Study Item Proposal: Network for Al Computing

Lily Lyu (Huawei)

Feb 2024

Background

Al large model – new surge of Al computing

 Al large models show emergent abilities, attracting industry's attention.

Emergent abilities that are not present in smaller-scale models but are present in large-scale models, which are qualitative changes resulted by quantitative changes (training compute, number of model parameters and training dataset size)

--- Google&Standford, 2022

Al large models evolve very fast, requiring large scale network.

Network development

Industry activities:

- LJFC <u>https://ultraethernet.org/</u>
- IETF AI DC(datacenter) side meetings https://github.com/Yingzhen-ietf/AIDC-IETF117 https://github.com/Yingzhen-ietf/AIDC-IETF118

Nendica contributions:

- Requirements for Al Fabric
- Congestion Signaling (CSIG)
- Network for Al datacenters
- Load balancing challenges in Al fabric

There's a lot of interest in network improvement in order to support Al large model.

Important to Know How AI Works

DNN-based Architecture for deep learning (DNN: Deep Neural Network)

- ✓ Samples
- ✓ Parameters
- ✓ Gradients
- **√**

From Nendica contribution: "Network for Al datacenters"

Keys to AI Training:

- **Compute** (FLOPS, floating point operations per second) decides how fast to train a model.
 - Days trained * Number of GPUs * single GPU FLOPS ≈ (peta)FLOPS-day of model
- Memory size determines if the model can be trained.
 - Memory must be big enough to store model parameters and intermediate values generated during FWD and BWD.
 - Large model cannot fit into a single GPU memory, model parallelism has to be used.
- Parallelism enables model training.
 - Model parallelism and data parallelism

Important to Understand Communication in AI (1/3)

Overlap communication and computation as much as possible to optimize training.

- TP Communication is hard to be overlapped with computation.
- PP Communication can be overlapped with computation.
- DP Communication can be overlapped with computation.

TP/PP/DP may have overlap.

From Nendica contribution: "Network for Al datacenters"

Attn: attention MPL: multilayer perceptron

Important to Understand Communication in AI (2/3)

AllReduce and AlltoAll are typical collective communication operations in Al training.

Important to Understand Communication in AI (3/3)

- Collective communication can have different implementations.
 - Needs comprehensive considerations (e.g. network topology, message size) to design proper implementation.

Analysis on Communication Time

Communication consumes a non-negligible proportion in the training time, and the situation gets worse when AI model size increases (more GPUs).

Need to Notice New Traffic Pattern

Sparse communication but requiring large bandwidth

- The distribution of traffic is regular in both space and time dimensions.
 - The flow of traffic is regular.
 - Communication pair is predictable.
 - Maximum number of connections on a GPU is TP-1+DP-1+1 (TP/DP/PP)
 - TP/DP/PP logical planes show periodic bursts of traffic.
 - The burst frequency: TP>PP>DP
 - Link is idle in most of time.

Single GPU requires large bandwidth for traffic communication

Parallel Mode	Communication (1 GPU 1 time)
TP	100s GB level
PP	100s MB level
DP	GB level

Systematic View On AI Computing Network (1/2)

The uniqueness of AI computing network

- ✓ Predictable traffic
- ✓ Large amount of traffic for each burst

LSW: LAN switch

Systematic View On AI Computing Network (2/2)

Total compute = single GPU compute * Scale * Efficiency * Availability

Challenge:

 Interconnection of large number of GPUs (K->10K->100K)

Consideration:

- Topology optimization for super-node and cluster network
 - Direct topology, e.g. torus, dragonfly
 - Combination of different topologies, e.g. clos+torus

Challenge:

Communication costs hinder linear expansion of computing power

Consideration:

- Collaboration between computing and networking.
 - Computing: -- 'static' planning
 - Pre-plan/update traffic strategy based on network information
 - Networking: -- 'dynamic' adjustment
 - Follow traffic strategy, maximize network resource to handle in-flight traffic

Challenge:

• Components in large scale system frequently fail.

Consideration:

- Combination of hot swap, automatic path migration, and checkpointing
- Backtracking to the last checkpoint has a high penalty
- Avoid it whenever possible with APM plus load balancing, followed by retransmission of lost packets
- Combine with AR for immediate response after failure detection

Quote from Nendica contribution: "Network for Al datacenters"

Potential Technologies and Standardization Considerations

Topology optimization

Potential technologies (Underline marked technologies may involve standard work in IEEE802)

- Routing protocol for direct topologies
- PFC deadlock prevention

Computing and networking collaboration

Control traffic

traffic policy

transmission, e.a.

Computing

- Decide compute resource
- · Decide parallelism strategy
- Decide collective communication implementation

Provide network information, e.g. topology, bandwidth.

Network

- Forward packets following traffic policy, balancing the load on network
- Take first-aid action on in-flight traffic, absorbing unexpected burst.
 - Align FC/CC/AR with traffic policy
 - Coordinate FC/CC/AR

QoS optimization

- Collaboratively configure FC, CC and Transmission selection
- CC/AR coordination
- Load balancing
 - Packet based load balancing
 - Load-aware packet spray
 - Path-aware packet re-ordering

Basic capability to support the technologies

- Topology recognition (LLDP)
- 'Path associated signaling'
 - Hop by hop update signal, such as L2 telemetry
 - Fixed indication signal, such as path ID
- <u>Fast feedback of</u> link/port/queue status
 - Hop by hop notification
 - Remote notification

Network reliability

- Data plane fast failure recovery
- Link layer retransmission

Study Item Proposal

Study item: AI computing Network

Purpose:

- Understand the requirement of network for Al computing.
- Look for potential standardization opportunity in IEEE802.

Scope:

- Study main factors (parallelism, collective communication) in Al training which impact traffic.
- Analyze the major challenges for the network.
- Investigate future network technologies.
- Identify potential standard work.

Deliverables:

- Informal report documenting, including
 - Al computing network requirements and challenges
 - Potential technologies
 - Possible standardization needs
 - Work item proposal

Schedule:

- Start in Feb 2024
- Propose work item in July 2024

Leader:

Lily Lyu (Huawei)

Supporters:

José Duato (Royal Spanish Academy of Sciences)

Liang Guo (CAICT)

Jesús Escudero (UCLM)

Motion Discussion

There was discussion on the study item name "computing network" in interim meeting.

To initiate a Nendica study item on computing network

Proposed: Lily Lyu Second: Nader Zein

Proposed new text for motion:

Option1: To initiate a Nendica study item on AI computing network

Option2: To initiate a Nendica study item on computing network for AI Large Model

Thank You!