
1

An Overview of the RUST

Programming Language

Meet Your Presenter!

2

Dr. Jim Anderson
Professor, Computer Science, University of South Florida

Chairman of FWCS Computer Society

What Will You Get Out Of
Tonight's Presentation?

• Understanding of why Rust has become popular

• An introduction to the Rust programming language

• Ownership: Move, Clone, Copy

• References

• Borrowing

3

Image Credit: https://clipart-library.com

History Of Rust

• Rust started as a personal language that was developed by Graydon Hoare

who worked for Mozilla in 2006.

• Rust was officially recognized as a Mozilla sponsored project in 2009 and

was first publicly announced in 2010.

• The first pre-alpha version of Rust was released in January of 2012.

• The current stable version of Rust is version 1.16.

• The operating systems supported by Rust include: Linux, Windows,

macOS, Android, IOS, etc.

4

What Is Rust?

• Graydon Hoare called Rust a "safe, concurrent, and practical language"

that supports the functional and imperative paradigms.

• Rust’s syntax is comparable to that of the C++ programming language.

• Rust is free and open-source software, which means that anybody may

use it for free, and the source code is openly provided so that anyone can

enhance the product’s design.

• There is no such thing as direct memory management, such as calloc or

malloc - Rust manages memory internally.

• Rust was developed to deliver excellent performance comparable to C and

C++ while prioritizing code safety, which is the Achilles’ heel of the other

two languages.

Rust Is Built On Other Langauges

6

Why Use Rust?

• Rust is a strongly typed programming language that prioritizes speed and

safety and extraordinarily safe concurrency and memory management.

• Rust tackles two long-standing concerns for C/C++ developers:

memory errors and concurrent programming.

• This is regarded as its primary advantage.

• Rust manages memory internally - trash collection is not required.

• In Rust, each reference has a lifespan, which specifies the scope for which

that reference is valid.

• Over the last 12 years memory safety concerns have accounted for over

70% of all security flaws in Microsoft products, the necessity of proper

memory management becomes instantly clear.

Why Use Rust?

• Like C, Rust helps control low-level details as a systems programming

language.

• Using Rust means that we’re safe against resource leakage problems.

• Because Rust does not have an active garbage collector, other

programming languages may utilize its projects as libraries via foreign-

function interfaces.

• This is a good case for existing projects where high performance while

preserving memory safety is crucial.

• In such cases, Rust code may replace select areas of software where speed

is critical without rebuilding the entire product.

Why Use Rust – The NSA Memo

• On 11/10/22 the NSA released a memo entitled

"Software Memory Safety" Cybersecurity Information Sheet

• In it they made the following statements:

– Memory issues in software comprise a large portion of the exploitable

vulnerabilities in existence.

– NSA advises organizations to consider making a strategic shift from

programming languages that provide little or no inherent memory

protection, such as C/C++, to a memory safe language when possible.

– Memory safe languages were identified as being:

C#, Go, Java®, Ruby™, Rust®, and Swift®

9

The Stack & The Heap

10

Image Credit: https://medium.com/@Miguel_Grillo/stack-vs-heap-and-the-virtual-memory-ea075ea6e3fc

• Rust stores variables on either its stack or its heap

• The behavior (speed, size, etc.) is different between the two options.

• We will discuss this in detail later on.

All data stored
on the stack
must have a
known fixed
size at
compile time.
FIFO.

Data without a
known size at
compile time or
with a size that
may change
will be stored
on the heap.

HELLO WORLD AND
VARIABLES

"Hello World" In Rust

• The Rust Hello World program looks like this:

fn main() {

println!("Hello, world!");

}

Picking Apart "Hello World"

• fn

– The fn is short for "function." In Rust (and most other programming

languages), a function means "tell me some information, and I’ll do some

things and give you an answer."

• main

– The main function is a special function: just like in C, it’s where your program

starts.

• ()

– These parentheses are the parameter list for this function. It’s empty right

now, meaning there are no parameters. Every left parenthesis has a matching

right.

• { }

– These are called curly braces or brackets. We actually need to give the main

function a body. The body lives inside these braces. The body will say what the

main function actually does. Every left curly brace has a matching right.

Picking Apart "Hello World"

• println!

– This is a macro. It means "print and add a new line." Macros are very similar to

functions - the difference is that it ends with an exclamation point (!).

Rust has a print! Macro that stays on the same line after printing.

• ("Hello, world!")

– This is the parameter list for the macro call. We’re saying "call this macro

called println with these parameters."

• "Hello, world!"

– This is a string. Just like in C strings are a bunch of letters (or characters) put

together. We put them inside the double quotes (") to mark them as strings.

• ;

– This is a semicolon. It completes a statement. Statements do something

specific. In this case, it’s calling the macro.

Rust Interpolation

• Def: interpolation - the insertion of something of a different nature into

something else.

• In Rust, in order to include other values in what we are printing out, we

can interpolate them.

• Example:

fn main() {

println!("My name is {}", "Michael");

}

Interpolation

• We now pass two parameters to the println macro: the first string is

"My name is {}".

• The println macro has special support for the {} braces.

• It means: see that next parameter? Stick it in here.

• This program is going to print "My name is Michael".

• And we separate the parameters by putting a comma.

println ! Macro

• The println! macro accepts two parameters:

1. A unique syntax {}, which acts as a placeholder

2. The name of a variable or a constant

• The variable’s value will be used to replace the placeholder.

• Example:

println!("company rating on level 5:{}",rating_float);

ANATOMY OF RUST

Variables In Rust

• Just like in C, a variable is a named storage location that programs may

access.

• A variable is a type of data structure that allows programs to store values.

• In Rust, variables are always linked with a specific data type.

• The data type dictates both the variable’s memory size and layout, the

range of values stored inside that memory, and the set of operations on

the variable.

Variable Naming Syntax

• When declaring a variable in Rust, the data type is optional.

• The value assigned to the variable determines the data type.

• The syntax for defining variables is as follows:

– let variable_name = value; // no type-specified

– let variable_name:dataType = value; //type-specified

• Example:

fn main() {

let fees=35000;

let salary:f64=45000.00;

println!("fees is {} and salary is {}",fees,salary);

}

Rust Scalar Types

• A scalar type is a value that has just one value.

• For instance:

10,

3.14,

’c’

• Rust has four distinct scalar types.

1. Integer

2. Floating point

3. Booleans

4. Characters

Declaring Variables

• To declare a variable, we use the let keyword.

• Example:

fn main() {

let company_string="Amazon"; // string type

let rating_float=3.5; // float type

let is_growing_boolean=true; // boolean type

let icon_char=‘♥’; //unicode character type

println!("company name:{}",company_string);

println!("company rating on 5:{}",rating_float);

println!("company is growing :{}",is_growing_boolean);

println!("company icon:{}",icon_char);

}

• The data type of the variables in the example will deduce from the values

assigned to them.

• Rust, for instance, will assign the string data type to the variable company

string, the float data type to rating float, and so on.

Immutable

• By default, variables are immutable in Rust.

• In other words, the value of the variable cannot change once a value is

bound to a variable name.

• Example:

fn main() {

let fees=25_000;

println!("fees is {} ",fees);

fees=35_000;

println!("fees changed is {}",fees);

}

• Note we cannot set values to the immutable variable fees twice.

• This is just one of the numerous ways Rust allows programmers to write

code while benefiting from the safety and ease of concurrency

Mutable

• By default, variables are immutable.

• To make a variable changeable, prefix it with the term mut.

• A mutable variable’s value can be changed.

• The syntax for defining a mutable variable is:

– let mut variable_name = value;

– let mut variable_name:dataType = value;

• Example:

fn main() {

let mut fees:i32=35_000;

println!("fees is {} ",fees);

fees=45_000;

println!("fees changed {}",fees);

}

Number Types In Rust

• There’s a little bit more to numbers to talk about.

• The first thing is about integers versus floating point.

• Just as in C, integers are whole numbers, like 5, -2, 0, etc.

• They are numbers that don’t have a decimal point or a fractional part.

• Floating point numbers can have decimal points.

Math In Rust

• + : addition

• - : subtraction

• * : multiplication

• / : division

• % : Modulus/Remainder

• (5.0/3.0).floor() : floor division

• i32::pow(self, exp) : raise self to exp (u32) and return an integer (i32)

f32::powi(self,exp) : raise self to exp (i32) and return a float (f32)

f32::powf(self,exp) : raise self to exp (f32) and return a float (f32)

26

Float Data Type

• In Rust, float data types are categorized as f32 and f64.

• The f32 type is a single-precision float, whereas the f64 type is a double-

precision float.

• The type that is used by default is f64.

• Example:

fn main() {

let result=20.00;

let interest:f32=8.35;

let cost:f64=16000.600; // double precision

println!("result value {}",result);

println!("interest {}",interest);

println!("cost {}",cost);

}

Printing Floats

• Just like in C, float (and integer) variables can be formatted as they are

being printed.

• You have control over the size of the window that the number is printed in

and the number of digits that will be displayed after the decimal point.

• You do NOT have the ability to have a comma printed after every three

characters.

• Example:

println!("The value is {0:12.2}",707.126456789);

28

Character Type

• Rust’s character data type accepts integers, alphabets, Unicode, and special

characters.

• To declare a variable of the character data type, use the char keyword.

• The char type in Rust represents a Unicode Scalar Value, which implies it may

represent much more than simply ASCII.

• The Unicode Scalar Values span from U+0000 to U+D7FF [55,295] and from

U+E000 [57,344] to U+10FFFF [1,114,111].

• Example:

fn main() {

let special_character=‘@’; //default

let alphabet:char=‘D’;

let emoji:char=‘ ’;

println!("special character {}",special_character);

println!("alphabet {}",alphabet);

println!("emoji {}",emoji);

}

Understanding
Ownership:

Move, Clone, Copy

What Is Ownership In Rust?

• The primary aspect of Rust is ownership.

• Although the characteristic is simple to describe, it has deep implications

for the rest of the language.

• All programs must manage how they use memory while running on a

computer.

• Some languages offer garbage collection [i.e. Java], which searches for no

longer utilized memory while the program runs; in others, the

programmer must actively allocate and delete memory [i.e. C].

• Rust has a third approach: memory is controlled using an ownership

system with rules that the compiler validates at compile time.

• While our software is running, none of the ownership aspects will slow it

down.

Ownership Concepts

• The “owner” can modify the ownership value of a variable based on its

mutability.

• The ownership of a variable can transfer to another variable.

• In Rust, ownership is just a matter of semantics.

• In addition, the ownership concept ensures safety

Rules Of Ownership

• In Rust, each value has a variable called its owner.

• At any one moment, there can only be one owner.

• When the owner exits the scope, the value is destroyed

(also known as being freed).

Variable Scope

• Let's look at the scope of several variables as a first illustration of

ownership.

• A scope is the range of items that are valid within a program.

• Assume we have a variable that looks something like this:

let st=“hello”;

• The variable st refers to a literal string, the value of which is hardcoded

into the program’s text.

• The variable is valid from the time it is declared until the current scope

expires.

Variable Scope

• This example includes comments that indicate when the variable st is

valid.

// st is not valid here, it’s not yet declared

{

let st=“hello”; // st is valid from this point forward

// do stuff with st

}

// this scope is now over, and st is no longer valid

• In other words, there are two critical time points here:

1. It is valid when st enters the scope.

2. It is still valid until it goes out of scope.

• The connection between the scope and when variables are valid is

comparable to that of other programming languages at this stage.

How Variables and Data Interact:
Move

• In Rust, several variables can interact with the same data in various ways.

• We now look at an example with an integer.

let a=8;

let x=a;

let b=x;

• “Bind the value 8 to a; then make a copy of the value in x and bind it to b.”

• We now have two variables, a and b, equal to 8.

• This is correct because integers are simple values with a known, defined size, and these

two 8 values are placed into the stack.

• Let’s have a look at the String version:

let st1=String::from(“hello”);

let st2=st1;

• This code appears to be quite similar to the preceding code, so we can conclude that

the function is the same: the second line would duplicate the value in st1 and bind it to

st2.

How Variables and Data Interact:
Move

Memory representation of a String
with the value “hello” linked to
st1.

How Variables and Data Interact:
Move

• However, this is not the case.

• The length specifies how much memory (in bytes) the String’s contents

presently occupy.

• The capacity is the entire amount of memory that the allocator gives the

String in bytes.

• The distinction between length and capacity is essential, but not in this

context, so ignore the capacity for the time being.

• When we assign st1 to st2, the String data is duplicated, which means we

copy the stack’s pointer, length, and capacity.

How Variables and Data Interact:
Move

Variable st2’s memory representation,
which contains a duplicate of
st1’s pointer, length, and capacity.

How Variables and Data Interact:
Move

• We do not replicate the data on the heap to which the pointer points.

• Rust automatically executes the drop function when a variable exits scope

and cleans away the heap memory for that variable.

• However, in the figure both st1 and st2 data pointers point to the same

place.

• This is an issue because when st2 and st1 exit scope, they will attempt to

free the same memory.

• This is referred to as a double free mistake.

• Memory corruption can result from freeing memory twice, leading to

security vulnerabilities.

How Variables and Data Interact:
Move

• There is one additional element to what occurs in this circumstance in

Rust to ensure memory safety.

• Rust considers st1 invalid after letting st2 = st1.

• As a result, when st1 exits scope, Rust does not need to release anything.

• Examine what happens if we try to utilize st1 after st2 is generated; it will

not work:

let st1=String::from(“hello”);

let st2=st1;

println!(“{}, everyone”, st1);

How Variables and Data Interact:
Move

• Because Rust invalidates the first variable, it is referred to as a move.

• In this case, we would state that st1 was relocated to st2.

• That takes care of our issue!

• With just st2 valid, when it exits scope, it will release the memory on its

own, and we’re done.

• Furthermore, this implies a design choice: any automated copying may be

presumed to be low cost in terms of runtime performance.

How Variables and Data Interact:
Move

Memory representation
after s1 has been
invalidated.

Ownership And Moving

• Blocks can also be owners.

• Example:

fn main() {

{

let x: i32 = 5;

println!("{}", x);

}

}

• main owns that block, and the block owns the value 5.

• And values can even own other values.

• Remember that you can only have one owner for a value at a time.

No Ownership Problem: Copy

• Example:

fn count(apples: i32) {

println!("You have {} apples", apples);

}

fn price(apples: i32) -> i32 {

apples * 8

}

fn main() {

let apples: i32 = 10;

count(apples);

let price = price(apples);

println!("The apples are worth {} cents", price);

}

Why Don't We Have A Problem?

• Copy is a trait in Rust that says "this thing is so incredibly cheap to make a

copy of, that each time you try to move it, it’s fine to just make a copy and

move that new copy instead."

• And i32 is an example of a type which is so cheap.

• Therefore, in our code here, count(apples) doesn’t move the value into

count.

• Instead, it makes a copy of the value 10, and moves that copy into count.

• But the original 10 inside the apples variable remains unchanged.

Stack -Only Data:
Copy

• The Rust annotation Copy trait may be applied to types like integers stored

on the stack.

• If a type has the Copy trait, an older variable can still be used after the

assignment has been performed.

• Rust will not allow us to annotate a type with the Copy trait if the type or

any of its components has the Drop trait implemented.

• If we add the Copy annotation to a type that requires anything specific to

happen when the value is out of scope, we will get a compile-time error.

Variables and Data Interactions:
Clone

• We may use the clone method to thoroughly duplicate the String’s heap

data rather than merely the stack data. [also called a "deep copy"]

• Here’s an example of how to use the clone method:

let st1=String::from(“hello”);

let st2=st1.clone();

println!(“st1={}, st2={}”, st1, st2);

• This works well and generates the behavior in the previous example,

where the heap data is explicitly copied: both st1 and st2 now contain the

string "hello".

• Performing a clone call might be costly to perform depending on the

variable that is being duplicated.

Stack -Only Data:
Copy vs Clone

• This code use integers:

let a=8;

let b=a;

println!(“a={}, b={}”, a, b);

• However, this code appears to contradict what we have just learned: there is no call

to clone, but a is still valid and was not transferred into b.

• This is because types with known sizes at build time, like integers, floats, Booleans,

characters, and tuples (depending on what they contain) are wholly stored on the

stack; thus, copies of the actual values are quickly produced.

• There is no reason to prevent a from being valid after we have created the variable b.

• In this case, there is no distinction between deep and shallow copying.

• Therefore, invoking clone would perform nothing more than shallow copying so that

we can leave it out.

Ownership and Functions

• Passing a value to a function has semantics comparable to giving a value

to a variable.

• Passing a variable to a function will cause it to move or copy much like an

assignment.

• The following example has annotations indicating where variables enter

and exit their scope.

Ownership and Functions

fn main() {

let st=String::from(“hello”); // st comes into scope

takes_ownership(st); // st’s value moves into the function... and so is no longer valid

let a=5; // a comes into scope

makes_copy(a); // move into the function, but a (i32) is Copy, so okay to still use afterward

}

// Here, a goes out of scope, then st. But because st’s value was moved, nothing

// special happens.

fn takes_ownership(some_string: String) {

//some_string comes into the scope

println!(“{}”, some_string);

} // Here, some_string goes out of the scope and a `drop` is called. The backing memory is freed.

fn makes_copy(some_integer: i32) {//some_integer comes into the scope

println!(“{}”, some_integer);

} // Here, some_integer goes out of the scope. Nothing special happens.

Return Values and Scope

• Ownership can also be transferred by returning values.

• Every time, the ownership of a variable follows the same pattern:

assigning a value to another variable changes it.

• When a variable that includes heap data exits scope, the value is

destroyed unless the data has been transferred to be held by another

variable.

• Example:

Return Values and Scope

fn main() {

let st1=gives_ownership(); // gives_ownership moves its return value into st1

let st2=String::from(“hello”); // st2 comes into the scope

let st3=takes_and_gives_back(st2);

// st2 is moved into takes_and_gives_back, which also moves its return value into st3.

}

// Here, st3 goes out of the scope and is dropped. st2 was moved, so nothing happens.

// st1 goes out of the scope and is dropped.

fn gives_ownership() ->String { // gives_ownership will move its return the value into function that calls it

let some_string=String::from(“yours”); // the some_string comes into scope

some_string // the some_string is returned and moves out to calling function

}

// This function takes String and returns one

fn takes_and_gives_back(a_string: String) ->String {// a_string comes into scope

a_string // a_string is returned and moves out to the calling a function

}

Return Values and Scope

• Taking ownership and then restoring ownership with each function is time-

consuming.

• What if we want a function to utilize a value but not own it?

• It is inconvenient because whatever we send data to a function, in addition to any

data originating from the function’s body that we might want to return, it must be

sent back if we want to use it again.

• A tuple can be used to return many values:

fn main() {

let st1=String::from(“hello”);

let (st2, len)=calculate_length(st1);

println!(“length of ‘{}’ is {}.”, st2, len);

}

fn calculate_length(st: String) ->(String, usize) {

let length=st.len(); // len() returns the length of a String

(st, length)

}

References &
Borrowing

References And Borrowing
In Rust

• A reference is an address passed as an argument to a function.

• Borrowing is similar to when we borrow something and then return it

after we are through with it.

• Borrowing and references are mutually exclusive, which means that when

a reference is released, the borrowing also ends.

References - Borrow

• Example:

fn increase_fruit(mut numFruit: Fruit) -> Fruit {

numFruit *= 2;

numFruit

}

fn print_fruit(numFruit: Fruit) -> Fruit {

println!("You have {} pieces of fruit", numFruit.apples+numFruit.bananas);

numFruit

}

fn main() {

let fruit = 10;

let fruit = print_fruit(fruit);

let fruit = increase_fruit(fruit);

print_fruit(fruit);

} Problem: we have to create another fruit
variable because we have to move the
value of fruit both in and out of the routine
print_fruit.

Borrowed References

• The problem with this code:

let fruit = print_fruit(fruit);

• We don’t want to have to move the value in and back out.

• Instead, we’d like to be able to let print_fruit borrow the value we own in

main, without moving it completely.

• Good news - Rust supports exactly that!

• Instead of passing print_fruit the fruit value itself, we need to pass it a

borrowed reference.

• There’s a new unary operator to learn for this: &.

Borrowed References

• It turns out that when you borrow a value of type Fruit, you don’t get back

a Fruit. Instead, you get a &Fruit.

• That & at the beginning of the type means "a reference to."

• In other words, & has two different but related meanings:

– When on a value: borrow a reference to this value

– When on a type: a reference to this type

• Right now, the type of the parameter to print_fruit is Fruit. This requires

that the value be moved into print_fruit.

• Instead, let’s change that so that it’s a reference to a Fruit, or &Fruit:

fn print_fruit(numFruit: &Fruit) -> Fruit

Borrowed References

• Error: the only reason we were returning a Fruit in the first place was to

deal with moving and ownership.

• But we don’t actually need that anymore!

• So instead, let’s get rid of the return value entirely:

fn print_fruit(numFruit: &Fruit) {

println!("You have {} pieces of fruit",

numFruit.apples+numFruit.bananas);

}

• We now replace:

let fruit = print_fruit(&fruit);

with:

print_fruit(&fruit);

Fixed Code

• Example:

fn increase_fruit(mut fruit: Fruit) -> Fruit {

fruit.apples *= 2;

fruit.bananas *= 3;

fruit

}

fn print_fruit(numFruit: &Fruit) {

println!("You have {} pieces of fruit", numFruit.apples+numFruit.bananas);

}

fn main() {

let fruit = Fruit {

apples: 10,

bananas: 5,

};

print_fruit(&fruit);

let fruit = increase_fruit(fruit);

print_fruit(&fruit);

}

Mutable References

• We still want to be able to modify the fruit using the increase_fruit

function.

• To make this work, we need to introduce a second kind of reference:

a mutable reference.

• While an immutable reference is &, a mutable reference is &mut.

• It looks like:

fn increase_fruit(numFruit: &mut Fruit) {

numFruit *= 2;

}

Mutable References

• It turns out that &Fruit and &mut Fruit are really different types.

• Therefore, we need a different operator to borrow a mutable reference

than an immutable reference.

• And this operator is &mut.

• So we rewrite our function call from our

original:

let fruit = increase_fruit(fruit);

updated:

increase_fruit(&mut fruit);

• One final change to make it all work:

let mut fruit = Fruit {

apples: 10,

bananas: 5,

};

References

• Just like in C, every value in Rust lives somewhere in your computer’s

memory.

• And every place in computer memory has an address.

• It’s possible to use println and the special {:p} syntax to display the address

itself:

fn main() {

let x: i32 = 5;

println!("x == {}, located at {:p}", x, &x);

}

References

• Just like in C, a reference can be thought of as a pointer: it’s an address

pointing at a value that lives somewhere else.

• That’s also why we use the letter p in the format string to print the

address.

• When you have a variable like let y: &i32 = &x, what this means is:

– y is an immutable variable

– That variable holds an address

– That address points to an i32

– The reference is immutable, so we can’t change the value of y

• On the other hand, let y: &mut i32 = &mut x is almost exactly the same

thing, except for the last point.

• Since the reference is mutable, we can change the y value.

Dereferences

• Example:

fn main() {

let x: i32 = 5;

let mut y: i32 = 6;

let z: &mut i32 = &mut y;

z -= 1;

assert_eq!(x, y);

println!("Success");

}

• Does not work,

• The problem is that we’re trying to use the -= operator on a &mut i32 value.

• The reference is really just an address, not an i32.

• We don’t want to subtract 1 from an address.

• We want to subtract 1 from the value behind the reference.

Dereferences

• Just like in C, Rust provides another unary operator to talk about the thing

behind a reference.

• It’s called the deref—short for dereference —operator, and is *.

• Example:

fn main() {

let x: i32 = 5; let mut y: i32 = 6;

let z: &mut i32 = &mut y;

*z -= 1;

assert_eq!(x, y);

println!("Success");

}

Lifetimes Of References

• There’s an important restriction on references, both mutable and

immutable: they cannot live longer than the values they are referencing.

• Example:

fn main() {

let x: &i32 = {

let y = 5;

&y

};

println!("x == {}", x);

}

• This program fails to compile.

Lifetimes Of References

• The problem here is that y is dropped as soon as the block finishes.

• The block itself was the owner for y.

• And when an owner goes away, the value is dropped, and cannot be used

anymore.

• However, we return a reference to y, which would allow us to keep using y

after it’s gone.

• That would be really dangerous, and so Rust doesn’t let that happen.

• All values and references in Rust have a lifetime.

• When Rust is able to figure out the lifetime of a value, it will.

Mutating And Borrowing

• A lot of problems in software come about from things changing when you don’t expect them to.

• That’s why Rust defaults to having immutable variables: it’s easier to think about things when

they can’t change.

• It means that if I have an immutable value, and I print it twice, I know it will give me the same

value.

• This applies to immutable references too.

• As long as a value is borrowed, it can’t be mutated:

• Example:

fn main() {

let mut x = 5;

let y = &x;

println!("x == {}, y == {}", x, y);

x =10;

// I can do anything I want here...

// And then this will produce the same output

println!("x == {}, y == {}", x, y);

}

Single Mutable Reference

• Rust is picky about mutation stuff.

• We already mentioned that you can’t mutate a value that’s borrowed.

• This same basic logic extends to mutable references.

• If you have a mutable reference to a value, you can’t mutate or read that value

anywhere else in your program.

• We call this freezing.

• Example:

fn main() {

let mut x = 5;

let y = &mut x; // freeze

x *= 2;

*y *= 2; // unfreeze

println!("x == {}", x);

}

Dangling References

• In pointer-based languages, it’s possible to construct a dangling pointer, which

refers to a place in memory that may have been passed to someone else, by

releasing some memory while retaining a pointer to that region.

• In contrast, the compiler in Rust ensures that references are never dangling: if we

have a reference to some data, the compiler will ensure that the data does not go

out of the scope before the reference to the data does.

• Let’s attempt making a dangling reference, which Rust will reject with a compile-

time error:

• Example:

fn main() {

let reference_to_nothing=dangle();

}

fn dangle() ->&String {

let st=String::from(“hello”);

&st

}

Dangling References

• Because st is generated within dangle, after dangle’s code is complete,

st will be deallocated.

• However, we attempted to return a reference to it.

• As a result, this reference would link to an incorrect String.

• That is not acceptable; Rust will not allow us to do so.

• The approach here is to just return the String:

fn no_dangle() ->String {

let st=String::from(“hello”);

st

}

• This works without a problem.

• Nothing has been deallocated, and ownership has been transferred.

Summary

• You are allowed to borrow references to values

• Borrowing a reference does not move ownership

• Borrowing is the preferred way to solve the "move in move out" problem

with functions.

• References have their own type, and i32 is different than &i32.

• We also have mutable references such as &mut i32, which allow the

values behind the reference to be changed.

• Mutable references can only be borrowed from mutable values

• References are essentially addresses for where the original value lives in

memory

• If you want to operate directly on the value behind a reference, you can

dereference using the * operator.

Summary

• A reference cannot outlive the value it refers to

• To avoid insanity around mutation and references, Rust has some rules

you need to abide by

– You cannot mutate a value if there is a reference to it

– You can have multiple immutable references to a value

– You can only have one mutable reference to a value, and then no

other immutable references to it, or access the value directly

• You can create an immutable reference from a mutable reference, but not

the other way around

76

Image Source: https://commons.wikimedia.org/wiki/File:Thats_all_folks.svg

