Computing Nash Equilibria in Bimatrix Games
GPU-based Parallel Support Enumeration

SAFRAZ RAMPERSAUD
LENA MASHAYEKHY
Advisor: Dr. Daniel Grosu

Department of
Computer Science

WAYNE STATE
UNIVERSITY

Department of Computer Science
Wayne State University, Detroit, MI
saf raz@vayne. edu nl ena@ayne. edu

Problem Statement

Computing Nash equilbria using GPUs

e Application Constraints: Real world strate-
gic interactions usually require the mod-
eling of large number of agents having a
large number of choices or actions.

e Processing Constraints: Computing all
Nash equilibria for large bimatrix games
using single-processor computers is com-
putationally expensive.

Nash Equilibria in Bimatrix Games
Bimatrix Game I'(A,B)
e A set of two players: {Player 1, Player 2}

e A finite set of actions for each player
— Player 1's actions: M = (s1, 59, ..., 5m)
— Player 2’'s actions: N = (t,ts,...,t,)

e Player payoff matrices A, B € R"*"
Strategies {(z,y)}

e Strategies are probabilities representing
player’s choice of actions.

. .Q?m) | PI"{(PIayer 1)(— 32'} = Ii}
o y={(y1, ..., ya) |Pr{(Player2)«t;} =y;}
Support Enumeration Method

o v ={(xy, ..

1. Enumerate all pairs of supports (M, N,)
o M, = {52|332 > 0} where M, Cc M
° Ny = {tj|yj > O} where Ny CN

2. Compute Nash equilibria (z,y) in I'(A,B)
o1 |Vs; €M, (Ay); =u = max (Ay),
qeM

oy\thEN,(xTB)j:v:gle%((xTB)r

CPU-GPU

Graphics Processing Units (GPUSs) are specialized hardware dedi-
cated to building graphic images as well as supporting parallel pro-

cessing.
CONTROL CPU HOST GPU DEVICE
(Lol g0 Aue] oo Jacofanof awo
CACHE _
LUIALUIALT TR | J dGrId
CONTROL fi e i ooy P
(ONTROL cudaMemepy(arg) 09 9
A 0 e Y B O 1 .) Block | Blok
- i 1) | @y
CONTRO cudaMalloc(arg)
e A A '
CACHE Aty cudaMemcpy(arg) :
o C-T T3
Cgi‘g:? ALUlALU A4y ALUlALU :T"'“’:T""‘:‘"'“‘:”'“"
‘ foni03 0203,
| hread Thvead | Thread Thr ead |
1]
DR | DRAV | LOILYI121(13)]
(o il Block

GPU Parallel Support Enumeration

Input: Player 1 payoff, Player 2 payoff (A, B)
Output: Set of equilibria (P)
b=
q = min(m,n)
O = Generate(1, q)
d = Pure(A, B, q, ©)
fork=2,...,q
© = Generate(k, q)
o = & U Mixed(A, B, k, q, ©)
output ¢

ONOORWNRE

Support Keys

Player 2
—oi—
e Support key o ﬂ 1
e Indicates available actions AlBlc|D
e Support size i Player 1 [A |72 9.[5[6
e Order of permutation j od LLf | BLeoed]on
e 69 strategy pair combina- Ol il] e
thI’IS m D |3:6]1,9]4,3]2,7
Support Key Set & Block
Distribution
e Set of Support keys ©' ool o]
X . ©' [0[0TOTITOTOTTTOTOTITOTOTITOT0T0]
e Support size i
I
e Co-lexicographical order. 2 : P
©* [ofo[i[afoli o i[o[1[T[o[1[o[o[1[1T0[1[0[1[I[0[0]
i [b3 [b3 b2
e Blocks 0 select strategies for " I
J
Player 1 N R
ot

e Support size i o'

e Order of permutation j

Thread Distribution

fio
[

T
b

e Threads t’, selects strate-
gies for Player 2

e Processes strategy pairs
e Computes (z,y) probabilities
e Support size i

e Thread index k in block j A /

Computing Nash Equilibria

Pure(A4, B, ¢, ©):

Computes pure Nash Equilibria in T'(A,B).

A pure strategy x is Nash equilibrium strategy where players
choose a single action with probability 1.

Mixed(A, B, k, ¢,0):

Computes mixed Nash Equilibria in T'(A, B).

A mixed strategy x is Nash equilibrium where players choose ac-
tions according to a probability distribution over their pure actions.

Average Execution vs. Number of Actions

() e e

()
(8 CPU)

OMP-SE (16 CPU)

'x'.:'

1 1 1 1 1 1
4 6 8 10 12 14 16 18

GPU Processing

o(6") 5
o (6?) o
GPU m|

g

Generate Kernel o

CPU || @3 —>|dimGrid|—> EI [m]
dimBlock . <« (]

o

t | B |«

o

(0% o

m

[}

Support Size 3 m

10*

103 L

102 -

101 -

Speedup

10°

10-1 L

10—2 1 1 1 1 1
4 6 8 10 12 14 16 18

Experimental Setup
GPU

Nvidia™ GT 440

96 CUDA Cores

1.6 (GHz) Processor Speed

13 (billion/sec.) Texture Fill Rate

OpenMP

e Wayne State University Grid

e 40 Node 16-Core Quad AMD Processors
e 2.6 (GHz) Processor Speed

e 128 GB RAM

Conclusion

e GPU processing outperforms OpenMP im-
plementations for computing equilibria in
larger games.

e GPU speedups range from 144.07 to
1013.53 against OpenMP configurations
from 1 to 16 CPUs.

Acknowledgment

This research was partially supported by NSF
grants DGE-0654014 and CNS-1116787.

