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Abstract

This paper describes congestion phenomena in 
lossless data center networks and its nega- tive 
consequences. It explores proposed solutions, 
analyzing their pros and cons to determine which are 
suited to the requirements of modern data centers. 
Conclusions identify important issues that should be 
addressed in the future. 
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Introduction
On-Line Data Intensive (OLDI) Services [Congdon18]

• Require immediate answers to requests that are coming in 
at a high rate.

• End-user experience is highly dependent upon the system 
responsiveness.

• The network becomes a significant component of overall DC 
latency when congestion occurs in the network.
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• Todays DCNs require a flexible fabric for carrying in 
a convergent way traffic from different types of 
applications, storage of control.
• Latency is a concern: Fabric design for DCNs must 

minimize or eliminate packet loss, provide high 
throughput and maintain low latency.
• These goals are crucial for applications of OLDI, 

Deep Learning, NVMe over Fabrics and the 
Cloudified Central Offices.
• However, congestion threatens these applications.
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• HoL-blocking dramatically 
degrades the network 
performance (e.g. PFC has not 
enough granularity and there 
is no congested flow 
identification) [Garcia05].
• Classical e2e congestion 

control for lossless networks 
is difficult to tune, reacts 
slowly, and may introduce 
oscillations and instability 
[Escudero11].

HS
starts

HS
ends

HS = traffic injected to Hot 
Spot destination

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  1e+06  2e+06  3e+06  4e+06  5e+06Ne
tw

or
k 

Th
ro

ug
hp

ut
 (

no
rm

al
iz

ed
)

Time (nanoseconds)

1Q
ITh

VOQnet

64-node CLOS network, 4 hot-spots

Introduction
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• We need a congestion isolation (CI) mechanism 
that reacts quickly when transient congestion 
situations appear, preventing network performance 
degradation caused by the HoL blocking.
• We want a CI mechanism that complements other 

technologies available in the DCNs, so that CI 
improves their performance, while the others 
reduce the CI complexity.
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Congestion
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Congestion Dynamics in DCNs
Appearance of Congestion
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Speedup = 2 Speedup = 1.5



Congestion Dynamics in DCNs
Growth of Congestion Trees (from root to leaves)
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Congestion Dynamics in DCNs
Growth of Congestion Trees (Roots movement)
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Switch speedup = 1.5
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Reducing Congestion
Incast congestion reduction - ECMP
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• These technologies may work together to eliminate loss 
in the cloud data center network.
• Load-balancing and destination scheduling are end-to-

end solutions incurring in the RTT delays when 
congestion appear.
• However, there is no time for loss in the network due to 

congestion and congestion trees grow very quickly.
• Transient congestion may still produce HoL blocking 

that leads to increase latency, lower throughput and 
buffers overflow, significantly degrading performance.
• Even using these mechanisms, we still need something 

to deal with HOL Blocking locally and fast.

Reducing Congestion
Limitations of current technologies [Escudero19] 
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Combining Congestion 
Management Mechanisms
• CI is needed to react locally and very fast to 

immediately eliminate HoL blocking.
• Previous technologies reduce the use of PFC and 

ECN, but their closed- and open-loop approach 
cause delays still happening.
• Congestion trees appear suddenly, are difficult to 

predict (even worse when load balancing is 
applied) and grow quickly.
• New techniques can be applied in combination to 

the previous technologies, improving their 
behavior.
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