11PrivacyInvoked is “false” or the packet Ethertype is 802.1X

the MPDU is transmitted without encryption

else

if (the MPDU has an individual RA and

 there is one or more entries in dot11WEPKeyMappings for that RA)

if all entries has WEPOn set to “false”

the MPDU is transmitted without encryption

else

if an entry has WEPTx set to “true” and contains a key that is null

discard the entire MSDU and generate an

MA-UNITDATA-STATUS.indication primitive to

notify LLC that the MSDU was undeliverable due to

a null WEP key

else

encrypt the MPDU using that entry’s key, setting the keyID

subfield of the IV field to keyID

else

if (the MPDU has a group RA and the Privacy subfield

 of the Capability Information field in this BSS is set to 0)

the MPDU is transmitted without encryption

else

if dot11WEPDefaultKeys[dot11WEPDefaultKeyID] is null

discard the MSDU and generate an

MA-UNITDATA-STATUS.indication primitive to

notify LLC that the entire MSDU was undeliverable

due to a null WEP key

else

encrypt the MPDU using

dot11WEPDefaultKeys[dot11WEPDefaultKeyID],

setting the KeyID subfield of the IV field to

dot11WEPDefaultKeyID

if the WEP subfield of the Frame Control Field is zero

if aExcludeUnencrypted is “true” and the packet Ethertype is not 802.1X

discard the frame body without indication to LLC and increment

dot11WEPExcludedCount

else

receive the frame without decryption

else

if dot11PrivacyOptionImplemented is “true”

if (the MPDU has individual RA and

there is an entry in dot11WEPKeyMappings matching the MPDU’s TA and with the KeyID matching the keyid)

if the entry has WEPOn set to “false”

discard the frame body and increment

dot11WEPUndecryptableCount

else

if that entry contains a key that is null

discard the frame body and increment

dot11WEPUndecryptableCount

else

attempt to decrypt with that key, incrementing

dot11WEPICVErrorCount if the ICV check fails

else

if dot11WEPDefaultKeys[keyID] is null

discard the frame body and increment

dot11WEPUndecryptableCount

else

attempt to decrypt with dot11WEPDefaultKeys[keyID],

incrementing dot11WEPICVErrorCount if the ICV check fails

else

discard the frame body and increment dot11WEPUndecryptableCount

10.3.11.3  MLME-SETKEYS.indication

7.1.1.1.1 10.3.11.3.1  Function

This primitive reports the sequence number for one or more key has reached their threshold. The threshold for each key is set in the MIB. The MIB contains the maximum possible sequence number depending on the cipersuite selected.

7.1.1.1.2 10.3.11.3.2  Semantics of the Service Primitive

The primitive parameters are as follows:

MLME-SETKEYS.indication 
(
Keylist
)

	Name
	Type
	Valid range
	Description

	Keylist
	A set of KeyIdentifiers
	N/A
	The list of keys to be used by the MAC.


Each KeyIdentifier consists of the following elements:

	Name
	Type
	Valid range
	Description

	KeyType
	Enumeration
	DEFAULT, KEYMAPPING
	Identifies whether the key is a key mapping key or a default key

	Index
	Integer
	N/A
	The index in the Default MIB or KeyMapping MIB for the key.


7.1.1.1.3 10.3.11.3.3  When Generated

This primitive is generated by the MLME when one or more key sequence numbers reach their threshold.

7.1.1.1.4 10.3.11.3.4  Effect of Receipt

The SME is notified that one or more key sequence numbers have reached their threshold.

7.2 Annex D

Update following MIB entries

Dot11WEPDefaultKeysEntry ::= SEQUENCE {

dot11WEPDefaultKeyIndex INTEGER,

dot11WEPDefaultKeyValue WEPKeytype,

dot11WEPDefaultKeyIV Integer32,

dot11WEPDefaultKeyIVMax Integer32,

dot11WEPDefaultKeyThreshold Integrer32}
dot11WEPDefaultKeyIV OBJECT-TYPE

SYNTAX INTEGER32

MAX-ACCESS READ

STATUS current

DESCRIPTION

"The last IV used with this Key”

::= { dot11WEPDefaultKeysEntry 1 }
dot11WEPDefaultKeyIVMax OBJECT-TYPE

SYNTAX INTEGER32

MAX-ACCESS READ

STATUS current

DESCRIPTION

"The maximum IV possible for this key with the current cipersuite”

::= { dot11WEPDefaultKeysEntry 1 }
dot11WEPDefaultKeyThreshold OBJECT-TYPE

SYNTAX INTEGER32

MAX-ACCESS READ/Write

STATUS current

DESCRIPTION

"The IV threshold to generate a SetKeys.Indication for this Key”

::= { dot11WEPDefaultKeysEntry 1 }
Dot11WEPKeyMappingsEntry ::= SEQUENCE {

dot11WEPKeyMappingIndex Integer32,

dot11WEPKeyMappingAddress MacAddress,

dot11WEPKeyMappingWEPOn TruthValue,

dot11WEPKeyMappingWEPTx TruthValue,

dot11WEPKeyMappingKeyID Integer32,

dot11WEPKeyMappingValue WEPKeytype,

dot11WEPKeyMappingIV Integer32,

dot11WEPDefaultKeyIVMax Integer32,

dot11WEPKeyMappingThreshold Integer32,

dot11WEPKeyMappingStatus RowStatus}

dot11WEPKeyMappingWEPTx OBJECT-TYPE

SYNTAX TruthValue

MAX-ACCESS read-write

STATUS current

DESCRIPTION

"Boolean as to whether WEP is to be used when transmitting

with the dot11WEPKeyMappingAddress STA."

::= { dot11WEPKeyMappingsEntry 3 }
dot11WEPKeyMappingKeyID OBJECT-TYPE

SYNTAX INTEGER (1..4)

MAX-ACCESS READ

STATUS current

DESCRIPTION

"Used to identify the KeyID of the Key”

::= { dot11WEPKeyMappingsEntry 3 }
dot11WEPKeyMappingIV OBJECT-TYPE

SYNTAX INTEGER32

MAX-ACCESS READ

STATUS current

DESCRIPTION

"The last IV used with this Key”

::= { dot11WEPKeyMappingsEntry 3 }
dot11WEPKeyMappingIVMax OBJECT-TYPE

SYNTAX INTEGER32

MAX-ACCESS READ

STATUS current

DESCRIPTION

"The maximum IV possible for this key with the current cipersuite”

::= { dot11WEPKeyMappingsEntry 3 }
dot11WEPKeyMappingThreshold OBJECT-TYPE

SYNTAX INTEGER32

MAX-ACCESS READ/Write

STATUS current

DESCRIPTION

"The IV threshold to generate a SetKeys.Indication for this Key”

::= { dot11WEPKeyMappingsEntry 3 }
7.3 Annex F

(Informational)

The Authenticator, for example the AP, shall generate a random number that shall be used as the IEEE 802.11 default key. The default key(s) are used by the AP to encrypt broadcast transmission to the associated STA(s). 

7.4 Derivation of Default Key

The approach defined for the derivation of the key mapping key for iteration 0 in an IEEE 802.1X environment (see Section X) may be used to generate the default key. Given below is the procedure for the derivation of default key adapted from the procedure defined in Section X for the derivation of key mapping key. The master session keys are derived first followed by the derivation of the session keys from the master session keys. Finally the default key is derived from the session keys.

Derivation of the master session keys shall follow the key derivation algorithm specified in Annex I. The algorithm for the derivation of the master session keys requires the master key “K” and the value “random” as inputs and their details are given below:

The pre-assigned IEEE 802.11 default key at the AP, if available, may be used as the master key “K”. Alternatively the AP may use an empty string “” as the master key “K”. 

The value “random” is a random byte string generated by the AP that includes liveness. 

Note that the nonce, the value “random”, should be random and long to ensure that the likelihood of it being reused is minimal. A timestamp (e.g., NTP time value, see IETF RFC 1305), a large random number, or a sequence number may be used as a nonce. Sequence numbers require a non-volatile state so that the same number is not used between reboots. Random number of 256 bits or greater has negligible likelihood of being reused.

Derivation of the session keys shall follow the key derivation algorithm specified in Annex H.

The peer encryption key (the first 32 bytes of PRF1 from master session keys derivation [Error! Reference source not found.]) shall be used as the MasterSendKey for the generation of send session key.

The authenticator encryption key (the second 32 bytes of PRF1 from master session keys derivation [Error! Reference source not found.]) shall be used as the MasterReceiveKey for the generation of receive session key.

The send session key truncated to the desired WEP length value shall be used as the IEEE 802.11 default key. 

The IEEE 802.11 WEP key index specified by the AP and the derived IEEE 802.11 default key are conveyed to the associated STA(s) by the AP using the EAPOL-Key packet.

Note that the IEEE 802.11 default key is explicitly transmitted by the AP to the associated STA(s).

7.5 Annex G

(Informational)

This annex describes some of the possible ways to implement 802.1X with 802.11, e.g. what is required to just enable pre-shared key rekeying, how to implement an Access Point that supports both pre-shared key and EAP authentication. It is also possible to implement for example a pre-shared key 802.1X supplicant as part of the NIC firmware (i.e. only the transmit/receive state machines) and a full 802.1X supplicant as part of the OS. The NIC would need a configuration option to enable or disable its 802.1X supplicant.

7.5.1 Pre-shared key as an addition to 802.1X

Station

This implementation needs a complete 802.1X supplicant including supplicant state machine and receive key state machine. When decrypting and validating a EAPOL-Key message the supplicant should get the master session key available from the EAP authentication method if available otherwise use the pre-shared key.

AP

This implementation needs a complete 802.1X authenticator including authenticator and transmit key state machine. Assume it also contains a radius client. The transmit key processing needs to check if it received key material from radius, if it does then use that key material to encrypt and sign the EAPOL-KEY message otherwise the pre-shared key should be used as the master key.

Adhoc

There are two variations of this implementation, if the station needs a full supplicant implementation and only a pre-shared key adhoc implementation or if the station needs full supplicant and authenticator implementations.

In the first case, the implementation needs the station implementation described above and a pre-shared key transmit key state machine.

In the second case, the implementation needs the station implementation described above and the AP implementation described above except that a different authentication server is required since a radius server is unlikely to be available for the station to validate other stations against. In this case the authentication server needs to be available on the local station.

7.5.2 Standalone Pre-shared key

Station

If only pre-shared key 802.1X re-keying  needs to be implemented then only the receive key state machine needs to be implemented. Without the supplicant state machine the station state is authenticated. The receive key processing with then use the pre-shared key material for decrypting and validating the EAPOL-KEY message.

AP

If the Access Point will only implement pre-shared key 802.1X rekeying then only the transmit key state machine needs to be implemented. Without the authenticator state machine the Access Point state is authenticated. The transmit key processing will then use the pre-shared key material for encrypting and signing the EAPOL-KEY message.

Adhoc

For stations that only implement pre-shared key 802.1X rekeying then only the transmit and receive key state machines need to be implemented. Both the transmit and receive key processing will use the pre-shared key material for encrypting, decrypting, signing and validating the EAPOL-KEY message,

7.6 Annex H

Normative
Deriving Transient Session Keys from EAP Master Session Keys

This document describes how ciphersuite-specific transient session keys can be derived from EAP master session keys. A general method is described for deriving authentication and encryption keys in each direction for both stream and block ciphers.  Examples are provided, demonstrating applicability to commonly deployed ciphersuites used in PPP and IEEE 802.11.

The Extensible Authentication Protocol (EAP), defined in RFC 2284 [2], was developed to provide extensible authentication for use with PPP [1]. Since then, new applications of EAP have emerged, including IEEE 802.1X network port authentication, defined in [5], and provisioning of certificates based of legacy authentication methods via PIC, defined in [10].

Since the client and NAS will need to contain code to implement any particular ciphersuite, it is reasonable to assume that ciphersuite- specific code exists on these entities. However, since the backend authentication server is not involved in the protection of data traffic, it cannot be assumed to implement any ciphersuite-specific code.

Annex I describes how master keys negotiated by EAP methods can be used to derive master session keys. This enables EAP methods and AAA servers to avoid the inclusion of ciphersuite-specific code.

This specification describes how ciphersuite-specific transient session keys can be derived from the master session keys described in Annex I. Since the algorithms in this document are by nature ciphersuite-specific, it is envisaged that they will be implemented on the NAS.

2.  Deriving transient session keys

This Annex describes the methods used to derive transient session keys from the master session keys described in Annex I.  It is described how the EAP master key can be used to derive Master Send and Receive session keys for authentication, encryption and IV.

The goal of this Annex is to provide a framework for session key generation which is applicable to ciphersuites commonly used with PPP and IEEE 802.11. Within PPP, ciphersuites include DESEbis [3], 3DES [4], and MPPE [9].  For PPP DESEbis, a 56-bit encryption key is required in each direction; for PPP 3DES, a 168-bit encryption key is needed in each direction; for MPPE, 40-bit, 56-bit or 128-bit encryption keys can be required in each direction, as described in [8],[9]. While these PPP ciphersuites provide encryption, they do not provide a per-packet keyed message integrity check (MIC).

Within 802.11, ciphersuites include WEP-40, described in [6], which requires a 40-bit encryption key, which is the same in either direction and WEP-128, which requires a 104-bit encryption key, the same in either direction.  These ciphersuites also do not include a keyed MIC.

Some cipersuites described in this document require 128-bit authentication and encryption keys in each direction, and are based on AES [11]-[14].

In this Annex, 40, 56, 128 and 168-bit keys are derived using the same algorithm defined for TLS Session Keys in [7]. The only difference is in the length of the keys and their effective strength: 40 and 56-bit keys are 8 octets in length, 128-bit keys are 16 octets long, and 168-bit keys are 24 octets long. Separate keys are derived for the send and receive directions of the session.

2.1. Generating 40 and 56-bit Session Keys

The master keys derived in Annex I are 32 octets in length; before being used to derive the initial transient session keys, they are truncated to 8 octets. The initial transient session keys are obtained by calling the function

GetNewKeyFromSHA() (described in [8]):

GetNewKeyFromSHA(MasterSendKey, MasterSendKey, 8, SendSessionKey)

GetNewKeyFromSHA(MasterReceiveKey, MasterReceiveKey, 8, ReceiveSessionKey)

Where less that 64-bit keys are required, the last N bits are used.
2.2. Generating 104 and 128-bit Session Keys

The master keys derived in Annex I are 32 octets in length; before being used to derive the initial transient session keys, they are truncated to 16 octets. The initial transient session keys are obtained by calling the function GetNewKeyFromSHA() (described in [8]):

GetNewKeyFromSHA(MasterSendKey, MasterSendKey, 16, SendSessionKey)

GetNewKeyFromSHA(MasterReceiveKey, MasterReceiveKey, 16, ReceiveSessionKey)

Where less that 128-bit keys are required, the last N bits are used.

2.3. Generating 168 and 192-bit Session Keys

The master keys derived in Annex I are 32 octets in length; before being used to derive the initial transient session keys, they are truncated to 24 octets. The initial transient session keys are obtained by calling the function

GetNewKeyFromSHA() (described in [8]):

GetNewKeyFromSHA(MasterSendKey, MasterSendKey, 24, SendSessionKey)

GetNewKeyFromSHA(MasterReceiveKey, MasterReceiveKey, 24, ReceiveSessionKey)

Where less that 192-bit keys are required, the last N bits are used.
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7.7 Annex I

Normative

Deriving Master Session Keys from EAP credentials
As EAP methods proliferate, allowing each EAP method to define its own ciphersuite-specific key derivation algorithms will unnecessarily increase code complexity, compromising the security and generality that EAP was created to provide.

This Annex supplies a general method for deriving master session keys in each direction from the master secrets negotiated by EAP methods. Annex H describes how ciphersuite-specific authentication and encryption keys and IVs can then be derived from these master keys. 

1.3. EAP overview

The Extensible Authentication Protocol (EAP), defined in [RFC2284], was developed to provide extensible authentication for use with PPP [RFC1661]. Since then, new applications of EAP have emerged, including IEEE 802.1X network port authentication, defined in [IEEE8021X].

One of the goals of EAP is to enable development of new authentication methods without requiring deployment of new code on the NAS. As a result, the NAS acts as a "passthrough", and need not understand specific EAP methods. Among other things, this implies that a NAS need not contain code specific to each EAP method. 

Instead of requiring new code on the NAS, EAP methods are installed on the client and backend authentication server, typically interfacing with the operating system via an EAP API, such as that described in [EAPAPI]. In order to allow the client and backend server to install new EAP methods without requiring an operating system upgrade, operating systems isolate EAP method-specific code within the installed EAP methods, and thus largely operate as "passthrough" entities with respect to EAP.

Although the initial focus of EAP was authentication, it can also provide keys for use with a ciphersuite.  EAP methods defined in [RFC2284] include EAP MD5, as well as One-Time Password (OTP) and Generic Token Card methods; each of these methods supports one-way authentication only but not key derivation. However, subsequent EAP method specifications such as EAP TLS [RFC2716], EAP SRP [EAPSRP], EAP GSS [EAPGSS] and EAP AKA [EAPAKA] are capable of deriving keys, as well as providing for mutual authentication.

The ciphersuites for which EAP may provide keying material have also grown in number.  PPP ciphersuites include DESEbis [RFC2419], 3DES [RFC2420], and MPPE [RFC3078].  The DES algorithm is described in [FIPSDES], and DES modes (such as CBC, used in RFC 2419 and DES-EDE3-CBC, used in RFC 2420) are described in [DESMODES].  For PPP DESEbis, a single 56-bit encryption key is required, used in both directions; for PPP 3DES, a 168-bit encryption key is needed, used in both directions. As described in [RFC2419] and [RFC2420] for both protocols, the IV, which is different in each direction, is "deduced from an explicit 64-bit nonce, which is exchanged in the clear during the negotiation phase."

For MPPE, 40-bit, 56-bit or 128-bit encryption keys can be required in each direction, as described in [RFC3078]. Since MPPE is based on the RC4 algorithm, no initialization vector is required. While these PPP ciphersuites provide encryption, they do not provide a per-packet keyed message integrity check (MIC). Thus, an authentication key is not required in either direction.

Within 802.11, ciphersuites include WEP-40, described in [IEEE80211], which requires a 40-bit encryption key, the same in either direction and WEP-128, which requires a 104-bit encryption key, the same in either direction.  These ciphersuites also do not include a keyed MIC.

Ciphersuites in this document do provide per-packet authentication as well as encryption. These ciphersuites use either 104-bit or 128-bit keys.

While EAP methods which derive keys can be used to provide automated keying for a ciphersuite, this does not imply that the EAP method need contain ciphersuite-specific code.  Since the client and NAS need to implement a given ciphersuite, ciphersuite-specific code is expected to exist on the client and NAS.  However, since the backend authentication server is not involved in the protection of data traffic, and may not even be aware of the negotiated ciphersuite, it cannot be assumed to implement ciphersuite-specific code.

These restrictions, when put together, imply that including ciphersuite-specific code within an EAP method is inappropriate, as is including code specific to an EAP method within the NAS. Moreover, since operating systems provide EAP APIs in order to remain "EAP-Method Agnostic", EAP method-specific code is best kept out of the EAP APIs as well.

1.4. Problem overview

With the increase in the number of EAP methods and applicable ciphersuites, there is a growing need for supplying algorithms to derive transient session keys from master secrets produced by EAP methods.  To

date, this need has been filled on a piece-meal basis, with EAP methods such as EAP SRP [EAPSRP], defining transient session key derivation mechanisms for each ciphersuite.

There are significant drawbacks to allowing each EAP method to specify session key derivation mechanisms for individual ciphersuites. These include:

Document Revision

If an EAP method specifies how to derive transient session keys on a per-ciphersuite basis, then this document will need to be revised each time a new ciphersuite comes out.  This would also imply that an authentication server supporting an EAP method might not be usable with a NAS supporting EAP, due to lack of support for a ciphersuite implemented on the NAS. This is antithetical to the EAP architecture, which conceives of the NAS as a "pass through" device that does not need to understand EAP, and which therefore can work with any EAP method supported by the authentication server.

EAP method complexity

Forcing the EAP method to include ciphersuite-specific code for transient session key derivation increases the complexity of EAP method development, as well as client and authentication server implementations.

Knowledge asymmetry

In practice, an EAP method may not have knowledge of the ciphersuite that has been negotiated. In PPP, negotiation of the ciphersuite is accomplished via the Encryption Control Protocol (ECP), described in [RFC1968].  Since ECP negotiation occurs after authentication, unless an EAP method is utilized that supports ciphersuite negotiation (such as EAP-TLS [RFC2716]), the client, NAS and backend authentication server may not be able to anticipate the ciphersuite that will be used and therefore this information cannot be provided to the EAP method.

Similarly, it is also desirable to avoid proliferation of EAP method-specific master session key derivation algorithms. Aside from the duplication of effort this would imply, the deployment of many algorithms, as opposed to a single well-analyzed one, is more likely to create security vulnerabilities.

2.  Proposed architecture

This Annex proposes an architecture that avoids the proliferation of EAP method-specific master session key algorithms, as well as ciphersuite-specific transient session key algorithms.  This is accomplished by the adoption of two standard algorithms:

[1] An algorithm for the derivation of "master session keys" from the negotiated master secret.  The "master session keys" are derived from the master secret derived by the EAP method, but are never directly used by ciphersuites; they are only used in the derivation of transient session keys.  These "master session keys" are derived on the client and the backend authentication server. The backend authentication server then transmits the "master session keys" to the NAS.  Such an algorithm is specified in this document.

[2] An algorithm for the derivation of "transient session keys" from the "master session keys". The "transient session keys" are used for encryption, authentication and IV-generation in each direction, and are derived by the NAS and client, based on the negotiated ciphersuite. Such an algorithm is specified in Annex H.

2.1. Key derivation algorithm

This document proposes a standard algorithm by which master session keys can be derived from the master secrets negotiated by EAP methods.  The key derivation algorithm defined in this specification is based on that used within EAP TLS [RFC2716].

It is envisaged that the algorithm will be implemented within libraries available on clients and backend authentication servers, so that it can be called by individual EAP methods rather than needing to be coded within each method. Since it is assumed that the backend authentication server will perform the required calculations and will supply the NAS with the master session keys, the algorithm need not be implemented on the NAS. Rather, the NAS will only need code necessary to convert the master session keys into ciphersuite-specific session keys. These algorithms are described in Annex H.

RFC 2716 provides a mechanism for deriving authentication and encryption keys of any length in both directions from the TLS master key. For security reasons, the TLS master key is typically not directly available via TLS APIs. As a result, RFC 2716 derives master session keys from the TLS master secret, and uses those master session keys to derive the required session keys.

The key derivation technique used in RFC 2716 is applicable to block ciphers as well as stream ciphers, and thus is not ciphersuite-specific. Since RFC 2716 does not assume knowledge of the negotiated ciphersuite, it provides keys large enough for use with any ciphersuite, assuming that these will be truncated for use within the client and NAS.

Since the raw master key is typically not available in to EAP TLS implementations, when this EAP method is used, the TLS PRF function is needed to derive keying material from it.

Other EAP methods may also encounter similar issues. For example, EAP GSS implementations will typically not be able to access the master keys directly, but can call GSS_Wrap() to encrypted tokens and GSS_GetMIC() to generate authentication tokens based on the master key.  EAP GSS implementations will therefore need to use GSS-API calls to derive master session keys from the master key, rather than operating on the master key directly.

While method-specific algorithms may be required in some methods, for other methods, the master secret is directly available, and so the algorithm used to derive master session keys from it can be designed in complete freedom.  However, even where such freedom is available, the proliferation of EAP method-specific key derivation algorithms is undesirable.

2.2. Detailed algorithm description

Figure 1 on the next page describes the overall logic of how master session keys, and eventually session keys, are derived from the master secret negotiated by an EAP method.  In the most general case, authentication and encryption keys as well as initialization vectors must be derived for each direction from the master secret K.  All of these may not be required for a given ciphersuite. For example, WEP [IEEE80211] does not provide a keyed message integrity check, and uses only a single encryption key in both directions.

The master secret K may be of varying length, and as described earlier, may not be directly available to the EAP method. Where the master secret K is not exportable, and where the PRF function described in Section 5 of RFC2246 cannot be called to encrypt data with the master secret K, an intermediate step is required to generate a "Pseudo-Master Secret" from the master secret. For example, in EAP GSS, as described in [EAPGSS], a "Pseudo-Master Secret", K' is derived via GSS-API calls, and is used instead.

In the techniques described in this section, master session keys are derived from the master secret derived by the EAP method, but are never used to encrypt or decrypt data; they are only used in the derivation of transient session keys.

The derivation, which is illustrated on the next page, proceeds as follows:

[1] Given the K or K' value and the pseudorandom function (PRF) defined in Section 5 of RFC2246, the value 
PRF1 = PRF (K, "client EAP encryption", random)
is computed up to 128 bytes, and the 
PRF2 = PRF ("","client EAP encryption", random) 
is computed up to 64 bytes (where "" is an empty string).
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Figure 3 Algorithm for derivation of transient session keys from the

EAP method master secret K
[2] The peer encryption key (the one used for encrypting data from peer to authenticator) is obtained by truncating to the correct length the first 32 bytes of PRF1. The authenticator encryption key (the one used for encrypting data from authenticator to peer), if different from the client encryption key, is obtained by truncating to the correct length the second 32 bytes of PRF1. The peer authentication key (the one used for computing MICs for messages from peer to authenticator), if used, is obtained by truncating to the correct length the third 32 bytes of PRF1. The authenticator authentication key (the one used for computing MICs for messages from authenticator to peer), if used, and if different from the peer authentication key, is obtained by truncating to the correct length the fourth 32 bytes of PRF1. The peer initialization vector  (IV), used for messages from peer to authenticator if a block cipher has been specified, is obtained by truncating to the cipher's block size the first 32 bytes of PRF2.

Finally, the authenticator initialization vector (IV), used for messages from peer to authenticator if a block cipher has been specified, is obtained by truncating to the cipher's block size the second 32 bytes of PRF2. The use of these encryption and authentication keys is specific to the ciphersuite used. Additional keys or other non-secret values (such as IVs) can be obtained as needed for future ciphersuites by extending the outputs of the PRF beyond 128 bytes and 64 bytes, respectively.

2.3. Requirements evaluation

The proposed "master session key" derivation algorithm meets the requirements described in [PROBLEM]:

Ciphersuite-independence

This "master session key" derivation algorithm does not require ciphersuite-specific code to be implemented within an EAP method. The master session keys enable derivation of authentication and encryption keys and IVs in both directions, so that the necessarily keying material can be adapted by the NAS and client as necessary.

Generality

This "master session key" derivation algorithm provides master session keys appropriate for use with a wide range of ciphersuites. Since each of the master session keys is 32 octets in size, there is sufficient entropy to produce keys of up to 256 bits in length. This is sufficent for use with existing ciphersuites, as well as ciphersuites usable in the foreseeable future.

Direct and Indirect Access

This "master session key" derivation algorithm is applicable to EAP methods where the master key is not directly accessible. These include TLS and GSS-API methods.

3.  Security considerations

The strength of the session keys is dependent upon the security of the EAP method providing the master keying material. If the chosen EAP method has security vulnerabilities, then it is possible that weak session keys may be produced.
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Annex K
This Annex specifies the RADIUS Master-Session-Key attribute, an attribute from which keys can be derived for a wide variety of ciphersuites, including those used with PPP [RFC1661] and IEEE 802.11 [IEEE80211].

The Master-Session-Key attribute can be used to key a wide variety of ciphersuites, and is compatible with any EAP method. As a result, it avoids the proliferation of EAP method-specific master session key algorithms, as well as ciphersuite-specific transient session key algorithms.

This is accomplished by the adoption of two separate algorithms:

1. An algorithm for the derivation of "master session keys" from the negotiated master secret.  The "master session keys" are derived from the master secret derived by the EAP method, but are never directly used by ciphersuites; they are only used in the derivation of transient session keys.  These "master session keys" are derived on the client and the backend authentication server. The backend authentication server then transmits the "master session keys" to the NAS.  The algorithm by which the master session keys are derived is described in Annex I.

2. An algorithm for the derivation of "transient session keys" from the "master session keys". The "transient session keys" are used for encryption, authentication and IV-generation in each direction, and are derived by the NAS and client, based on the negotiated ciphersuite. This algorithm is specified in Annex H.

2.  Master-Session-Key

This Attribute indicates master session key material used to derive ciphersuite-specific keys. This Attribute shall only be present in an Access-Accept packet. A summary of the Master-Session-Key Attribute format is shown below. The fields are transmitted from left to right.
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Figure 4 Radius Attribute for Master-Session-Key
Type: TBD for Master-Session-Key

Length: 196
Salt: The Salt field is two octets in length and is used to ensure the uniqueness of the keys used to encrypt each of the encrypted attributes occurring in a given Access-Accept packet.  The most significant bit (leftmost) of the Salt field shall be set (1).  The contents of each Salt field in a given Access-Accept packet shall be unique.

String:  The plaintext String field is 192 octets in length and consists of 6 logical subfields, each of which is 32 bits in length:
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Figure 5 Format of Radius field string
PAEncKey is the peer to authenticator encryption key. APEncKey is the authenticator to peer encryption key.

PAAuthKey is the peer to authenticator authentication key. APAuthkey is the authenticator to peer authentication key. PAIV is the peer to authenticator initialization vector. APIV is the authenticator to peer initialization vector.  All are described in Annex I.

The String field shall be encrypted as follows, prior to transmission:
· Construct a plaintext version of the String field by concatenating PAEncKey, APEncKey, PAAuthKey, APAuthKey, PAIV and APIV fields. Call this plaintext P.

· Call the shared secret S, the pseudo-random 128-bit Request Authenticator (from the corresponding Access-Request packet) R, and the contents of the Salt field A.  Break P into 16 octet chunks p(1), p(2)...p(i), where i = len(P)/16.  Call the ciphertext blocks c(1), c(2)...c(i) and the final ciphertext C.  Intermediate values b(1), b(2)...c(i) are required.  Encryption is performed in the following manner ('+' indicates concatenation):

b(1) = HMAC-MD5(S + R + A)    c(1) = p(1) xor b(1)   C = c(1)

b(2) = HMAC-MD5(S + c(1))     c(2) = p(2) xor b(2)   C = C + c(2)

.

.
b(i) = HMAC-MD5(S + c(i-1))   c(i) = p(i) xor b(i)   C = C + c(i)

The resulting encrypted String field will contain c(1)+c(2)+...+c(i).

On receipt, the process is reversed to yield the plaintext String.

Implementation Notes

It is possible that the length of the key returned may be larger than needed for the encryption scheme in use.  In this case, the RADIUS client is responsible for performing any necessary truncation. The truncation process is described in Annex H.

This attribute can be used to pass a key from an external (e.g., EAP [RFC2284]) server to the RADIUS server.  In this case, it may be impossible for the external server to correctly encrypt the key, since the RADIUS shared secret might be unavailable.  The external server should, however, return the attribute as defined above; the Salt field should be zero-filled.  When the RADIUS server receives the attribute from the external server, it shall correctly set the Salt field and encrypt the String field before transmitting it to the RADIUS client.  If the channel used is not secure from eavesdropping, the attribute shall be cryptographically protected.

4.  Security Considerations

This specification utilizes an attribute-hiding mechanism similar to that originally introduced in [RFC2865].  As noted in [RFC2865], there are known weaknesses in this algorithm, some of which are noted in [MD5Attack]. Since the algorithm involves use of a stream cipher for RADIUS attribute hiding, the security of the scheme at depends on the global and temporal uniqueness of the Request Authenticator from which the key stream is determined.  If the Request Authenticator is repeated on any NAS using the same RADIUS shared secret, then the key stream corresponding to that Request Authenticator should be considered compromised.

In an attempt to add additional protection, the algorithm was extended with a salt in [RFC2868] and [RFC2548]. Unfortunately those documents continued to use MD5 as opposed to HMAC-MD5. Therefore no additional protection was conferred by the salt, since it is passed in the clear, and if the original key stream were to be compromised, then the attacker could immediately calculate the salt-modified keystream from it.

It should also be noted that the RADIUS Response Authenticator and Message-Authenticator attributes are vulnerable to dictionary attack, so that if the RADIUS shared secret is chosen carelessly or used on many

NASen, then it can be compromised, in which case the attribute hiding scheme described in this specification has no value.

These deficiencies can be remedied by running RADIUS over IPsec ESP with a non-null transform, as described in [RFC3162].

Note also that RADIUS provides no protection against rogue proxies. Since RADIUS proxies will decrypt and re-encrypt the key field for forwarding, this attribute SHOULD NOT be used on networks where untrusted RADIUS proxies reside.
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7.8 Annex L
This annex is to be added as part of 802.1X and describes two new IEEE 802.1X EAPOL-Key Packet that supports default and key mapping keys.

In order to allow for the exchange of the value “random” and the key index (for the derivation and configuration of the key mapping key) between the Authenticator and the Peer, for example, the IEEE 802.11 AP and the STA, a new IEEE 802.1X specification Descriptor Type definition is required for the Key Descriptor format (EAPOL-Key packet).  

Descriptor Type (IEEE 802.1X Specification)

This field is one octet in length, taken to represent an unsigned binary number. The value defined the type of the Key Descriptor, which in turn defines how the remaining fields of the Key Descriptor are used and interpreted. In particular, the Descriptor Type value defines how the Relay Counter is generated, how the Key IV is used, how the Key Signature field is generated, and how the Key field is encrypted. 

The following values of Descriptor Type are defined:

a) RC4 Key Descriptor. A value of 1 in the Descriptor Type field indicates that the Key Descriptor is a RC4 Key Descriptor. The definition of the RC4 Key Descriptor can be found in IEEE 802.1X Specification.

b) 802.11 TKIP Key Descriptor. A value of 2 in the Descriptor Type field indicates that the Key Descriptor is a TKIP Key Descriptor. The definition of the TKIP Key Descriptor can be found in IEEE 802.1X Specification.

c) 802.11 AES Key Descriptor. A value of 3 in the Descriptor Type field indicates that the Key descriptor is an AES Key Descriptor. The definition of the AES Key Descriptor can be found in IEEE 802.1X Specification.

All other possible values of Descriptor Type are reserved for future standardization.

TKIP Key Descriptor

Key Descriptor packet carrying a Descriptor Type of TKIP Key Descriptor are constructed and interpreted as given below. It is assumed that when a Key Descriptor packet is received, the client has the appropriate set of send and receive Session Keys.

a) Key Length:

This field is two octets in length, taken to represent an unsigned binary number. The value defines the length of the key in octets. For example, a value of 5 in this field indicates a 40-bit key.

key mapping key:

This field carries the length in bytes of the derived Session Keys that needs to be generated at the client. This field does not relate to the Key field, i.e., the key length specifies the length of the key mapping key to be used.

default key:

This field carries the length in bytes of the default to be used.

b) Replay Counter:

This field is eight octets in length, taken to represent an unsigned binary number. It carries a counter value, used to detect and prevent replay of key messages. The counter value should not be initialized to the same value at system boot. This field may carry an NTP time value (see IETF RFC 1305). 

c) Key IV:

This field carries the 16 octet Initialization Vector value, consisting of 128 bit random value. 

This field carries a random number used to generate an RC4 encryption key. 

d) Key Index:

This field carries the information about the index of the key, whether the key being generated is a key mapping key or default key, and whether the key being generated is to be used as transmit or receive key. 

The index number is carried in bit 1 through 6, and can carry an integer in the range on 0-63.

Bit 8 is a flag bit. If bit 8 is set to 1, the key is a key mapping key; if bit 8 is set to 0, the key is a default key.

Bit 7 is a flag bit.  If bit 7 is set to 1, the key is used for transmit and receive; if bit 8 is set to 0, the key is used for receive only.

e) Key Signature:

This field is sixteen octets in length. The Key Signature is a signature of all of the fields of the EAPOL packet, from and including the EAPOL protocol version field, to and including the Encrypted Key field, with the signature set to 0. 

HMAC-MD5 is used to generate the Key Signature (see IETF RFC 2104). The key used for the HMAC-MD5 signature is given below:

non-IEEE 802.1X authentication environment:

The authentication session key derived in the prior iteration shall be used for iterations 1 and higher. 

IEEE 802.1X authentication environment:

The PAAuth key shall be used for iteration 0.

Note: The Peer’s MS-MPPE-Recv-Key attribute (Vendor-Type = 17) may also be used for iteration 0.

Note this implies that the Authenticator shall use its MS-MPPE-Send-Key attribute (Vendor-Type = 16) for iteration 0.   

The authentication session key derived in the prior iteration shall be used for iterations 1 and higher.

f) Key Material Length:

This sub-field is two octets in length, taken to represent an unsigned binary number. This two octet value defines the length of the unencrypted Key Material contained in the Key Material field.

Note that the Key Material Length value may be less than the length of the encrypted Key Material field within the Key field in cases where pad bytes may have been appended at the end of the unencrypted Key Material prior to its encryption should there be a byte boundary requirement.

g) Key Material:

RC4 is used to encrypt the entire Key Material sub-field. 

The first 256 bytes of the RC4 stream encryption shall be discarded following RC4 stream cipher initialization. This is done to enhance the integrity of the RC4 stream encryption. 

The RC4 stream cipher is initialized prior to each encryption of the Key Material field. The plaintext stream to be encrypted is generated by concatenating a 256 byte dummy value and the unencrypted Key Material (in that order). The generated plaintext stream (256 byte dummy value followed by the unencrypted Key Material) is then encrypted using RC4. Following encryption, the first 256 bytes of the encrypted stream are discarded, i.e., the encrypted 256 byte dummy value. The remaining encrypted stream, i.e., after the first 256 bytes are discarded, forms the encrypted Key Material stream that is contained in the Key Material field. 

Note that the Key Material field within the Key field contains only the encrypted Key Material.

The RC4 encryption key is generated by concatenating the Key IV and the key as described below:

Pre-Shared Key environment:

The encryption session key derived in the prior iteration shall be used for generating RC4 encryption key for iterations 1 and higher. 

IEEE 802.1X environment:

The PAEnc key shall be used for iteration 0.

Note: The Peer’s MS-MPPE-Send-Key attribute (Vendor-Type = 16) may also be used for generating RC4 encryption key for iteration 0.

Note this implies that the Authenticator shall use its MS-MPPE-Recv-Key attribute (Vendor-Type = 17) for generating RC4 encryption key for iteration 0. 

The encryption session key derived in the prior iteration shall be used for generating RC4 encryption key for iterations 1 and higher.

Key mapping key:

Key Material field shall contain the value “random” the random byte string generated by the Authenticator that includes liveness. The value “random” is required to generate the derived Session Keys for key mapping key.

default key:

Key Material field shall contain the default key. If the unencrypted Key Material is longer than the value specified in the Key Length field, then only the first N bytes (value specified in the Key Length field) are used.  

AES Key Descriptor

Key Descriptor packet carrying a Descriptor Type of AES Key Descriptor are constructed and interpreted as given below. It is assumed that when a Key Descriptor packet is received, the client has the appropriate set of send and receive Session Keys.

a) Key Length:

This field is eight octets in length, taken to represent an unsigned binary number. The value defines the length of the key in octets. For example, a value of 5 in this field indicates a 40-bit key.

key mapping key:

This field carries the length in bytes of the derived Session Keys that needs to be generated at the client. This field does not relate to the Key field, i.e., the key length specifies the length of the key mapping key to be used.

default key:

This field carries the length in bytes of the default to be used.

b) Replay Counter:

This field is eight octets in length, taken to represent an unsigned binary number. It carries a counter value, used to detect and prevent replay of key messages. The counter value should not be initialized to the same value at system boot. This field may carry an NTP time value (see IETF RFC 1305). 

c) Key IV:

This field carries the 16 octet Initialization Vector value, consisting of 128 bit random value. 

This field carries a random number used to generate an AES encryption key. 

d) Key Index:

This field carries the information about the index of the WEP key, whether the key being generated is a key mapping key or default key, and whether the key being generated is to be used as transmit or receive key. 

The index number is carried in bit 1 through 6, and can carry an integer in the range on 0-63.

Bit 8 is a flag bit. If bit 8 is set to 1, the key is a key mapping key; if bit 8 is set to 0, the key is a default key.

Bit 7 is a flag bit.  If bit 7 is set to 1, the key is used for transmit and receive; if bit 8 is set to 0, the key is used for receive only.

e) Key Signature:

This field is sixteen octets in length. The Key Signature is a signature of all of the fields of the EAPOL packet, from and including the EAPOL protocol version field, to and including the Encrypted Key field, with the signature set to 0. 

AES-CBC-MAC is used to generate the Key Signature (see IETF RFC 2104). The key used for the AES-CBC-MAC signature is given below:

non-IEEE 802.1X authentication environment:

The authentication session key derived in the prior iteration shall be used for iterations 1 and higher. 

IEEE 802.1X authentication environment:

The PAAuth key shall be used for iteration 0.

Note: The Peer’s MS-MPPE-Recv-Key attribute (Vendor-Type = 17) may also be used for iteration 0.

Note this implies that the Authenticator shall use its MS-MPPE-Send-Key attribute (Vendor-Type = 16) for iteration 0.   

The authentication session key derived in the prior iteration shall be used for iterations 1 and higher.

f) Key Material Length:

This sub-field is two octets in length, taken to represent an unsigned binary number. This two octet value defines the length of the unencrypted Key Material contained in the Key Material field.

Note that the Key Material Length value may be less than the length of the encrypted Key Material field within the Key field in cases where pad bytes may have been appended at the end of the unencrypted Key Material prior to its encryption should there be a byte boundary requirement.

g) Key Material

This field is mandatory. 

AES-CBC with a 128 bit key is used to encrypt the Key field.  The 128 bit AES encryption key is the session key generated by the EAP authentication process.  The key material is padded to a length that is an integral number of 8 byte blocks.  

non-IEEE 802.1X authentication environment:

The encryption session key derived in the prior iteration shall be used for generating AES encryption key for iterations 1 and higher. 

IEEE 802.1X authentication environment:

The PAEnc key shall be used for iteration 0.

Note: The Peer’s MS-MPPE-Send-Key attribute (Vendor-Type = 16) may also be used for generating AES encryption key for iteration 0.

Note this implies that the Authenticator shall use its MS-MPPE-Recv-Key attribute (Vendor-Type = 17) for generating AES encryption key for iteration 0.   

The encryption session key derived in the prior iteration shall be used for generating AES encryption key for iterations 1 and higher.

key mapping key:

Key material shall contain the value “random” the random byte string generated by the Authenticator that includes liveness. The value “random” is required to generate the derived Session Keys for key mapping key.

default key:

Key material shall contain the default key. If the unencrypted key material is longer than the value specified in the Key Length field, then only the first N bytes (value specified in the Key Length field) are used. 
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Figure 1: Overview of the IEEE 802.11 Key Mapping Key Derivation
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