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BASIC POWER SYSTEM AND SYMMETRICAL
COMPONENTS CALCULATIONS - REVIEW

* Synopsis:
Electrical Engineering basis of analysis, formulas, data,
per unit calculations, “rule of thumb.” Review of
Fortescue theory and critical assumptions, unbalance
system analysis (faults and voltage unbalance).
Application, concerns and examples. Phase domain
analysis of unbalance systems and comparison with
Symmetrical Components methodology.




AGENDA

What are the “power system calculations”
Why basic calculations/shortcuts?
Fundamentals

The Per Unit Method

Fortescue Theory

Symmetrical Components

Faults and Sequence Networks
Component Modeling

Phase Domain Modeling

Where to Find Data for Calculations




WHAT ARE THE
“POWER SYSTEM CALCULATIONS”




WHAT ARE THE
“POWER SYSTEM CALCULATIONS”

* A calculation is a deliberate process for transforming one

or more inputs into one or more results, with variable
change

* Electrical network (circuits) theory with simplifications or
“easy” electrical engineering

e Complex math or degenerated form complex math




WHY BASIC
CALCULATIONS/SHORTCUTS?




WHY BASIC CALCULATIONS/SHORTCUTS?

History

— Overwhelming

— Lack of tools

— Answer: speed and quality

Approximate solution(s)
Data interpretation
Solution evaluation and interpretation




WHY BASIC CALCULATIONS/SHORTCUTS?

Most common causes of errors in circuit analysis:
* Failure to use a valid analytical procedures

* Misapplication of “cookbook” method(s)

* Improper use of a valid solution method

* Inaccurate simplifying assumption

* Improper model







FUNDAMENTALS




FUNDAMENTALS

Definitions, acronyms, tagging and symbols
Linearity and superposition

Base elements and related equations, Ohm’s Law
Kirchhoff’s laws

The Thevenin and Norton equivalent circuit

DC and AC

The per unit method

The symmetrical components analysis and related
Some complex math

The sinusoidal forcing function

The phasors representation

The single phase equivalent circuit




DEFINITION ACRONYMS, TAGGING AND SYMBOLS

u(t),i(t)
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- instantaneous AC values of voltage and current at particular time t

- instantaneous DC value of voltage and current at particular time t

- root-mean-square (rms), one-cycle values of the sinusoidal voltage
and current waveforms, or maximum values

- root-mean-square (rms) voltage or current; module value of vector

- peak or crest (ANSI) voltage

- complex numbers or vectors

- angular line frequency; w = 2-wf with f = 60Hz system frequency
for the signal

- "shift" angle in relation to assumed origin; in this case it is assumed
inrelation to voltage; shift depends on type of load (resistive,
capacitive, inductive) in the system; negative sign in front of the o
reflects assumed convention for the circuit analysis;

( w-L ( X
o = atan = atan| —
R R




DEFINITION ACRONYMS, TAGGING AND SYMBOLS

R, L,C - lumped resistance, inductance and capacitance

1,1 c - distributed resistance, inductance and capacitance

j, 1 - imaginary operator

n, eff - efficiency

a - 120 degree symmetrical component rotational operator

Z - impedance; complex number (vector)i.e. Z=R +j(X] - X, )

1z, z - module value of impedance (scalar)

X - capacitive reactance

X - inductive reactance

Uy I - nominal system or apparatus parameters line-line voltage or line
current (ANSI); rating of the system or apparatus are defined in
standards

- (IEC) nominal system line voltage

Ur. Iy - (IEC) rated equipment line-line voltage or line current




DC Circuits:

LINEARITY

— The current doubles if the voltage is doubled.

AC Circuits:

— The frequency of the driving voltage is held constant, the
current doubles if the voltage is doubled.
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In this example, excitation is sinusoidal
ideal voltage source and circuits elements
are resistance, reactance or capacitance.




LINEARITY

* For the chosen excitation
function of voltage and the
chosen response function of
current, both hidden-GREEN
and hidden-BLUE are

examples of the response
characteristic of a nonlinear ot

200 1o /

element. " /




LINEARITY

* With the circuit element represented by any of the response
curves shown in Figures, the circuit will, in general, become
nonlinear for a different response function (for example Power)

* Animportant limitation of linearity, therefore, is that it applies only
to responses that are linear for the circuit conditions described
(that is, a constant impedance circuit will yield a current that is
linear with voltage).

* This restraint must be recognized in addition to the previously
mentioned limitations of constant source excitation frequency for
AC circuits and constant circuit element impedances for AC or DC
circuits. Excitation sources, if not independent, must be linearly
dependent. This restraint forces a source to behave just as would a
linear response (which, by definition, is also linearly dependent).




SUPERPOSITION

* This very powerful principle is a direct consequence of linearity
and can be stated as follows:

— In any linear network containing several DC or fixed frequency
AC excitation sources (voltages), the total response (current)
can be calculated by algebraically adding all the individual
responses caused by each independent source acting alone. All
other sources inactivated (voltage sources shorted by their
internal impedances, current sources opened). The equation
written is for the sum of the currents from each individual
source V1 and V2. Although Figure also illustrates a way this
principle might actually be used, more often its main
application is in support of other calculating methods. The only
restraint associated with superposition is that the network
should be linear. All limitations associated with linearity apply.




SUPERPOSITION

* Only applies to linear circuits and elements
* Best explained by example:

— Example 1




SUPERPOSITION

e Example 1 — AC and AC Sources
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SUPERPOSITION

* The non-applicability of superposition is why all but the very
simplest nonlinear circuits are almost impossible to analyze using
hand calculations.

* Although most real circuit elements are nonlinear to some extent,
they can often be accurately represented by a linear
approximation.

* Solutions to network problems involving such elements can be
readily obtained. Problems involving complex networks having
substantially nonlinear elements can practically be solved only
through the use of certain simplification procedures, or through
the adjustment of calculated results to correct for nonlinearity.
But both of these approaches can potentially lead to significant
inaccuracy. Tiresome iterative calculations performed in an instant
by the digital computer make more accurate solutions possible
when the nonlinear circuit elements can be described
mathematically.




MORE ABOUT LINEARITY

* Linearization makes it possible to use tools for studying linear
systems to analyze the behavior of a nonlinear function near
a given point with certain restrictions.

 Based on the Hartman-Grobman or Linearization Theorem,
it is an theorem about the local behavior of dynamical
systems in the neighborhood of a hyperbolic fixed point.

* In simplicity, the theorem states that the behavior of a
dynamical system near a hyperbolic fixed point is
qgualitatively the same as the behavior of its linearization near
the origin. Therefore when dealing with such fixed points we
can use the simpler linearization of the system to analyze its
behavior.




MORE ABOUT LINEARITY

* Linearization makes it possible to use tools for studying linear
systems to analyze the behavior of a nonlinear function near
a given point with certain restrictions. The linearization of a
function is the first order term of its Taylor expansion around
the point of interest.

* For a system defined by the equation,
dx

the linearised system can be written as for example

dx

=7 = DF(x0,1) - (x = xo)

where: X, is the point of interest and DF(x,t) is the
Jacobian of F(x) evaluated at point x,,.




MORE ABOUT LINEARITY

* Typical power system analysis tools steady-state /
approximation of phasor methods i.e. use linearization
models that are a simplified differential equation models
around operating point of 50 or 60 Hz.

* Only electromagnetic transient software (EMTP) types
use nonlinear differential equation for modeling with

some approximation for some other attributes to find
solution(s).

 How approximation is achieved is shown on example of
Synchronous Machine




MORE ABOUT LINEARITY

 Synchronous Machine - General-Nonlinear Model
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MORE ABOUT LINEARITY

e Synchronous Machine — Park’s Model
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MORE ABOUT LINEARITY

* Synchronous Machine — Steady State U _=const
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MORE ABOUT LINEARITY

* Synchronous Machine — Steady State U _=const
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BASE ELEMENTS - INDEPENDENT SOURCES

Voltage Current

* Avoltage source * A current source is a two-
maintains a voltage terminal circuit element
across its terminals no that maintains a current
matter what you connect through its terminals

to those terminals

Independent _ Independent
;’[s\j] voltage 's= current
source source




BASE ELEMENTS-R, L, C

Resistor Inductor Capacitor
— Obeys the expression — Obeys the expression — Obeys the expression
di dv
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i, dt dt
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v, is the voltage across
the inductor, and j, is the
current through the
inductor, L, is called the
inductance, and i (t,) is
initial condition

Ve is the voltage across
the capacitor, and i is
the current through the
capacitor, C, is called the
capacitance, and v{(t,) is
initial condition




BASE ELEMENTS-R, L, C

Resistor Inductor Capacitor
v di
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BASE ELEMENTS —R, L, C
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KIRCHHOFF’S LAWS

e Kirchhoff’s Current Law (KCL)

— The algebraic (or sighed) summation of currents through any
closed surface must equal zero.

e Kirchhoff’s Voltage Law (KVL)

— The algebraic (or sighed) summation of voltages around any
closed loop must equal zero.




KIRCHHOFF’S LAWS

e Node

* Close Loop

— Example 1 VACJD

— Example 2




THE THEVENIN AND NORTON EQUIVALENT
CIRCUITS

e Why?
— Per unit calcs

— Symmetrical components calcs

 Example of measurement, expectation, real value and
explanation using Thevenin equivalent circuit




THE THEVENIN EQUIVALENT CIRCUITS

* Any circuit made up of resistors and sources, viewed
from two terminals of that circuit, is equivalent to a
voltage source in series with a resistance.

Any circuit
made up of
resistors and
sources

98,
e (U




THE NORTON EQUIVALENT CIRCUITS

* Any circuit made up of resistors and sources, viewed
from two terminals of that circuit, is equivalent to a
current source in parallel with a resistance.

Any circuit
made up of
resistors and
sources




SINUSOIDAL FORCING FUNCTION

It is @ most fortunate truth in nature that the excitation
sources (driving voltage) for electrical networks, in
general, have a sinusoidal character and can be
represented by a sine wave type periodic functions

A sinusoid is a sine wave or a cosine wave

Sinusoids can represent many functions, but we will
concentrate on voltages or currents, as a function of
time

The only restraint associated with the use of the
sinusoidal forcing function concept is that the circuit

must be comprised of linear elements, thatis, R, L, and
C are constant as current or voltage varies




SINUSOIDAL FORCING FUNCTION

There are two important consequences of this circumstance:

— First, although the response (current) for a complex R, L, C network
represents the solution to at least one second-order differential
equation, the result will also be a sinusoid of the same frequency as the
excitation and different only in magnitude and phase angle. The relative
character of the current with respect to the voltage for simple R, L, and C
circuits is also shown in previous figure.

— The second important concept is that when the sine wave shape of
current is forced to flow in a general impedance network of R, L, and C
elements, the voltage drop across each element will always exhibit a
sinusoidal shape of the same frequency as the source. The sinusoidal
character of all the circuit responses makes the application of the
superposition technique to a network with multiple sources surprisingly
manageable. The necessary manipulation of the sinusoidal terms is
easily accomplished using the laws of vector algebra.




SINUSOIDAL FORCING FUNCTION




SINUSOIDAL FORCING FUNCTION

20
o A N N o) N
Rt \/ \/ \/ \/
B Eﬂﬂ 0017 0033 0.05 0.067

u(t) .= ﬁ-U-sin{m-t + @)
ip (1) = ﬁ-%-sin{w-t + )

ip (1) = /2
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L

() = \E-U-{.‘-w-sin{w-t + © + 90deg)




SINUSOIDAL FORCING FUNCTION

Limits
— Liner elements
— Independent on changes in voltage or current

Results of the calculations contain sine wave type
periodic functions

Frequency of the calculations results sine wave type
periodic functions is same as the source frequency




PHASORS

e A phasor is a transformation of a sinusoidal voltage or
current to phase (or phasor; complex) domain

e Using phasors, and the techniques of phasor analysis,
solving circuits with sinusoidal sources gets much easier,
but...

* Only the steady state value of a solution is obtained with
the phasor transform technique. Transient nature of
sinusoidal voltage or current effect is lost in
transformation.




PHASORS

When forcing source is in form = 0[]

vV, (t) =V, cos(awt + ¢). 7

solution to the circuit equation s

V_ cos(Wt + @) = Lw +1(t)R,

dt

is in form

R
1(t) = 0 cos(p — tan‘lw—l' et Vi cos(awt + ¢ — tan‘la)—l‘ .
| 2 R R

JR? + & JR? + 0?2

You can note that solution varies with time....




PHASORS

You can note that solution varies with time...

I(t) = 1__C —tan‘lw—L)e Ly Vi cos(a)t+¢—tan‘1%|‘)

JR? + & R JR? + 0?2

Only the steady state value of a

solution is obtained with

I (1) = Vi cos(at + ¢ —tan ™ —

the phasor transform \/Rz + 2|2

technique.




PHASORS

Instantaneous value representation is not convenient and efficient for analysis
of electrical circuits. This is why sinusoidal instantaneous voltages and currents
as time functions are usually replaced with the phasor notation.

£(t) = Ky -sin(w-t + ®) = /2. K-sin(w-t + ) = Im(E-ei'w't)

Where:

K - complex number; note vector notation (underlined K) with magnitude of
\/E-K or K,;, and phase ® and is defined as the phasor related to the

sinusoidal function f(t), thus

K = /2. K-(cos(®) + j-sin(®)) = (V2K) (&) ®

In new format, current and voltage time function are represented by complex
vectors in following way:

U=U (L) ®,
1=1(4) ®;




PHASORS

Consequently impedance is defined as:

and power is defined as:
S=UIl= [U (£) ‘I)u]*[l (£) —CIJJ = U-I-Cos(fliu — fI)i) —i—j'[:*I'Sill(‘I'u — fI)i)

with module value equal to:

8| = \/L(LT‘I‘COS(@ll — @) + (U Lsin(®,, - q,i)ﬂ =8=U1I

2 2 2

§“=P"+Q

and definition of the power factor:

P

PF = cos(@u — (Ili) = S




PHASORS

For sinusoidal function

u(t) := ﬁ-l&siu(wt + 0) with phase shift angle 6 := —35deg

and applying transformeation to complex domain (i.e. ignore rotating time space

vector represented by ¢ " from eqation:

f(t) =+/2-U-sin(w-t + 0) = Im(L-eJ ) = 1111[[(\/_1 ) (£) Eﬂoej'w't]

we obtain following:

U = (2200(2-10.¢ 7715928)) — v( 10,8847 -57.30 )"

U:=2-10-¢ "% = 11.5846 + 8.1116]
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THE SINGLE-PHASE EQUIVALENT CIRCUIT

* Powerful tool for simplifying the analysis of balanced three-
phase circuits, yet its restraints are probably most often
disregarded. Its application is best understood by examining a
three-phase diagram of a simple system and its single-phase
equivalent.

e |If athree-phase system has a perfectly balanced symmetrical
source excitation (voltage) and load, as well as equal series
and shunt system and line impedances connected to all three
phases, imagine a conductor (shown as a dotted line)
carrying no current connected between the effective neutrals
of the load and the source. Under these conditions, the
system can be accurately described by single phase
equivalent




THE SINGLE-PHASE EQUIVALENT CIRCUIT

* Three Phase Diagram

L L
LINE TO
E NEUTRAL
L-N LOAD

Single Phase Equivalent

L
O S

Single Line Impedance Diagram




THE SINGLE-PHASE EQUIVALENT CIRCUIT

The single-phase equivalent circuit is particularly useful since the
solution to the classical loop equations is much easier to obtain
than for the more complicated three-phase network. To determine
the complete solution, it is only necessary to realize that the other
two phases will have responses that are shifted by 120° and 240°
but are otherwise identical to the reference phase.

Anything that upsets the balance of the network renders the
model invalid. A subtle way this might occur during asymmetrical
faults.

Neither the single-phase equivalent nor the single-line diagram
representation is valid when unbalance or asymmetry occurs.

The single-phase and the single-line diagram representations
would imply that the load has been disconnected, it continues to
be energized by single-phase power. This can cause serious
damage to motors and result in unacceptable operation of certain
load apparatus.




THE SINGLE-PHASE EQUIVALENT CIRCUIT

* Three Phase Diagram Single Phase Equivalent

LINE TO
NEUTRAL LOAD

Single Line Impedance Diagram

FAULT




THE SINGLE-PHASE EQUIVALENT CIRCUIT

e Restraints for this calculations:

— Symmetry of the electrical system, including all switching
devices and applied load.

— Any of the other previously described restraints that apply to
the analytical technique being used in combination with the
single-phase equivalent.




THE PER UNIT METHOD




THE PER UNIT METHOD

Definition:

A per-unit system is the expression of system quantities
as fractions of a defined base unit quantity of the same
type.

_ system quantity [in actual unit]
system quanity [pu] =

system quantityy,.. [in actual unit]

System quantities are power, voltage, current, frequency,
impedance, admittance, torque, inertia etc.




THE PER UNIT METHOD

* Advantages Of Per Unit

— Equipment Parameters. For a given type of equipment, and
disregarding the size and voltage, the parameters in per unit are
within a narrow, known range

— Eliminate Turn Ratio. For two adjacent networks of different voltage
levels, if the selected base power is the same throughout and the
selected base voltages match the turn ratio of the transformer
between the networks, then all quantities in per unit have the same
value regardless of which voltage level they are defined. In essence,
the transformer is eliminated.

— Eliminate Coefficients. For almost all equations with quantities
defined in per unit, the numerical coefficients are eliminated.

— Voltage. In per unit, the line-to-neutral voltage equals the phase-to-
phase voltage, and during normal operation both quantities are
close to unity.




THE PER UNIT METHOD

* Per unit conversion requires us to select a base
guantities

e How do we make the selection?

— Answer: Select two quantities as the base from the following:
voltage, current, power, impedance, admittance

 Which do we choose?
— Answer: Generally choose voltage and power.




THE PER UNIT METHOD

* Why Voltage and Power?

— Voltage. For each voltage level in our system, we know the
rated voltage of equipment, and even if loading changes, the
voltage does not deviate too much from the rated value.

— Power. The range of power flowing in a section of the system is
qguadratically related with the voltage. As such, the range of
expected power flow is known for an area. Note, for
transmission level analysis, it is customary to select a base
power of 100 MVA.

Note: The base power is usually selected to be the same for
the entire network.




THE PER UNIT METHOD

e Select base quantities

Vbase = phase —phase

Sbase = SBphase

— Voltage:
e Usually selected as the nominal phase-to-phase voltage at each voltage
level
— Power:

e Usually selected in the range of 3-phase power flowing in the network
(i.e. whatever network is being analyzed)

* It is customary to select a base power of 10 or 100 MVA.

* The base power is usually selected to be the same for the entire
network.




THE PER UNIT METHOD

* Conversion
— Each piece of equipment is different
— Selection of base quantities could be different
— Analysis requires common base

e Power Conversion
So1d base Lin actual units]

S ul=3S uj *
new .base [p ] old .base [p ] Snew ase [in actual units]

* Impedance Conversion

Zold .base [-Q]
Znew .base [-Q]

2
Vold .base [V] ) . (Snew .base [VA]>
Vnew.base [V] Sold.base [VA]

Znew base [pu] = Zold base [pu] *

Znew base [pu] = Zold base [pu] * (




THE PER UNIT METHOD

Single phase 1o power and voltage case

Ubase = 69KV
| _ Sbase
base ™ Ubase
B Ubase
base Ihase
Ubase
Zhase = Sh
Sbhase
_ —1
Yhase = Zbase
ZQ)
Zp11(ZQ) Zbase
Pw
Ppll(P“) Sbﬂse

Spase = I0OMVA  Ppaqe == Spase Qbase = Phase
Ys \ I
YpulYs) =5 I u(IA =T U u(U\-" :
( ) Yhase pul ) Thase pul )
Qpu(Qvar) QuAr S,u(Sva) Sva
pulRVAr) = ¢ Ppul>VA) =
P Spase b Spase

Ubase




THE PER UNIT METHOD

EXAMPLE:

An impedance Z = (2 + 2)){2 is connected to a single phase circuit with following
paramters: base power Sy := 5000kVA and base voltage Uy, := 10kV. Calculate Iy,

Zand ;ﬂ of circuit and connected impedance.

Sp
Solution: I}, = — = 500A
Yb
Ub
Zy, = — =200
Iy
Zz = £ = (0.1 +0.1;
Lpy = - = (0.1 +0.17)-pu

b




THE PER UNIT METHOD

EXAMPLE:

Data for following single phase circuit is:

Sp, == SMVA
Up := 1000V Ug = 100V
Zp = 200 Zg = 0.8

Calcualte: IP_pw Ig_pu

2,200 2,080
_ —_—
| Is
1000 V
101




Solution:

THE PER UNIT METHOD

Sp, = 5S-MVA
Uy p=Up
2
Z = Ub_P =0.2Q2
b_P T Sb -
Zp
Zp pyy = 55— = 100-pu
Pz, p
Up
Up py = 77— = 1.00-pu
LU Uy p
Sb
Ib p = = 5.kA
_ Up p
Ip pu=Is pu and

IP = IP_pU'Ib_P = 10A

Sp, = 5-MVA
LTb N = L:S
- . 2
Up ¢
Zp g = ——— = 0.0020
| S,
Zs
g 5y =5 =400-pu
AN
Sb
I, = —— =50kA
-~ Ups
UP pu
Ip pu = P = 0.002
Zp putZs pu

IS = IP_pu'Ib S = 100A




THE PER UNIT METHOD

Three phase 3o power and voltage case

Relating to equations for 1o

Sbase = 3'Ubase_phase'Ibase_phase

"...customarilly, rated kVA is given for the three phases and rated voltage is line-to-line
voltage." per E.Clarke

Ubase = ULL Ihase = I

Sbase = \/E'Ubase‘lbase
[ B Sbase
base \/E‘Ubflse

5]

Sba se
3

Lhase =




THE PER UNIT METHOD

Yg

Ypll(YS) . Yhase

. QvAr
qu( QVAT) -

base

2
7 Ubase
base =
Sbase
Vi = Zppea
base '~ “base
(2g) - 2
V4 Zﬂ =
pt Zbase
Pou(Pw) : W
ultwj) =
P Sbase
) Uold
Zynew = Lold' U
“new

- SI]E‘N
So1d

I Uxs
I u(l AJ = A U U(UV) = v
PU Ibase p Ubase
o\ SvA
S .S T =
pu( ‘vA) Sbase




THE PER UNIT METHOD

Example

This is a multiple stage example. For the system shown below:
a. Determine the source and equivalent star reactances of the transformer

on a 30 MVA base.
115kV >7 Ag%aakv
O—338

6.9KV
Xpx=10% on 30MVA

MVAsc=600

th=22.5% on 15MVA

X =10% on 10MVA

Xy
h=115kV, x = 13.8kV, y = 6.9kV

Source Data (at 115kV):
MVA,. = 600MVA

Transformer data:

Sp 1= 30MVA
Vi = 115kV
Vy y = 6.9kV
Vi x == 13.8kV




THE PER UNIT METHOD

Compute Source Impedance:
Two options to compute per unit source impedance:
Sp
X5;{:-111'ce_pu = m = 0.05 pu
(115kV)°

Nsource =~y o~ = 22.04202
= *8C

-

Vi
Ly =

i
1

I
— = 440.833 12
S

~b

-
X
T [Jp—
X =

s pu Zb |
1

source

= 0.05pu

Note that:
(115kV)”
< = MVAe  Sp
5 pu ‘V‘b_h 2 I\fi‘irlﬂ\ “
Sk

Compute Transformer Impedances for T-equivalent:

Xp x = 0.1pu
Xp y = 0.225pu
Xg y = 0.11pu

30MVA

= ISMVA
= 10OMVA




THE PER UNIT METHOD

Change of MVA base calculations.

. Sp
Xhx pu S Ah x
b hx
o Sb
}*h}’ - pu T S Ah vy
b _hy
ny pu T S 'Xx_v
b xy

Find Zh, Zx and Zy

Xhx pu = 0.1pu

Xhy pu = 0.45pu

Xp = (0.5) '(th_pu + th_pu - Xxy_pu) Xp = 0.11pu

Xy = (0.5) (X pu+ Xy pu— Xy pu)  Xx = —0.01pu

XF = (0.5) '(XX}"_PU + Xh}-‘_pll - th_pu) X}r = (0.34pu

Use the same values for the positive,
negative and zero sequence networks.




THE PER UNIT METHOD

B. Sequence Networks: Ignore loads. Include impact of delta tertiary
winding and ungrounded Y on 115kV.

X=X pu+ Xp + Xy X7 =0.15pu
Xy =X put Xpn + Xy X, =0.15pu
Xo = X, + X Xo=0.33pu

C. Three phase fault currents at 13.8 kV terminals (ignore load)

V¢i=71-1.0pu

'
Ir:= I.e=6.667pu
af ] 'Xl af p

Positive Sequence Rotation:

R 6.667 0
— —>
Live := L o2 Lipe| = | 6.667 arg(Lpe) = | —120 |deg

a 6.667 120




THE PER UNIT METHOD

D. SLG fault at 13.8kV terminals

\2
IO = p— p— IO = 15871}[1 Il = ID 12 = IO
1 Xy +1- X +1-Xg
Io 4762 0
% > i
Iabc_SLG =A L ‘Iabc_SLG‘ = 0 ﬂl'g(Iabc_SLg) =| 116.565 deg
I -0 116.565

Sp
Iy x =
B \/; 'Vb_x

E. Phase to neutral voltages at fault

= 1255.109A T = Lve st6, To x I x| =5976.711A

Vy = Ve— X, V, = 0.762ipu Vo= —-Xoly Vo =—0524ipu
Vy =X 1, V, = —0.238ipu
Vo 0 90
, , — - >
Vabesro = A+ Vi ‘\"abcsm‘ =| 1.169 arg(Vapesra) = | —42216 |deg

v, 1.169 —137.784




THE PER UNIT METHOD

F. Find the phase currents and phase to neutral voltages on the 115kV side of
the transformer.

Now I := Opu since neutral of the Y is ungrounded. 11 and |2 unaffected.

'IO

Libesig := A+l It

VabesLg == A+ V1
Vs

3.175
| Laesia| = | 1.587
1.587

Ia_h — Ib_h ' IachLGO

Vi =092lipu

V, =—-0.079%1pu

Vo =0pu
0.841
—
| Vabesta| = | 0.963
0.963

0

.
I

arg(Laesr) = | 180 |deg
180

T, n| = 478.137A

W

arg (Vabcsm) =

90
~25.906
~154.094

deg




THE PER UNIT METHOD

G. Current in the delta for the fault on 13.8kV bus

Ih =1 I, := Opu I,:=0
I 1.587
? .
LiesLa == Al Iy ‘IachLG‘ =| 1.587
I 1.587
Sb
Iy = —— = 1449275 A I,-Ip = 2300437 A

3V y

0
arg(lachLGj = { 0} deg

0

L y = IyIp = 2300.437 A




THE PER UNIT METHOD

H. Make an ampere-turn check for the currents in the windings

NI1-I1 + N2-I2 + N3:I3=0

115

Nin 115 Nypp=1
6.9 |
Nh_‘ ]_]_'J:. Nh_}' = 0104
13.8
Ni x = = Np, x = 0.12
NE
Atyys = Ny | Ty Aty = 478.137A
Atyzg = Np o |, Atj35 = 717.205A

Atgo = 239.068 A

Atgo =Ny v |Io y
Sum = ‘Atllﬁ — A‘[IS.S + thGQ

Sum =0A




FORTESCUE THEORY




FORTESCUE THEORY

* Fortescue presented paper) demonstrating that an
unbalanced set of N phasors in any polyphase system could
be expressed as the sum of N-1 balanced N-phase systems of
different phase sequence and one zero-phase sequence
system. Set of phase-sequence system is known as
symmetrical components set for a three phase system.

* The paper{?) was judged to be the most important power
engineering paper in the twentieth century.

* Note: three phase system is a special case of a polyphase
signal

(1) Fortescue, Charles. L. "Method of Symmetrical Co-Ordinates Applied to the Solution of Polyphase Networks” , AIEE Transactions, vol.
37, part ll, pages 1027-1140 (1918). Annual convention of the AIEE (American Institute of Electrical Engineers).
URL: http://www.energyscienceforum.com/files/fortescue/methodofsymmetrical.pdf



http://www.energyscienceforum.com/files/fortescue/methodofsymmetrical.pdf

SYMMETRICAL COMPONENTS




SYMMETRICAL COMPONENTS

* What are Symmetrical Components?

— Any set of N unbalanced phasors — that is, any such
“polyphase” signal — can be expressed as the sum of N
symmetrical sets of balanced phasors.

— Only a single frequency component is represented by the
phasors. This is overcome by using techniques such as Fourier
or Laplace transforms.

— Absolutely general and rigorous and can be applied to both
steady state and transient problems.

— It is thoroughly established as preeminently the only effective
method of analyzing general polyphase network problems




SYMMETRICAL COMPONENTS

 Three-Phase System Symmetrical Components

— Three sets of symmetrical components, where each set is
referred to as a sequence.

— First set of phasors, called the positive sequence, has the same
phase sequence as the system under study (say A-B-C)

— The second set, the negative sequence, has the reverse phase
sequence (A-C-B)

— The third set, the zero sequence, phasors A, B and C are in
phase with each other.

— Method converts any set of three phasors (phase domain) into
three sets of symmetrical phasors, which makes asymmetric
analysis easily achievable.




SYMMETRICAL COMPONENTS

* For three phase system, set of three phasors X, X,, and
X. can be represented as a sum of three sequence vector

sets

|><
Q
=
|><
Q
N

|
||
|><
Qs
o

I>X X
o
[
[><
o
o

+ 4+ +
I><
o
[y
[><
o
)

|><
[@)
I
|><
O
o
|><
(@]
-

|><
A
N

where

- the zero sequence set

|><
Q)
o
|><
o
S
|><
(@]
o

|><
[N
>
=
|><
=

- the positive sequence set

- the negative sequence set

|><
Q)
N
|><
N
|><
e
N




SYMMETRICAL COMPONENTS

* Only one set of sequence values are unique, i.e. for one
phase sequences 0, 1, 2 (usually phase A). Remaining
phases can be determined from unique sequence.

* |In symmetrical components analysis, a complex operator
“N” is defined by the Fortescue theory for N-phase
system. When applied to three phase (i.e. n=3, i=2), we
define popular notation and manipulation vector “a”:

2Ty 2Ty AT
3 3




SYMMETRICAL COMPONENTS

 Some of useful properties of “a”

rectangular notation polar notation
1 3 a-o2\F _ﬁu-nz -a2+\3
a:= -3 +j-% = —0.5+ 0.87i z2rB(a) = "( 14 120°)"
gz = —0.5 — 0.87i z2r0 (gz) ="(14£-120°)" + -2
93 =1 22r8(g3) ="(1£0°)"
4 H 4 n oazn
a =-0.5+0.87i zZrB(g ) ="(14£120°)
95 = —-0.5 - 0.87i 22r0 (gs) ="(14£-120°)"
a+ a +1=0
af—1
a+a 2 _ -1 zZrB(g +a 2) ="(14£180°)"
a-— 2 = 1.73i zZrB(g - gz) ="(1.73214£90°)"
gz —a=-1.73i 200(a? — a) = (173214 90°)" 42-a-V% ot-a ot-e:\3
Fig. 2—Properties of the vector operator a.
1-a=15-0.87i z2rO(1—-a) = "(1.73214£-30°)"
5 ) Reference [2]
1-a =15+0.87i zZrG(l -a ) ="(1.73214£ 30°)"
a—1=-1.5+0.87i z2rB(a— 1) = "(1.73214£ 150° )"
2_ 1=-15-0.87i zZrB(gz ) ="(1.73214 -150° )"
1+a=0.5+0.87i z2rB (1 +a) = "(14£60°)"

1+a%=05-0.87i zzre(l + gz) = "(14£-60°)"




SYMMETRICAL COMPONENTS

e Let’s consider unbalanced voltage phasors of the three
phase system (i.e. unbalanced set)

ccw

e
-
-

-
-
o

CcCw

CCw

7\/\1 il

f Vit 2 : Zero

v Positive / Negative Vao=Veo=Ve,  S€quence
i Sequence ~ Sequence Vectors

l Vectors Vectors ' or ”Zero”, 11011
: Or ”POS”, IIPII' II+M' 111” Or ”Neg", ”N", II_II’ Ilzll




Or

SYMMETRICAL COMPONENTS

CCw

i

\\/ Positive
5 Sequence

VEH

Vectors

: \"\ Or IlNegII' IINII' II_II, IIZII
240° \ B0
...................................... 5

l Or ”POS”’ IIPII' II+II' Ill"

PRy cow
: Negative
\.—?ﬂm Sequence
. e
% | 120° Vectors

Zero :

Sequence Vao=Veo=Veo
Vectors
or “Zero”, “0”

><
o
)
1|
| ><
Q)
|
><
o
o
1|
| ><
oy
o




>
2
1l

Note:

SYMMETRICAL COMPONENTS

Xabc =4 X012 X012 =4 Xabc
-1
Xabe = A Xo12 Xo12=A Xgpe
1 1 1 K@ K@ 1 1 1 Xg
h
—- 1 gz a Kﬂ Kﬂ =§- 1 a gz -XQ
1 a gz Xﬁ Xﬁ 1 gz a XE
1 1 1 1 1 1
- h
1 gz a A t=21 a gz
3
1 a gz 1 gz a
h=1 for the Fortescue transformation (this presentation)

h=+/3 forthe power invariant transformation




SYMMETRICAL COMPONENTS

* Per phase voltage sets summation of symmetrical
components to obtain an unbalanced set

[ >< [><
o1
o

[=S

[><
)
[N}




SYMMETRICAL COMPONENTS

* Per phase voltage sets summation of unbalanced set
with “a@” transformation to obtain an symmetrical
components

VE52 Paa
-t 2
—
‘___,f\\fc. s
\ B‘ \
ANy f,
—— 1 120°
cow
............................. o
---\IC'- I{q Y N -
P i BN C
4 . ‘. K@ 1 1 1 Kg
40x._‘ V"‘
R"'\-\.\_V B“ 1
‘o 2
o Xa =71 a a" |'|%
3
2

|><
Y
(]
=
Jol)
Js3]
[><
(@]




SYMMETRICAL COMPONENTS

* ExampleS1

10 "(10£0°)

lape := | Ib | =| =5 —8.66i |A 22rOM (Iahc) 104 -120°)"

—5 + 8.66i "(104£120°)

lC

20 (04 -28.8634°)"

-1

Io]_z - la]_ Io]_z = S . Iabc ZZI’@M 012 ( 104 O )

"(04£-90°)"

Vape = | Vb | = —~16i Vo 22r0M(Vap) = | "(164-90°)" |V

Vv —2.11 + 4.53i "(54 115°)"

'(4.15544 -66.9203° )"

=|Var | Vo2:=S Vape  22r0M(Vopp) = | "(8.974416.3181°)" |V

-t
T
{

'(3.49294 158.1249° )"




SYMMETRICAL COMPONENTS

* Example S2

V, = 8v.e) 098 Vy = 6V el 098
Vao Va ~1.6 + 1.2i
Vop | =5 2|V [=| 93+3.00 |v
V., V. 0.29 — 4.29i
Vio Vao ~16+ 1.2i
Vpr |=|a’.v,, |=|-1.97-96i |V
Vi, 2V, 3.57 + 2.4i
Veo Vao ~1.6+ 1.2i
Ve [:=] @ Va1 |=|-7.33+651i |V
Ve, 2y, ~3.87 + 1.89i

V, = 16V-e’

z2r6M

z2rOM

z2r6M

143.1deg

"(24 143.0498° )"
=| "(9.80494 18.385°)"
"(4.3047 £ -86.0854° )"

"(24143.0498° )"
"(9.80494 -101.615° )"

"(4.3047433.9146° )"

"(24 143.0498° )"
=| "(9.8049« 138.385°)"
"(4.30474 153.9146° )"




SYMMETRICAL COMPONENTS




SYMMETRICAL COMPONENTS

Comments & Notes:
— Transformations apply only to balanced and symmetrical systems

before unbalance occurs. Symmetrical networks can be solved using
single phase techniques.

— The transformations apply only for linear systems, that is, systems

with constant parameters (impedance, admittance) independent of
voltages and currents.

The quantities used for X,,. can be phase-to-neutral or phase-to-
phase voltages, or line or line-to-line currents.

For some connections, the zero sequence component is always zero.

With symmetrical components we solve three interconnected
symmetrical networks using single phase analysis.

Once solved, we use transformation equations to obtain phase
guantities.




SYMMETRICAL COMPONENTS

* On equipment Modeling:

— Symmetrical components has advantage that parameters in
system components are easier to define as each sequence is a
symmetrical three phase case, the parameters can be defined
using typical three-phase tests.

— In unbalanced and/or unsymmetrical systems modeling, the
parameters cannot be defined using standard tests. As a result,
symmetrical components principle cannot be used in systems
that are unbalanced and/or unsymmetrical.




SYMMETRICAL COMPONENTS

* Complex Power with symmetrical components:

la
— | S
Sabc = (!a_ !_n !c_) lg = Vaben - labe
Ie
Knowing, -
Vaben = A-Vo12 labe = A lo12
Substituting
T T T —
Sabc = (A'sz) '(A' |o12) =Voiz ‘A "AVgp,
Note that: 1 0 O

Al a=l0 1 03

. _
Sabe =3 Vo12 Vo2 = 3(Vao' lag + Va1 la1 + Vs 'lﬂ)

Note: For general case, with h := +/ 3 i.e. power invariant transformation

3 —_—
Sabc = _2(Va0' lap + Va1 11 +V; lﬂ)

h = = - == ==




SYMMETRICAL COMPONENTS

* Consider the following D-Line (i.e series component):
- A Vi = vEesg,

:

Zaa * be > ZCC T, = Ig268 j lim Ll L g T, =1%,6%
e ¢ - o, -
—5 ! Lz 72g -
V, =Vzsh L ab (2 Zkm AV =Vhesk
Z __'é Z __'é Z k kL0 [, . A i m m £Om
ab ™ Thc ™ ca TN i T]: 7 _iiset

| by
4 —¢
=N
__Vm — V288
cc

T l: Iy = 15,265

Vy = VEzst L.

— - A,
Zab - Zba T = 15205 I Tim gém 5

]
Y
Bus ‘K" ! =hn o Bus “m
Zb — Z b terminals I phases
- EURTT LR TR B ) | Hp o
C C V;fr:%g/—af . “a”, “b", “¢","n : a","b", “¢","n Vi_vﬂfLé‘i

/ 5 7 Ground = Earth = Reference Potential //
7 _ 19268 q oz 12 [ e
/ > {1 r mmo
7 7

G A A A

gII
\\

Vkm.a zkm.aa zkm.ab zkm.ac Ikm.a
Vimb | =| Zkm.ba Zkmbb  Zkm.be |*| lkm.b
Vkm.c zkm.ca ka.cb zkm.cc Ikm.c




SYMMETRICAL COMPONENTS

* Transformation to Symmetrical Components....

Vkm.abc = ka' Ikm.abc
A-Vim.012 = Zkm.abe A lkm.012

-1
Vimo1z2 = A  Zym.abe A lkm.o12

Vikm.012 = Zkm.012" lkm.012

Lo+ 2:Lyo Zsy — Lz Zs1 — L Where:

1
zSO= 5'(Zaa+zbb+zcc)
Zimo12 =| Zs1—Zm1 Lso—Imo Lo+ 2-Zyp 1 ,
251=§- lyataly,ta L.
L= Iya  Lsit2:4yn Zso— Imo 1 5
252=§- Lya+a Ly, +a-l.
1
zI\/10= 5'(Zbc+zca+zab)
1 2
ZM1=§' Lyta-Lt+a Ly,
(22 )
ZM2=§- Lye+a Loy +a-ly,




SYMMETRICAL COMPONENTS

* Note a problem... For example the positive sequence
voltage drop

Vim.1 = (251 - ZMl)' lao + (Zso - ZIVIO)' a1 + (Zsz +2: Zmz)' 122

depends upon not only I, but I, and |_, as well. This
means there is mutual coupling between sequences.
Also, Z_ . o1, IS hot symmetric, therefore mutual effect is

not reciprocal.

 How to “decouple” sequences?

— In general, there are three cases of decoupling, but only one is
useful (Case 2)




SYMMETRICAL COMPONENTS

— Case 1:

Self and mutual impedances are symmetric with respect to
phase “A”

1
zbb = ch ZSO = 5 ' (zaa + 22bb)
1
zab = an le = ZsZ = 5 ' (Zaa - be)
1
ZI\/10 = g'(zbc + 2'Zab)

Iy = Iy = %'(Zbc - Zab)

Lso+2:Lyio Lsy — Lz Zs1 — Ly

Zymo12 =| Zs1—Zwn Lso—Lpo  Lsa+ 2Ly

Ly =Ly Zaa+2:Zvy1 Zso— Zwo

— Mutual coupling between sequences is not eliminated.




SYMMETRICAL COMPONENTS

— Case 2:
Self and mutual impedances are equal in all three phases:

Lo = Ly, o) =145=0

Lno = Lpe ILyp =Ly =0

Zo+ 220 I>eg St Zeo + 2+ Zyo 0 0
Zym.012 = M Zso — Lmo Z5>%/12 0 Lso = Lpo 0
M M Zso — Lo 0 0 Zso — Zmo

e Off diagonal terms eliminated.

 Matrix is reciprocal and no coupling between sequences.
This is the case that is used in all Symmetrical
Components calculations.




SYMMETRICAL COMPONENTS

1 1 Positive Sequence Network
Network equation and diagram |
O TBH f 1km Zl:ZSD-ZMG T'Brm
for series component o1
"-_/1k“<i :“’Mlm
i TBref‘r :
= O O
Vim.012 = Zkm.012" lkm.012 Negative Sequence Network
TBiz pm Lrlsrlmo g
Iy Jii)
Vim.o Lso + 2+ Ly 0 0 lkm.o ] i
| |
V. k. VAL
Vim1 | = 0 Zso = Zyo 0 | Tkm.1 - -
: TBretz
e o - !
Vim.2 0 0 Lso = Zyo lkm.2
Zero Sequence Network
TBeo l.okafZSO*z Zmo g
! - I
Vi Ly
" TBuo |




SYMMETRICAL COMPONENTS

* |In the matrix modeling, the components in three-phase
system exhibit characteristics in phase domain as follow:
— Complete symmetry component

Zs Zm Zm where z; - selfimpedance]
Zm Zs Zm
Zm  Zm  Zs zm - mutual impedance

— Circulant symmetry component

ZS zm ZTL

S — where Z - self impedance
Zn Zs Iy -

- - Zm , Zn - mutual impedances
Zm Zn Zs -

— Unbalanced component

where Z11,Z32,2Z33 - selfimpedancesin relation to each

Z11  Z12 £33

phase (in general not equal to each others),
Z31  Z32 223

Z19,Z13, Z21, Z23, 231, Z33 - mutual impedance between

Z3q1 Z3p 233

each of phases primitive impedances
(in general not equal to each other's and

dependent on the mutual couplings).




UNBALANCE NETWORKS
MODELING PRINCIPLES




NETWORKS MODELING — UNBALANCED SOURCE
WITH BALANCED CIRCUIT

 Symmetrical 3-phase circuit powered up with

symmetrical (balanced) generator:

» Circuit currents are symmetrical; i.e. there are symmetrical components of
current and voltages with symmetrical impedances but only positive sequence
(for CCW rotation)

 Symmetrical 3-phase circuit powered up with

unsymmetrical (unbalanced) generator

» Circuit currents are unsymmetrical; i.e. there are 0, 1, and 2 symmetrical
components of current and voltages with symmetrical impedances in circuit
F H

Us




NETWORKS MODELING — UNBALANCED SOURCE
WITH BALANCED CIRCUIT

Positive Sequence Network

* In symmetrical circuits, we can EH
analyze each symmetrical 2
component of current and ; A | 2]
voltage independent of other o —
components networks (i.e. v
networks are “decoupled”). %
This results in three J A 2]
independent networks. — . —s

* Currents & voltages can be
calculated for symmetrical
network with unbalanced
generator.




NETWORKS MODELING — SHUNT UNBALANCE

e Usually, 3-phase circuits are powered up with
symmetrical (balanced) generators, but in certain

operating conditions, symmetry in network is lost due to
unsymmetrical load (i.e. fault)

Unsymmetrical
Load

j
Z




NETWORKS MODELING — SHUNT UNBALANCE

* In order to utilize symmetrical
components methodology,
different approach from
previous method has to be
developed.

» In place where unbalanced load was
connected (point F), power sources
with voltages U,, Ug, and U, equal to
voltages at point F are connected; i.e.
unbalanced generator replaced
unbalanced load.

» No current flow and voltage values in
the circuit are altered.

» As a result, we are analyzing balanced Equivalent unbalanced
circuit with unbalanced generator. generator




NETWORKS MODELING — SHUNT UNBALANCE

* After converting U,, Ug, and
U to symmetrical
components voltages U,,
U,, and U, ,they are
inserted in the network.




NETWORKS MODELING — SHUNT UNBALANCE

Utilizing Thevenin Theorem

1 1 1 1 Positive Sequence Network
- = + + — . h I:l F
=z, Z r==-n
’ oL
r_ 1 1 1 e () () i
Z, Zg,+Z, 1 Z, -
- Za Reft F |
3 & —
1 1 1 Negative Sequence Network
= il ,,
Zo Zeo+Z +3Zy Z Eeof Jo—o
z, r==q=n
. . . . . - 1 1
1 1
Circuit solution is described by e el
' i
[
Ql = E; - Zl'll Ql = E; - 21'11 Ref2 F'._
QZ = EZ — lZ gg =4l Zero Sequence Network
QQ=EQ_Zo'lQ g_:—zo lo -L‘L-—O—:'—o—ﬁ

For balanced and
symmetrical generator d —

_________________________________




NETWORKS MODELING — BALANCED SOURCE
WITH BALANCED CIRCUIT & UNBALANCED LOAD

e Example
lp=0 -
lc=0 l“/k\ T
Up=lpe /%N\B I
lo 1 1 1 In Ia ‘
[1}= 1 {1 a az} {0}= - [A} (
3 3| 7 7
> 1 QZ a 0 lg
b=l =1




NETWORKS MODELING — BALANCED SOURCE
WITH BALANCED CIRCUIT & UNBALANCED LOAD

e Example
U+ Ui +Up, =314

Lo lg+tEi =2y i =2y b =310 4

Ey

L+ L+Ly+3L

hy




NETWORKS MODELING — SERIAL UNBALANCE

e Usually, 3-phase circuits are powered up with
symmetrical (balanced) generators, but in certain
operating conditions, symmetry in network is lost due to
unsymmetrical load (i.e. fault)

| |
- S 1
I I

| |
T

I I
B




NETWORKS MODELING — SERIAL UNBALANCE

* In order to utilize symmetrical
components methodology,
different approach from
previous method has to be

i |
developed. IR @V‘Tl S
I !

» In place where unbalanced load was s ! f/"\—v'ﬂ i
connected (point F), power sources T N
with voltages U,, Ug, and U, equal to c | %/V\_V” i
voltages at point F are connected; i.e. AN

unbalanced generator replaced
unbalanced load.

» No current flow and voltage values in
the circuit are altered.

» As a result, we are analyzing balanced Equivalent unbalanced
circuit with unbalanced generator. generator




NETWORKS MODELING — SERIAL UNBALANCE

* After converting U,, Ug,
and U. to symmetrical
components voltages U,,
U,, and U, ,they are
inserted in the network.




NETWORKS MODELING — SERIAL UNBALANCE

Utilizing Thevenin Theorem

1

R

E-Za+2b

1

R
Zz= ZGZ+ZL+

E-Za+Zb

Circuit solution is described by

U =E -7 U=E-21'}4
U, =E-2,:], U,=-2,-1,
Up=Ey—Zplg / Up=—2p'lg

For balanced and
symmetrical generator




NETWORKS MODELING — SERIAL UNBALANCE

e Example A
,=0 | |
Ug=Uc=0 B, Ve
____Cl" —Ve— o
Ug 1 1 1 Ua Q&
1 y) 1
U |==1 a a |-/|o |=—=-Ua
3 - 3 -
QZ 1 22 a 0 gﬂ
Uo—!;—!;j
0

1A=l£+lﬂ+l£=q




NETWORKS MODELING - SERIAL UNBALANCE

 Example

Ql = E;_ Zl'll
U, =-25-1h
Qg=—zo'lg




NETWORKS MODELING — SERIAL UNBALANCE

e Example

Zy Ly Ly
U=Ui=U =y h=—"L |y o—— =l -——=
L T Lt

N
N
N

Positive Sequence Network Negative Sequence Network Zero Sequence Network
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SHUNT FAULTS
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b) A three-line-to-ground fault h} A line-to-line fault
c} A three-phase fault i} A two-line-to-ground fault with impedance
d) A shunt circuit open. j) A two-line-to-ground fault
e} A line-to-grourd fauit through an impedance k) A three-hine-to-ground fault with i/mpedance in phase a
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Utility Sources and AC Generators
Induction Machines
Transformers

Transmission Lines

Notes on modeling




COMPONENTS MODELING - UTILITY SOURCES

 Request data from utility

— Define inter-tie point location (GIS or other)

— Define what is required:
* I3, with X/R
* |y, with X/R
* Ops Conditions: max, min, normal
e Special:

The following information was

provided in per unit on a 100MVA base @ 138kV:

Thevenin's

Thevenin's Equivalent System Impedance (p.u.)

h System Three | Simgle | Equivalent — -
F U t U re g rO Wt Configuration/ Phase | Phase Voltage Positive Negative Zero
Scenario (Ia) (31y) Source z X/R z XR z X/R
Other prediction for
Both 138kV 6620 4314 1.031pu. | 0.0161 9.8 0.1595 9.7 0.0417 57
Lines MVA | MVA
PCC (Or POl ) In-Service
Ckt #84 to 2513 1618 1.032pu. | 0.0424 9.7 0.0424 9.6 0.1110 58
Channelview MVA | MVA
Out-of-Service
Ckt #84 to 4284 2729 1.032pu. | 0.0249 9.5 0.0249 94 0.0674 55
Jacinto MVA | MVA
Out-of-Service




COMPONENTS MODELING - UTILITY SOURCES

e Utility is modeled as a fixed
source with fixed impedances

 ANSI methodology allows for
close by generation but does not
adjust impedance. It is expected
that system engineer does this
calcs on his own per application

(i.e. decrement curve calcs).

1 XR
VA X= -/

—
(1+XR2)2 (1 +xr2)

R =

N | =

N | >
N
@

IS

Positive Sequence Network

. lll |:| B + 1
|
Z; |

e

Reft
®

| |
PV

TBnaff:
O -

Negative Sequence Network
l B

2 I:l . +2
Z |
o) "
TBrerz |
Ref? ® o -

Zero Sequence Network




COMPONENTS MODELING — AC GENERATOR

 Fault Behavior

— Sudden change in voltage and current, such as those in faults,
produces transients

— Armature current divided into two components:

e Symmetrical AC component —
whose associated component in the field is a DC current

* DC component — i .
. N 0,363[im&_.)
A ~ " '
whose associated S D
A .
component ) e ) 63[(_, ,
5 ¢ T, AT 368 -
in the field is §¥| / o
- IR
an AC current G T I
\ Y o Time —» H 4/ Xy
Fault occurs / Subtransient period Transient period Steady-st’ate current
(upper half of transient shown)

Ficure 10-5 Decaying ac component of the short-circuit current from the instance of occurrence of fault to steady state. The subtransient, transient,
and steady-state periods and decay characteristics of short-circuit current are shown.
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 Reactances change with time, i.e. model changes with time

X
— e -
r 0
Xa X X Xio Direct axis
" Laa I I
L, L
X
1IN
A
x'.l“‘ E X Mg Quadrature axis
L, ] Lag leq
e _ Sublransient _ ___ G
xl
L1
]
X o Ar Direct axis
L Laa I
Xi
LLE2]
I
X Xag Quadralure axis
f.'.\. Loy
Transient {b)
_______ v oo o A
— SEOH ™
&
Ha Hia Direct axis
L La
X
AL
f - Quadrature axis
g = Xy
LIT Lﬂa
Steady state ()

Ficure 10-6  Equivalent circuits of a synchronous generator during subtransient, transient, and steady-siate periods after a terminal fault.
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 Symmetrical Component Modeling

— Principle concern is with symmetrical component and its
associated constants

— DC component often eliminated from studies
e Usually not necessary to apply or set protective relays
* If necessary (e.g. circuit breaker applications), various factors are
available from standards, manufacturers, or other sources
— For synchronous machines, symmetrical AC component can be
resolved into three distinct components
e Subtransient component —the double prime (“) values
* Transient component — the single prime (‘) values
* The steady-state component
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e Subtransient Component
— Occurs during commencement of fault

— Subtransient reactance (Xd”) approaches armature leakage
reactance but is higher as a result of damper windings, and so
on.

V4

— Subtransient time constant (7d”) is very low (because damper
windings have relatively high resistance), typically around 0.01—
0.05 seconds




COMPONENTS MODELING — AC GENERATOR

* Transient Component

— Armature current demagnetizes the field and decrease flux
linkages with the field winding

— Transient reactance (Xd’) includes effect of both armature and
field leakages and is higher than armature leakage reactance,
and thus higher than the subtransient reactance

— Transient time constant (7d’) varies typically from 0.35 to 3.3
seconds

e Steady-State Component
— Transient eventually decays

— For faults, eventually becomes unsaturated direct axis
reactance (Xd)
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* Negative Sequence

— Subtransient reactance can be measured by blocking the rotor
with the field winding shorted and applying single phase
voltage across any two terminals

— As position of rotor is changed, measured reactance varies
considerably if machine has salient poles without dampers (and

very little damper winding exists) or if the machine has a round
rotor

— For negative sequence, similar phenomenon exists except rotor
is at 2f with relation to field set up by applied voltage

— Good approximation: X, = %(X;/ T X;D

s
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 Zero Sequence
— Varies quite a lot
— Depends largely on pitch and breadth factors of armature
winding
— Generally, X, is much smaller than X, and X, values




COMPONENTS MODELING — AC GENERATOR

Close and Remote Generation
* Assume X; = X,

* Calculate X, from 3PH fault
duty

* Calculate X, from SLG fault
duty

(A)

(<)

(D)

Utility systems
outside generating
station areas

Al generating
stati

Industrial plants
with all local

, o
utility tie
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Positive Sequence Network
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Two-pole - Four-pole
Conventional Conductor Conventional Conductor
Turbine generators cooled cooled cooled cooled
X4 (unsat) 1.65/1.0-1.75 1.85/1.5-2.25 1.65/1.0-1.75 1.85/1.5-2.25
X, rated current 1.61/0.96-1.71 1.81/1.46-2.21 1.61/.96-1.71 1.81/1.46-2.21
X rated voltage 0.17/0.12-0.25 0.28/0.20-0.35 0.25/0.2-0.3 0.35/0.25-0.45

Xy rated voltage

0.12/0.08-0.18

0.22/0.15-0.28

0.16/0.12-0.20

0.28/0.20-0.32

X, rated current = Xu = Xy = Xy = X%
X, rated current‘”

X, Potier reactance 0.07-0.17 0.2-0.45 0.12-0.24 0.25-0.45
r;® 0.025-0.04 0.025-0.04 0.03-0.045 0.03-0.045
r® 0.004-0.011 0.001-0.008 0.003-0.008 0.001-0.008
r.? 0.001-0.007 0.001-0.005 0.001-0.005 0.001-0.005
T4, 5 5 8 6

j B 0.6 0.75 1.0 1.2

T, 0.035 0.035 0.035 0.035

j 8 0.13-0.45 0.2-0.55 0.2-0.4 0.25-0.55
H 2.5-3.5 2.5-3.5 3-4 3-4

Salient Pole Generators and Motors:
With dampers—X = 0.37/0.25-0.5, X = 0.24/0.13-0.32, X, = X} <—— Xd
Without dampers—X; = 0.35/0.25-0.5, X = 0.32/0.20-0.5, X> = 0.4/0.3-0.45.

V4

Synchronous condensers:

Xy = 040, Xz = 0.25, X, = 0.24. .
Notes: (1) X, varies so critically with armature winding pitch that an average value can hardly be given. Variation is
from 0.1 to 0.7 of XJ; (2) r, varies with damper resistance; (3) r, and r, vary with machine rating.

* Based on W. D. Stevenson Jr. “Elements of Power System Analysis”, 1982
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 Example of vendor provided data

DATA SHEET SYNCHRONQOUS MACHINES

BASIC DATA ELECTRICAL DATA
Date: Standards: NEMA MG1
Order no.:
Ordered by: El_e:. _stitti' E.ls_ist_an_cei 0,0135 Ohmat 20 °C II
|Destination: Gen. rotor resistance 0,0586 Ohmat 20 °C
Type: Exc. stator resistance 4,7 Ohmat 20 °C
Rated voltage: 13800 V, 60 Hz REACTANCES Unsaturated saturated
Rated load: 22210 KW, at p.f. 0,85 :-d:a;szy-n;nr;nglz:- T97  pu 148 pu. ':
Speed: 1800 rpm i transient: 0,31 p.u. 0,24 pu 1
Rated current: 1093 A : sub transient: 0,20 p.u. 017 p.u. :
Rated temperature: 95 °F g-axis synchronous: 1,02  p.u. 076 pu. |1
Method of cooling: 1C616 1 subtransient: 0,40 p.u. 0,28 p.u. : MECHANICAL PROPERTIES
Degree of protection: IP55 egative sequence: 0,30 p.u. 0,23 p.u. : Acceleration time Tj 3,1 sec
Mounting arrangement: IM1005 ero sequence: 2,1_1_ by 1 Inertia constant H 1,33 kWsec/kVA
Insulation class Stator: F, temp rise to B Potier reactance 0,28 p.u. Damping factor kd 16,1 MW/Hz
Insulation class Rotor: F,temp rise to B Short Circuit Ratio: 0,55 Direction of rotation: cw/CCw
Insulation class Exciter: F, temp rise to B TIME CONSTANTS Rotortype: salient poles
Type of excitation: brushless d-axis transient short circuit: 1,29 sec. Poles are: massive without damperwinding
Exciter type: DGBP60/15 d-axis transient open circuit: 8,2 sec. Shaft extension: Flange
P.M.G.: 540/40 (6000 VA; 225 V; 1 phase) |d-axis subtransient short circuit: 0,04 sec. LOSSES AT NOMINAL RATING
Exciter response:: -~ 2,39 - 1/sec -|d-axis subtransient open circuit: - 0,06 sec. - |Friction and windage losses 160 kW
Stator Rotor g-axis subtransient short circuit: 0,04 sec. Core losses 146 kW
* INo load volt. 13 20 V |g-axis subtransient open circuit: 0,10 sec. Stray load losses 57 kw
No load current 2,2 264 A JArmature: 0,24 sec. Armature I°R losses @ 95°C 63 kW
Exc. rated volt. 41 56 V |Short Circuit Conditions Field I?R losses: 42 kW
Rated current 6,3 744 A |3 phase Peak 17337 A 15,9 p.u. EFFICIENCIES, tol. on losses acc. to IEC 60034
Ceiling volt. 73,5 110 V |3 phase RMS 8052 A 55 p.u. 4/4 3/4 112 1/4
Ceiling current 12,1 1449 A |2 phase Peak 11042 A 10,1 p.u. pf.1.0 98,17 97,83 97,05 94,58
B P-BRFI0024 W EN- vt e [SWEaay S@e e, 1853 A 1,7 p.u. p.f. 0,85 97,92 9764 96,91 94,49




COMPONENTS MODELING - INDUCTION
MACHINES

Positive Sequence
— Changes from stalled to running
— ~0.15 pu stalled (Xd”)
— 0.9-1.0 pu running
Negative Sequence
— Remains effectively constant
— ~0.15 pu (Xd”)
Zero Sequence

— 0.0 if WYE ungrounded or
DELTA connected

‘ Rr

== I /

* I ’ I
Val ’ Rc{% Erl . " {I-s)
| |

Rg Xg X

R

r r

Iz
+ ~(l-s)
_V02 Re %_;;% Ef2 Rr 12-8]

I3

Fig. 6.20, Negative sequence induction motor equivalent circuit.

R = 0.01 pu = Stator Resistance
sz = Stator Leakage Reactance at Rated Frequency
R, = 0.01 pu = Rotor Resistance
X, = Rotor Leakage Reactance at Rated Frequency
JX,, = J3.0 pu = Shunt Exciting Reactance
§X = jXg + X, = jX4 =j0.15 pu

Values shown are typical for an induction motor and are
per unit on the motor kVA and kV base

s = Synchronous RPM - Rotor RPM _ 1.0 for stalled condition
Synchronous RPM 0+ for running conditions




COMPONENTS MODELING - INDUCTION
MACHINES

Table 6.3. Approximate Constants for Three-Phase Induction Motors

Rating Full Load  Full Load  Full Load R and X in per Unit*
Efficiency Power Factor  Slip X, + X' X, R, R,
(HP) (%) (%) (%) (pu) (pu) (pu) (pu)
Uptob 75-80 75-85 3.0-5.0 0.10-0.14 1.6-2.2 0.040-0.06 0.040-0.06
5-25 80-88 82-90 2.5-4.0 0.12-0.16 2.0-2.8 0.035-0.05 0.035-0.05
25-200 86-92 84-91 2.0-3.0 0.15-0.17 2.2-3.2 0.030-0.04 0.030-0.04
200-1000 91-93 85-92 1.5-2.5 0.15-0.17 2.4-3.6 0.025-0.03 0.020-0.03
Over 1000 93-94 88-93 ~1.0 0.15-0.17 2.6-4.0 0.015-0.02 0.015-0.025

Source: Clarke [11, vol. 2]. Used with permission of the publisher.
*Based on full load kVA rating and rated voltage.
tAssume that X, = X, for constructing the equivalent circuit.

J(Xg+Xr)
. P ————
Em = Va1 - il (X, + X)) _-i—"- . I42
s al *
Vai Em _Voz éj(x,»,x,)
T, =X, +X,))Jw,R, sec l l

POSITIVE SEQUENCE NEGATIVE SEQUENCE
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* Modeling
— Usually modeled as a series impedance

— Shunt parameters can be calculated by review of transformer
tests

— Shunt parameters don’t generally impact analysis

— Transformer winding configuration determines sequence
networks

— Three winding transformers have interesting sequence
networks, but close inspections shows them to be intuitive
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TRANSFORMERS

L

Winding - Pasitive or Negative Sequence
Na Conpeclions e Cirguil
H Z, Z L H Zy Z L
D Ot =O-C—AAA O AAA—O O
1 t"“ ND 32w N, ar N,
H 2y Z, L H 2y Z, L
-0 ANA—OAN—O O 00— A A OO
A D
- N, MN,0r N,
H 2, 2, L H Z, g L
A AN A A s Dl O AP AN A 3D
s > A
N,or N,
i DD
s A A
& AN )\
|22
| 44
g
ZuiZ.
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NO Winding Zero Sequence Circuit Pasilive or Negative Sequence
Cannections Cireuit

Zy
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* 3 Winding Transformer Impedance
— Usually given as a winding-to-winding (delta) impedances in %

— Convert to equivalent WYE impedances for sequence network
analysis

— Often times, the base power is different for various
impedances

— Ex: 100 MVA autotransformer with 35 MVA tertiary
May show Z,,,, on 100 MVA base
May show Z,, and Z,,, on 35 MVA base
Must convert delta impedance to common base
before converting to equivalent WYE network
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3 Winding Transformer Impedances
— Delta-WYE Conversion Formula

1
Ly = E(ZHM +ZyL — ZmL)

1

A
M™H

(ZymL +Zum — Zur)

1
VAR E(ZHL + ZymL — Zuwm)

Z,,v = leakage impedance between the H and M windings, as measured on the H
winding with M winding short-circuited and L winding open circuited; Z,,, =
leakage impedance between the H and L windings, as measured on the H
winding with L winding short-circuited and M winding open circuited; Z,, =
leakage impedance between the M and L windings, as measured on the M
winding with L winding short-circuited and H winding open circuited.
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_Fw'm/em‘ eiredt and efmﬁ'ms for overbead bhes

N Charact [epedh range - 7 )
e S [Km [mile ke Ky ",“,‘,‘fz‘/ﬁ” (m) F;aaﬁms
short - P < f,:_, c:-z Ia sth Veph +ZIR
Ues 20/50 1 { Vo b || Ts =
| crs | R DU S PR
0”5 £L <€ b +
: Y - _
iies | evof o UF 30 [5-r0e 2ot 2
f‘ zl ) f’ Vs Z'Y’ - —
' ph=(4+ == z
240f1sv slan,z_y' e(ml’@-l) W 2 ) Rph + £ 1p
10;11 st Vzy V23 sinhVZy | - —1— fs-Y'(H ;’Y')V |
Unes | B o
240/t50\" 2 @ IF
<f< 445_!4.‘_511’; N K T 5
- ¢ deo |, 2Y, (:Z)‘
320[200 ;
Comment. 2%ke.Z [ Y'= Ky Y ; *) Packoular Jengthvange frv long bies

From - O. Crisan, “ECE-6127 Power Transmission and Distribution Lectures”, University of Houston, 1993
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Positive and Negative Sequence Impedance
— Passive component
— Assume line symmetry and transpositions

e (Calculations with simplified formula types:
L =1 = a lnl;” [H/m]

27

X = wl =21/l

D
X, = X, = 47 x 107’ mFm [Q/m]

R = R, = conductor AC e (tables)
 From tables:

Z = Fq +j(Xn + Xd}
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e Zero Sequence Impedance
— More involved
— Assumptions

* Zero sequence current divides equally between conductors
e Conductors are parallel to ground

e Earthis a solid with a plane surface, infinite in extent, and of uniform
conductivity

— None of the assumptions are true

— We get acceptable error with these assumptions
— Line design affects calculation techniques
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Positive and Negative Sequence Impedance

— Cannot assume line symmetry or transpositions

* General principle has to be applied and all self and mutual impedances
are calculated from formulas

* No tabulation of impedances

— T-line series impedance (or admittance) matrix is not
symmetrical. Similarly, shunt susceptances and conductance is
not symmetrical as well.




SYMMETRICAL COMPONENTS - EXAMPLES

TR
138-13.8kV

10MVA, Zr=T.4%

. 3¢

3

GRID

3PH FALLT=27kA, X/R=0.8
SLG FAULT=17kA, X/R=5.7

Assumptions:
Ep=(1+j-0)pu  Ep=Ep=0
Base Quantites:
Spase := 10MVA
Vpaser 1= 138kV

Sbase
lpase1 := ——— = 41.84A

'\/E' Vbasel

Vpaser 1= 13.8kV

Sbase

= 418.37A

lpasez =
\/ 3 Vbasez

4004 @
10secs

Positive Sequence Network
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“O)

Ref1 & TBoref ?‘J |

Negative Sequence Network
!2 TB +2
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TBier
& O -

————

Zero Sequence Network
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* 3PH Fault @ HS of TR, w/o Z;, w/o ground

no

g
Fa—
C

o

Reft

Positive Sequence Network

U,

|

Ref2

Negative Sequence Network

I

10

on

cl

Refl)

&
Zero Sequence Network

Iy

27kA .efj-(atan(9.8))

Ibasel

sc 3PHapu = = (65.51 — 642.03i)- pu

erﬁ(lsc_3PH.a.pu) = |l( 645.3621£ -84,17° )u -pu

2 .
|'.;c_E’,PH.b.pu =a 'lsc_3PH.a.pu = (—588.77 + 264.28i) - pu

ere(lsc_?’PH.b.pu) = "( 6453621& 155.83° )n ‘pu

lsc_3PH.c.pu = @ lsc_3PH.a.pu = (523.26 + 377.75i) - pu

z2r8(|sc_3PH_c_pu) = "(645.36214 35.83°)"-pu

19 1 1 1 Isc_?;PH.a.pu 0
1 2 .
l; = 5 1 a a Isc_3PH.b.|ou =165.51-642.03i |pu
l; 1 QZ a Isc_3PH.c.pu 0
lp "(04 14.0362°)"
z2rOM| | 11 || =| "(645.36214 -84.1737°)" |pu
12 ||( 0&_459 )u
Ea .
Z, := — = (0.0001573 + 0.00154151i) pu

22r0 (11) = "(0.00154 84.17°)" pu




SYMMETRICAL COMPONENTS - EXAMPLES

* SLG Fault @ HS of TR, w/o Z;

P on ) -
X0 0
N on M on
X
o)
O On
50 0 on
g

£) | 37

Assumptions:

Eas
|~ = Zr=0 =7
ey & =

B 17|<A fj (atan(5.7))

lao.pu = = (70.22 — 400.23i) - pu

lpaser
ere (lM) = |l( 406.33914 _80.050 )" . pu
Ea1 |
L= ~2-Z; = 0.00011066 — 0.00065905i
~ laopu =

zzre(zo) "(0.0007 £ -80.47° )" pu




SYMMETRICAL COMPONENTS - EXAMPLES

* 3PH Fault @ LS of TR, w/o Z;, w/o ground

Positive Sequence Network

i 1 Assumptions:
1 | 1
EE : Zm = Zm = Zm = j-0.074pu Z; = (0.000157 + 0.001542i) pu
1 ! |
c i
i E <> L_Jli Ea
! l; ;= ————— = (0.02756436 — 13.23769705i) pu
! T Ltim
Reft ® :

zZrO(ll) = "(13.23774 -89.88°)" pu

Negative Sequence Network
I F

=

| la 11 100 0.03 — 13.24i
| =1 a% a ||l |=]-11.48+659 |pu
Uz - -
N - i lE 1 a g2 0 11.45 + 6.64i
Ref2 ® :
* °_1 ! la "(13.23774 -89.8807° )"
Zero Sequence Network
b £l 2t0M| | I || = "(13.2377.4150.1193°)" |pu
0 on | I "(13.23774 30.1193°)"
10 i
c! ___'iejo________________________i Na Cov:rllne?:lt:lgns Zero Sequence Circuit AT L0 NSIEEJ?;E Sequence

H Z, 2 L H Z, Z L

| AP L.

N, mH N, or N,




SYMMETRICAL COMPONENTS - EXAMPLES

* SLG Fault @ LS of TR, w/o Z;

Assumptions:

2= g Z=0
=7

J—
=

+Zr L=1 Lo=Iwg+ 34 = Iy

-
anoo
TOD?

k3

30To
Iij
4
INC
|

En=l(L+2+2+3Z)

Ea =l (Z1+ Zm+ Z + Z1x + Zrx)
P &n | a1 0.00620962 — 4.44279635i
lg = = 0. — 4, |
P on V' (Lt Zm+ L+ Zi + Zra)
X0 %O
22r0(lg) = "(4.44284 -89.92° )" pu
N - Iy 110l 0.02 — 13.33i
o
x N on I =1 gz a lo | = 0 pu
o)
o &0 Ly "(13.32844 -89.9199°)"
10 © on 2r0M| [ Iy [|=| "(0£-89.8881°)"  |[pu
b A\
% "(04 -89.8881° )"
37 I (
f) L-rw-\. \

Winding _ Paositive or Negative Sequence
E} Na| connections Zer Sequence Circul Circuit
H <y 2 L H Z, 4 L
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— All from the Past scanned to PDF, TIFF or other...

— http search engines
— WWW

e Future?
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There have been little tidbits of information | have accumulated over the past 40 years that have helped me understand and analyze
distribution systems_ | have pinned them to my wall, taped them to my computer, stuffed them in my wallet and alas, copied them for my
students. Much of them are hard, if not impossible, to find in any reference book. A large percentage of them could also be classified as
personal opinion so they should be used carefully. For whatever, | hope they are as useful to you as they have been to me
Qver the many years, this document has taken on a life of its own. There have been many suggestions and much help from so many
distribution engineers that it is impossible to thank all of you. From the new topics such as “stray voltage” and grounding” to the many
surveys we've all done together (lightning, loading, etc) and finally the less serious sections like “Ways We Scare Ourselves” and “ Airline
Cabin Announcements”, this has been a lot of fun to work on.
Jim Burke
Click here to read or download this document, (Note this document is 123 pages long, and 1,472 KB so it may take some time to download,
depending on your internet speed)
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