March 2001

doc.: IEEE 802.11-01/140

IEEE P802.11
Wireless LANs

Responses to Frequently Asked Questions for the PBCC-22 Proposal

Sean Coffey, Anuj Batra, Srikanth Gummadi,
Chris Heegard, Eric Rossin, Matthew Shoemake

Texas Instruments
141 Stony Circle, Suite 130

Santa Rosa, California 95401
Tel.: 707-284-2224
Fax: 707-521-3066
e-mail: coffey@ti.com
Introduction

 This document contains the responses to many questions that have been posed about PBCC-22 in various settings. Because we intend each answer to be as complete as possible in itself, there is an unavoidable amount of repetition in the answers.

Summary:

PBCC-22 has a large performance advantage, especially in multipath.

Questions:

1. Is this system backwards compatible with 11b? How does it interact with 11b devices?

PBCC-22 is fully backwards compatible with 11b. The PBCC-11 and PBCC-5.5 Mbps modes are fully backwards compatible, and in fact are options in the existing standard. All PBCC modes coexist with existing 11b networks.

PBCC-22 devices will fall back to legacy systems (CCK and Barker) when communicating with 11b-only networks.

2. How much extra signal-to-noise ratio does it take for PBCC's 22 Mbps mode over existing 11b devices at 11 Mbps?

PBCC-22 is designed to work in the same environment as the CCK 11 Mbps system. In essentially any environment in which CCK’s 11 Mbps mode works, PBCC’s 22 Mbps mode will work also.

3. How does the 22 Mbps mode compare to existing 11b devices in terms of spectrum, peak-to-average ratio, etc.?

The 22 Mbps mode is specifically designed to match existing 802.11b devices exactly in terms of spectrum, peak-to-average ratio, and so on. The mode uses the same clock speed and pulse-shaping filters. It uses 8-PSK in place of QPSK. Any existing radio for 802.11b will work with PBCC-22 without change.

4. It's generally agreed that PBCC-22 is much better than the hybrid single-tone/multi-tone alternative in Gaussian noise, but how does it compare in multipath? Isn't this more important?

 Multipath performance is indeed vital; it is the acid test of the performance of wireless LAN systems. The comparison of PBCC-22 to CCK-OFDM in this environment cuts to the core of which system is technically superior. The result:

PBCC-22's advantage over CCK-OFDM is even greater in multipath.

 The differences in performance in multipath are given in documents 00/385r1, 00/392r1, and 01/064, and are all greater than or equal to the difference in Gaussian noise (see response to No. 6). See also the response to No. 8 below.

 But how are the equalizer and decoder to be implemented? In the response to No. 8 below, we demonstrate a straightforward, off-the-shelf decoding and equalization algorithm that achieves excellent performance. This performance actually exceeds the performance of our chip, presented in 00/385r1. (The simulations based on our chip contain some implementation loss, whereas the algorithm below has an ideal receiver.) This demonstrates that the performance gain of PBCC-22 is not dependent on the specific form of the TI receiver; it is possible to use standard decoding algorithms to achieve similar performance.

 The PBCC-22 and CCK-OFDM systems are fundamentally different in many ways, so it is not straightforward to identify a simple reason why PBCC-22 gains a further advantage in multipath. However, two main reasons almost certainly make up this difference. The first is the way CCK-OFDM handles multipath: multipath falling into the cyclic extension is essentially ignored. On one hand this gains some simplicity; on the other hand it is not optimal,

and a decoder that took full account of the multipath energy could in principle do better. While there is nothing wrong with an engineering tradeoff of this type, the downside of the tradeoff must be recognized.

 The second component of the difference lies in the cover code feature of PBCC. The output of the binary convolutional code is modified by a periodic cover code sequence, of long period (256). The effect of this is to make the time-invariant code behave as a time-varying code. This in turn means that multipath components that arrive in phase with the main transmission do not look at all like codewords, and are more likely to be corrected by the decoder. In the time-invariant case, without the cover code, the decoder has essentially no chance of recovering from an in-phase multipath component.

 We do not know how to allocate the extra PBCC-22 advantage between these two possibilities. However, from the experimental curves derived from simulations of chip algorithms, and confirmed by the standard off-the-shelf algorithm in the response to No. X below, we can assert:

PBCC-22 has inherent resistance to multipath.

5. A document presented by a competing proposal shows an advantage for PBCC-22 of only 0.8 dB. How does that correspond to your results showing a 3 to 3.5 dB coding gain advantage?

 Q.: This advantage is compared to what? A.: It's compared to a PBCC-11-like system, and not with

CCK-OFDM.

 The experiment conducted by the authors of 00/xxx was the following: what would happen if one took the PBCC-11 64-state code, matched it to 8-PSK, and punctured to get the rate up to 22 Mbps. The authors of 00/xxx claim that in Gaussian noise this lost 0.8 dB versus PBCC-22.

 We have not performed this experiment, but the result does not appear to be particularly surprising. The PBCC-11 64-state code is quite good in itself. However, we believe the difference is probably significantly greater than 0.8 dB in multipath. There is an engineer's rule of thumb: ``when there is more memory in the channel, you need more memory in the code.''

 In any case, we feel that 0.8 dB is quite a lot; it can only be seen as small when compared to the 3.0 to 3.5 dB advantage PBCC-22 has over CCK-OFDM. In particular, this gain is vital in order to be able to say that PBCC-22

performs in exactly the same environments as CCK-11, which was the key goal in the overall design of the system (see answer to No. 2 above).

6. Going back to the Gaussian noise case, why is there such a big difference between the PBCC 22 Mbps mode and the CCK-OFDM 24 Mbps or 26.4 Mbps modes? Does this difference seem reasonable?

 First, we should note that the difference is very well documented, and even accepted by the proposers of CCK-OFDM. The problem therefore is how to explain a number that is well established from simulation: the difference really is that large, the remaining question is why?

 As we outline in 01/364, the difference in Gaussian noise has three major components. Two of these can be calculated exactly, while the third seems well within the normally expected rules of thumb for gain from coding.

 The first component arises from the use in all OFDM-based system of a cyclic extension, which takes up 20% of the signal energy with non-information-carrying transmission. This costs 10 log10 (0.8)= – 0.97 dB.

 The second component arises from the use in OFDM of 4 pilot tones out of the 52 tones used. Here 1/13 of the energy is used for non-information-carrying transmission. This costs 10 log10 (12/13) = – 0.35 dB.

 The final component of the difference is the coding gain difference. Extensive simulation produces a difference, at the standard operating point of a packet error probability of 1/100, of about 1.6 dB. Is this difference too large? Given the difference in the power of the code — 256 states versus 64 states — it seems entirely reasonable, and is consistent with the large minimum Euclidean distance of the PBCC-22 code.

 These differences add up to 0.97 + 0.35 + 1.6 = 2.9 dB, which correspond exactly to the simulated difference.

7. You have presented several curves for the performance of PBCC-22 in multipath. Do these curves show the performance of an idealized receiver, or do they show the performance of the receiver algorithms on your chip?

The curves represent the performance of the receiver algorithms on our chip; thus they show some implementation loss. As we demonstrate in the response to No. 8, it is possible to achieve better performance than these algorithms.

8. Your receiver involves a "secret sauce" which you have not yet revealed. Are you willing to reveal it now? How can PBCC-22 be decoded effectively in multipath conditions?

 We are not willing to give the fine details of how our receiver works. However, we have given a high-level block diagram and explanation of the receiver (document 01/144). In addition we offer a straightforward, off-the-shelf decoding algorithm that yields excellent results with reasonable complexity. As shown below, the floating-point results for this algorithm actually improve on the curves previously presented from our receiver algorithm.

 This algorithm is a standard "M-algorithm", retaining 64 states at every depth. The receiver uses a whitened matched filter, and then feeds to a decoder that takes as channel state the last 8 symbols, rather than the last 4 as for Viterbi decoding. At a given depth, the decoder has (up to) 64 expanded “states” with their accumulated path metrics. In the next time unit, these 64 states generate (up to) 256 descendants. As the decoder has retained the last 8 states rather than the last 4, it can generate the first several components of the multipath that would exist if that expanded "state" corresponded to the sequence of symbols actually transmitted. The resulting first few multipath terms can be generated and subtracted out, and a metric generated. The accumulated metrics of all 256 descendants are computed, the metrics are sorted, and the best 64 "states" are retained. The process then repeats to the end of the packet. The M-algorithm has been well known for many years, sometimes under different names, such as "list decoding" or "reduced-state sequence estimation". There are many variations and elaborations. See [1,2, 5, 8].

 Here are results for this algorithm with "fixed SNR, Trms = 100 ns", and 1000 byte packets. The corresponding results presented in 00/385r1 for the algorithms used in the PBCC-22 receiver (showing some implementation loss) and the CCK-OFDM receiver are also shown. The M-algorithm gains 3.6 dB over the CCK-OFDM 24 Mbps mode.

[image: image1.png]PER

10

10

10

— PBCC22

~5 W-Algorithm
~&- OFDM 24

8 9 10 11 12 13

EsfNo (46)

14 15 16

9. Are there any other algorithms in the open literature that could be used to decode PBCC-22?

 There are many such algorithms. A partial list is the following:

A. Duel-Hallen and C. Heegard, ``Delayed decision-feedback sequence estimation,’’ IEEE Transactions on Communications, vol. 37, pp. 428-436, 1989.

G. F. Foschini, ``A reduced state variant of maximum likelihood sequence detection attaining optimum performance for high signal-to-noise ratios,'’ IEEE Transactions on Information Theory, vol. 23, no. 5, Sept. 1977, pp. 605-609.

G.D.Forney, Jr.,"Maximum-likelihood sequence estimation of digital sequences in the presence of intersymbol interference," IEEE Transactions on Information Theory, vol.IT-18,pp.363 -378,May 1972.

H.Kobayashi, "Correlative level coding and maximum likelihood decoding," IEEE Transactions on Information Theory, vol. IT-17, pp.586-594, Sept.1971.

J.B.Anderson, T.Aulin, and C. -E. Sundberg, Digital Phase Modulation. Plenum Press, 1986.

A Duel and C. Heegard, "Delayed Decision-Feedback Sequence Estimation," 23'rd Annual Allerton Conference on Communication, Control and Computing, October 2-4, 1985.

M. V. Eyuboglu, S, U. Quereshi, "Reduced-state Sequence Estimation with Set-partitioning and Decision Feedback," IEEE Transactions on Communications, vol. COM-36, No. 1, pp. 13-20, January, 1988.

P. Chevillat, E. Eleftheriou, "Decoding of Trellis-encoded Signals in the Presence of Intersymbol Interference and Noise," IEEE Transactions on Communications, vol. COM-37, No. 7, pp. 669-676, July, 1989.

C. F. Lin and J. B. Anderson, "M-Algorithm Decoding of Channel Convolutional Codes," 20'th Annual Conference on Information Sciences and Systems, Princeton, New Jersey, March 19-21, 1986.

10. Using a linear equalizer with your system, even a very large number of taps doesn't give a good performance. Using no equalizer at all gives a very poor performance. Do you agree?

 We have never recommended simply using a linear equalizer in this application, and do not do so now. It appears to sacrifice far too much performance; this fact is well documented in the literature. The approach of attempting to gain high performance in this application solely via linear equalizers appears to be fundamentally flawed.

 The idea of not using any equalizer at all is completely unrealistic.

11. An MLSE algorithm is too complicated for implementation. Doesn't this mean that PBCC-22 is too complicated?
 Not at all — there are many variants on reduced-complexity algorithms that seek to approximate the performance of an MLSE. One of these is the M-algorithm approach in the response to No. 8; several others are contained in the response in No. 9.

 In this situation there are two extremes. There is the maximum-likelihood sequence estimation approach on all possible states, which has optimal performance but impossible complexity. There is also the linear equalizer (or no equalizer) approach that has very low complexity, but poor performance.

 Neither of these extremes works well. However, there is a large middle ground of approaches that have somewhat higher complexity than linear equalizers, with performance that is good, though not optimal. At least

one of these works well, as we have demonstrated; in all probability many of them do so.

12. What does the “cover code” buy you?

Our best current estimate is: “up to around half a dB”; however, we acknowledge that this is just an estimate.

We base this figure on the extra gain achieved by PBCC-22 over CCK-OFDM when the channel is changed from Gaussian to multipath. The figures quoted in 01/064 and our response to No. 8 show a gain of (up to) this much. We have also presented heuristic reasons in the past for why the cover code should produce some improvement; such an improvement comes at no extra cost.

Note, however, that the two systems process the received signal in quite different ways, so it is possible that the extra gain comes from some other factor, rather than the cover code.

13. How does your advantage of 3 dB to 3.5 dB in multipath conditions translate into range?

 PBCC-22 has approximately 25% to 30% more range than CCK-OFDM 24 Mbps mode or 26.4 Mbps mode, in "average" path loss conditions.

 In fact, propagation conditions are known to vary very widely, so there is no fixed figure for range advantage. A standard model used for propagation in the 2.4 GHz band, adopted by 802.15.2 (see [K. Marquess, “The Physical Model Sub-Group Discussion and Questions,” 802.15/138r0]) is that path loss is modeled as r^3.3, where r is the range. (The model also uses r 2 for transmission across very short ranges.) Using this model gives a range difference of 23% (PBCC-22 versus a rate-compensated CCK-OFDM in the mild or no multipath) to 30% (PBCC-22 versus CCK-OFDM 26.4 Mbps in multipath with 100 ns delay spread.) The true range difference may vary widely above or below these figures.

14. I've heard a figure of 7%. How does that correspond to your answer to the last question?

 Nobody is suggesting that PBCC-22 has this small a range advantage over CCK-OFDM. To arrive at this number, one needs to start with the "0.8 dB difference" discussed in No. 9 — this refers to the difference between

PBCC-22 and a PBCC-11-like system, in Gaussian noise. (The difference in multipath is unknown.)

 Using the standard path loss model of r^3.3, we conclude that PBCC-22 and the PBCC-11-like system, in Gaussian noise only, have a range difference of 7%.

15. On battery life, if we account for the proportion of the time devices are in sleep mode, isn't it true that a receiver using half as much receiver power for the same performance will have somewhat less than double the battery life?

 Yes, the difference in battery lives will depend on the exact conditions of how much of the time the 11g devices spend in sleep mode. Obviously a receiver using half as much energy or less when receiving packets, as with PBCC-22, will have a marked advantage, but exactly how much cannot be read solely from the coding gain results.

16. When you generated your simulation curves for various different multipath situations, did you tune the receiver separately every time, or did you generate all curves with the same parameter settings?

 We generated all curves with the same parameter settings, optimized for a PER of 10^–2. Of course the adaptive equalizer automatically compensates for the multipath in each packet.

17. Couldn't your PBCC-22 code be used in an OFDM-based solution? Can you comment on that?

 Certainly in principle it could be used in several different ways, and as the code is quite versatile, its performance would probably be reasonably good.

18. Have you thought of using an interleaver in your system? Wouldn't that improve things?

 We have considered the pros and cons of adding an interleaver, and in our opinion it would not improve things; in fact, in several ways it would make things considerably worse in this situation.

 An interleaver is a device that is designed to make noise containing bursts look like noise that is purely random. The motivation for ever doing this is if the receiver uses a pure random-error-correcting decoder: the decoder would prefer random noise, as this is what it is designed for. It is a particularly useful technique when the noise is predominantly random, for example Gaussian, and the bursts are secondary or hard to model statistically.

 However, if we have detailed information about the memory of the channel and allow decoders to take account of it, it is virtually always better not to interleave. Appreciable performance is lost through interleaving (how much depends on the nature of the memory) and the capacity is lowered (or at least never increased): ``the channel with memory has a capacity at least as large as that of the associated memoryless channel'' (Gallager [6, p. 287]). ``In a very precise information-theoretic sense, the very worst type of noise is random noise. If the noise has structure, the structure can be exploited. The reason for this is not profound. The receiver can locate when a burst occurs and make good use of the location information. In an interleaved code, the deinterleaver carefully tries to convert a less

damaging type of noise (bursts) into a more damaging type of noise (random)'' (Berlekamp et al. [3]).

 A multipath channel is in its very essence a channel with memory. Knowing the values of the past several symbols is a huge advantage in decoding, as the resulting multipath can be calculated correctly and compensated for in processing the current symbol. This is the point of the M-algorithm decoder discussed in the response to No. 8. The excellent performance of the decoder would be diminished by the use of an interleaver. This is true for any decoder that seeks to estimate and exploit the memory of the channel.

 The IEEE 802.11b standard has lengthy preambles that allow detailed estimation of the multipath channel, and this channel usually remains essentially constant over the short length of a packet. These conditions do not meet the usual ones for interleaving to be effective; for us interleaving is not the way to go.

19. How does your 33 Mbps optional mode do in multipath?

 We have done no simulations on the performance of this mode in multipath.

 It is possible to extrapolate from the data for the 22 Mbps mode to get an approximate idea of what the performance will be. First note that any given delay spread for multipath will appear to be more severe at 33 Mbps than at 22 Mbps; the symbol duration is shorter and so more symbols will be affected. Thus, roughly speaking, a 100 ns rms delay spread at 33 Mbps will have performance degradation over the Gaussian case that is similar

to the performance degradation with a 150 ns delay spread at 22 Mbps, and so on.

 In addition, there is a further performance penalty of 1.76 dB in moving from 22 Mbps to 33 Mbps, from the Gaussian noise calculation. The overall loss in multipath of 33 Mbps over 22 Mbps will therefore be up to 3 dB.

20. Aren't there extra problems of PA backoff, peak-to-average ratio, timing sensitivity, etc, when switching from 22 Mbps to 33 Mbps?

 Certainly there are many advantages of the 22 Mbps mode that are affected by going to the 33 Mbps mode. The 22 Mbps mode operates in the same channel conditions as the CCK 11 Mbps mode: in virtually any environment in which CCK-11 works, our 22 Mbps mode will work also. The 22 Mbps mode is spectrally identical to the existing 802.11b standard. It does not require any adjustments to the radio. It is temporally identical to the existing

802.11b standard, and so has no extra problems with peak-to-average ratio, so provides exactly the same interference to other users of the band as 802.11b. Finally, we have produced a chip that implements all mandatory portions of the proposed standard, including the 22 Mbps mode; its practicality is therefore proven.

 The optional 33 Mbps mode is technically sound. Undeniably, however, it does suffer in robustness relative to the 22 Mbps mode, by a margin of 2–3 dB in multipath. The peak-to-average ratio is somewhat higher than the

802.11b standard (though nowhere near as high as CCK-OFDM). Its sensitivity to timing error will be slightly higher as a result of using a 20% rolloff pulse-shaping filter rather than a 70% rolloff filter. Finally, the current version of our chip does not implement the 33 Mbps mode.

References

 [1] J. B. Anderson, ``Instrumentable tree encoding of information sequences,'' M.Sc. thesis, EE, Cornell University, Sept. 1969.

 [2] J. B. Anderson, ``Limited search trellis decoding of convolutional codes,'’ IEEE Transactions on Information Theory, vol. 35, no. 5, Sept. 1989, pp. 944-955.

 [3] E. R. Berlekamp, R. E. Peile, and S. P. Pope, ``The application of error control to communications,'' IEEE Communications Magazine, vol. 28, no. 4, April 1987, pp. 44-57.

 [4] A. Duel-Hallen and C. Heegard, ``Delayed decision-feedback sequence estimation,'’ IEEE Transactions on Communications, vol. 37, pp. 428-436, 1989.

 [5] G. F. Foschini, ``A reduced state variant of maximum likelihood sequence detection attaining optimum performance for high signal-to-noise ratios,'’ IEEE Transactions on Information Theory, vol. 23, no. 5, Sept. 1977,

pp. 605-609.

 [6] R. G. Gallager, Information Theory and Reliable Communication. New York: Wiley, 1968.

 [7] C. Heegard, S. Coffey, S. Gummadi, P. Murphy, R. Provencio, E. Rossin, S. Schrum, and M. Shoemake, ``High performance wireless Ethernet,'' IEEE Communications Magazine, to appear.

 [8] R. Johannesson and K. Sh. Zigangirov, Fundamentals of Convolutional Coding. New York: IEEE Press, 1999.

Submission
page 7
Sean Coffey, Texas Instruments

