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Problem Statement

Computing Nash equilbria using GPUs

e Application Constraints: Real world strate-
gic interactions usually require the mod-
eling of large number of agents having a
large number of choices or actions.

e Processing Constraints: Computing all
Nash equilibria for large bimatrix games
using single-processor computers is com-
putationally expensive.

Nash Equilibria in Bimatrix Games
Bimatrix Game I'(A,B)
e A set of two players: {Player 1, Player 2}

e A finite set of actions for each player
— Player 1's actions: M = (s1, 59, ..., 5m)
— Player 2’'s actions: N = (t,ts,...,t,)

e Player payoff matrices A, B € R"*"
Strategies {(z,y)}

e Strategies are probabilities representing
player’s choice of actions.
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Support Enumeration Method

o v ={(xy, ..

1. Enumerate all pairs of supports (M, N,)
o M, = {52|332 > 0} where M, Cc M
° Ny = {tj|yj > O} where Ny CN

2. Compute Nash equilibria (z,y) in I'(A,B)
o1 |Vs; €M, (Ay); =u = max (Ay),
qeM
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CPU-GPU

Graphics Processing Units (GPUSs) are specialized hardware dedi-
cated to building graphic images as well as supporting parallel pro-

cessing.
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GPU Parallel Support Enumeration

Input: Player 1 payoff, Player 2 payoff (A, B)
Output: Set of equilibria (P)
b=
q = min(m,n)
O = Generate(1, q)
d = Pure(A, B, q, ©)
fork=2,...,q
© = Generate(k, q)
o = & U Mixed(A, B, k, q, ©)
output ¢
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Thread Distribution
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e Threads t’, selects strate-
gies for Player 2

e Processes strategy pairs
e Computes (z,y) probabilities
e Support size i

e Thread index k in block j A /

Computing Nash Equilibria

Pure(A4, B, ¢, ©):

Computes pure Nash Equilibria in T'(A,B).

A pure strategy x is Nash equilibrium strategy where players
choose a single action with probability 1.

Mixed(A, B, k, ¢,0):

Computes mixed Nash Equilibria in T'(A, B).

A mixed strategy x is Nash equilibrium where players choose ac-
tions according to a probability distribution over their pure actions.

Average Execution vs. Number of Actions
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GPU Processing
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Experimental Setup
GPU

Nvidia™ GT 440

96 CUDA Cores

1.6 (GHz) Processor Speed

13 (billion/sec.) Texture Fill Rate

OpenMP

e Wayne State University Grid

e 40 Node 16-Core Quad AMD Processors
e 2.6 (GHz) Processor Speed

e 128 GB RAM

Conclusion

e GPU processing outperforms OpenMP im-
plementations for computing equilibria in
larger games.

e GPU speedups range from 144.07 to
1013.53 against OpenMP configurations
from 1 to 16 CPUs.
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