

Latency Compensation Method for VR Displays

Suk-Ju Kang, Sogang University

Compliance with IEEE Standards Policies and Procedures

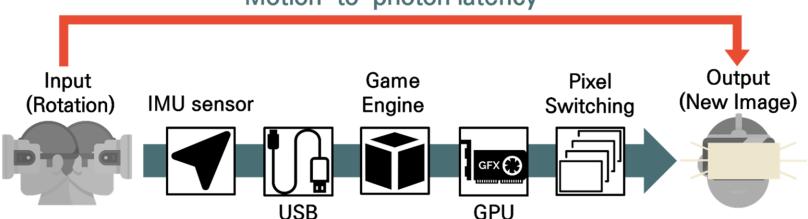
✓ Subclause 5.2.1 of the *IEEE-SA Standards Board Bylaws* states, "While participating in IEEE standards development activities, all participants...shall act in accordance with all applicable laws (nation-based and international), the IEEE Code of Ethics, and with IEEE Standards policies and procedures."

✓The contributor acknowledges and accepts that this contribution is subject to

- The IEEE Standards copyright policy as stated in the IEEE-SA Standards Board Bylaws, section 7, <u>http://standards.ieee.org/develop/policies/bylaws/sect6-7.html#7</u>, and the IEEE-SA Standards Board Operations Manual, section 6.1, http://standards.ieee.org/develop/policies/opman/sect6.html
- The IEEE Standards patent policy as stated in the *IEEE-SA Standards Board Bylaws*, section 6, <u>http://standards.ieee.org/guides/bylaws/sect6-7.html#6</u>, and the *IEEE-SA Standards Board Operations Manual*, section 6.3, http://standards.ieee.org/develop/policies/opman/sect6.html

IEEE P3079 HMD Based 3D Content Motion Sickness Reducing Technology [Dong Il Seo and dillon@volercreative.com]

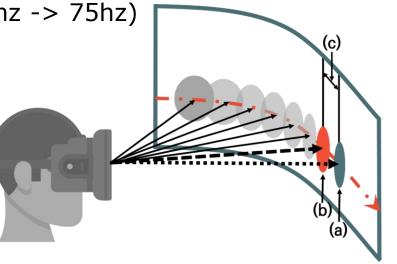
Latency Compensation Method for VR Displays									
	Date: 2017-11-01								
Author(s): Suk-Ju Kang	Author(s): Suk-Ju Kang								
Name	NameAffiliationPhone [optional]Email [optional]								
Suk-Ju Kang	Sogang University	+82-10-7103-6520	sjkang@sogang.ac.kr						


Outline

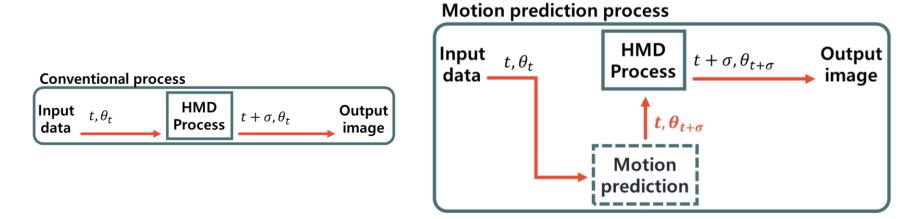
- ✓ Introduction
- ✓ Motion-to-Photon Latency Compensation Method
 - Motion Prediction Process
 - Sensor Fusion Algorithm
 - Various Prediction Method
- ✓ Experimental Result
- ✓ Conclusion

Introduction

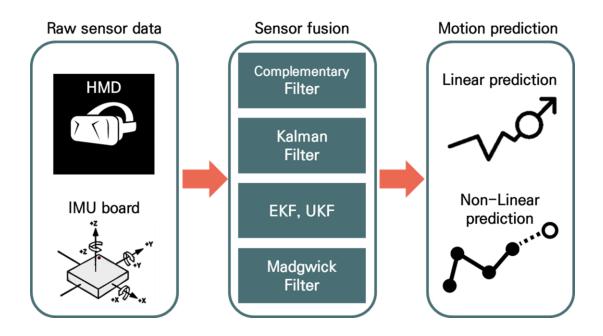
- ✓ Motion-to-photon latency
 - Time delay which takes between the head motion to new orientation and the correct image arriving on a display of the device
 - Overall process of the image rendering in HMDs



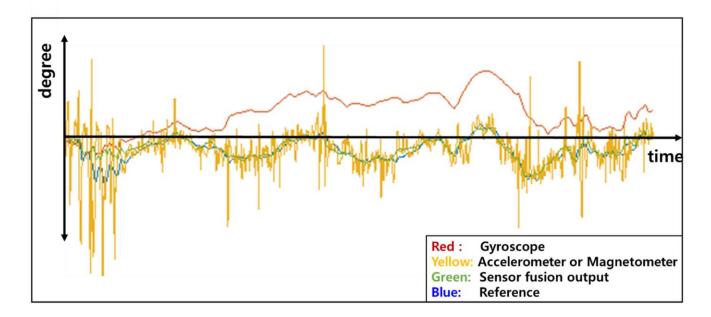
Motion-to-photon latency

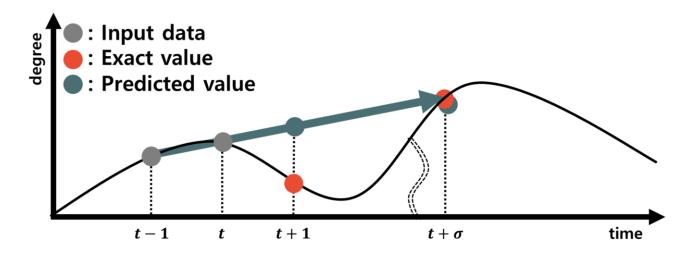

Introduction

- ✓ Motion-to-photon latency
 - Due to the latency, the HMD outputs a delayed image different from the image at an ideal time point
- ✓ The motion-to-photon latency is an important problem in the HMD, and various solutions have been proposed
 - Foveated rendering
 - Increasing display frame rate (60hz -> 75hz)
 - Pre-warping technique
 - Asynchronous time-warp
- ✓ Limitation of conventional methods
 - Hardware dependency
 - High complexity



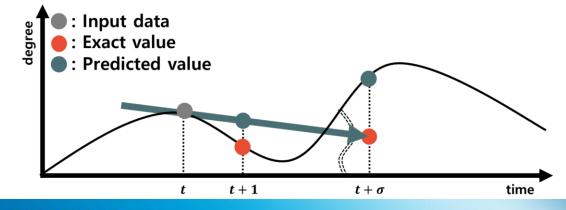
- ✓ Motion prediction process
 - The motion prediction process predicts the latency σ and outputs an image quickly
 - It outputs an image of angles that match the current time
 - As a result, discrepancies between the current angle and the represented angle are compensated
 - Concept of latency reduction model using prediction method


- ✓ Motion prediction process
 - Overall procedure of the proposed latency reduction
 - The motion prediction process consists of three steps: raw sensor data acquisition, sensor fusion, motion prediction

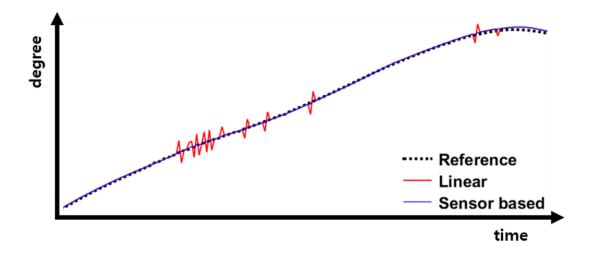

- ✓ Raw sensor data
 - The Inertial Measurement Unit (IMU) consists of a gyroscope, an accelerometer, and a magnetometer
 - Usually, the IMU outputs raw data with motion information at regular intervals
- ✓ Optimal sensor fusion algorithm
 - It is needed to compensate for distortion of raw data such as drift, diffusion, and bias
 - Candidate filters with high accuracy and low computation
 - 1st complimentary filter
 - Linear Kalman filter (LKF)
 - Extended Kalman Filter (EKF)
 - Unscented Kalman Filter (UKF)
 - Madgwick filter

- ✓ Optimal sensor fusion algorithm
 - Raw data output: red(gyroscope),yellow(accelerometer or magnetometer)
 - Sensor fusion output: green(1st complimentary filter)

- \checkmark Various prediction method
- ✓ Linear extrapolation
 - $\quad \boldsymbol{\theta}_{t+\sigma} \cong (\boldsymbol{\theta}_t \boldsymbol{\theta}_{t-T}) \times \boldsymbol{\sigma} + \boldsymbol{\theta}_t$
 - Although a linear extrapolation is a simple formula, it has a good result in the high sampling rate and it is suitable for low computing power devices

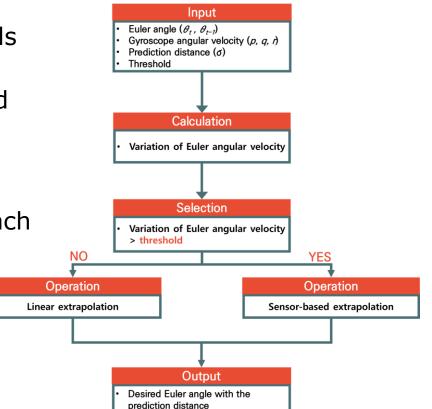


✓ Sensor-based extrapolation


	$[\boldsymbol{\phi}']$		[1	sinφtanθ	cosøtanø		[p]]
_	$ \theta' $	=	0	sinφtanθ cosφ	-sinø	×	q	
	$[\psi']$		0	sinøsecθ	cosøsecø		r	J

$$- \quad \boldsymbol{\theta}_{t+\sigma} \cong \boldsymbol{\theta}'_t \times \boldsymbol{\sigma} + \boldsymbol{\theta}_t$$

 The sensor-based extrapolation uses the current angular velocity measured by the gyroscope of the IMU to predict the Euler angle



- \checkmark Sensor-based extrapolation
 - Comparison of the reference and conventional methods
 - In certain areas, the linear extrapolation has a vibration
 - The estimation performance of the sensor based method is more accurate than the linear method

- \checkmark Proposed prediction method
 - Hybrid combination of two conventional prediction methods for compensating latency
 - This improves the precision and computation time by selecting both prediction methods in suitable cases
 - It is possible to complement each disadvantage and to maximize the advantage

Experimental Result

 \checkmark Optimal sensor fusion method for HMD

- This experiment used a data set with the motion of the HMD for a certain period of time
- Experiments to verify optimized sensor fusion filters in terms of low computational complexity
- EKF and Madgwick filter show good performance

Sensor fusion filter	Root	Mean Sc	Computation		
	Yaw	Pitch	Roll	Mean	time (sec)
1 st complementary filter	3.180	1.713	2.366	2.420	1.723
LKF	2.283	0.408	0.382	1.562	1.769
EKF	0.963	0.363	0.423	0.583	1.800
UKF	0.967	0.363	0.423	0.585	3.357
Madgwick filter	0.848	1.516	0.901	1.088	1.730

Experimental Result

- \checkmark Optimal prediction method for HMD
 - This experiment used a data set with the motion of the HMD for a certain period of time
 - The results are compared with the precision and the computation time according to the prediction method
 - The proposed prediction method has good performance

Prediction Data VS. Reference Data (prediction distance 40ms)								
Prediction	Root	: Mean So	Computation					
Frediction	Yaw	Pitch	Roll	Mean	time (sec)			
Linear	0.218	0.301	0.141	0.220	0.229			
Sensor based	0.195	0.282	0.132	0.203	0.369			
Proposed	0.199	0.288	0.135	0.207	0.289			

Experimental Result

- ✓ Performance comparison between the integration of the sensor fusions and the prediction filters
 - This experiment used a data set with the motion of the HMD for a certain period of time
 - The performance of the proposed prediction method and EKF are good

Sensor fusion	ata VS. Reference Data (prediction distance 4 Prediction Root Mean Square (degree)					
filter	method			Roll		
	Linear extrapolation	4.046	1.707	2.012	2.588	1.798
l st complementary filter	Sensor-based extrapolation	4.054	1.404	1.932	2.464	1.932
	Proposed method	4.046	1.420	1.966	2.477	1.864
	Linear extrapolation	1.799	0.392	0.329	0.840	1.828
LKF	Sensor-based extrapolation	1.795	0.393	0.331	0.840	1.957
	Proposed method	1.797	0.392	0.329	0.839	1.894

Prediction Data VS. Reference Data (prediction distance 40ms)							
Sensor fusion	Prediction	Root Mean Square (degree) Computati					
filter	method	Yaw	Pitch	Roll	Mean	time (sec)	
	Linear extrapolation	0.620	0.374	0.453	0.483	1.850	
EKF	Sensor-based extrapolation	0.617	0.373	0.453	0.481	1.977	
	Proposed method	0.620	0.373	0.453	0.482	1.915	
	Linear extrapolation	0.625	0.375	0.454	0.484	3.219	
UKF	Sensor-based extrapolation	0.622	0.374	0.453	0.483	3.356	
	Proposed method	0.625	0.374	0.453	0.484	3.286	
Madgwick filter	Linear extrapolation	1.024	1.057	1.075	1.052	1.810	
	Sensor-based extrapolation	1.024	1.060	1.078	1.054	1.944	
	Proposed method	1.024	1.057	1.075	1.052	1.875	

Conclusion

- We proposed a low computational complexity-based a prediction method that can effectively remove the motion-to-photon latency in a HMD
 - We compared various sensor fusion methods to calculate the head position of a user because there was no sensor fusion comparison for the HMD
 - The experimental results showed that the proposed prediction method with the sensor fusion method has the highest accuracy and low computation time

