
1

19 June 2003

High-Throughput
Iterative Decoders

Borivoje Nikolić
Electrical Engineering and Computer Sciences
University of California, Berkeley

bora@eecs.berkeley.edu

2

Outline
Motivation
Power-performance tradeoffs

Viterbi decoder examples
Iterative decoder architectures

Turbo decoders
Parallel LDPC decoders
Serial LDPC decoders

Conclusion

2

3

What Does 3db Buy?
3dB coding gain can:

Double DSL subscriber radius

Double battery life of cell phone

Double number of channels on satellite TV

Twice as many bytes on a hard drive

Reduce antenna diameter by 30%

4

How To Achieve 3dB Gain?
Error correction codes (Forward error correction)

Convolutional codes with Viterbi decoding

Reed-Solomon codes

Turbo, low-density parity-check, and other iterative codes

Modulation techniques
64 QAM, CDMA. OFDM

Multiple antenna, MIMO systems

Channel detection techniques
Partial response signaling

Adaptive equalization

Decision feedback equalization (DFE)

xk

yk
û

k

uk ECC
Encoder

ECC
Decoder

Noise

Modulator
(write)

Demodulator
(read)

Channel
(medium)

3

5

0 1 2 3 4 5 6

10-4

10-3

10-2

10-1

100

SNR

BE
R

SNR vs. BER for rate 1/2 codes

Iterative
Code

Conv. Code
ML decoding

Uncoded

Capacity
Bound

Issues:
Decoder implementation, complexity

Design and emulation

Timing recovery, etc

50 Years of Information Theory

*[C. Berrou et. al., ICC 1993]
** [Chung, Forney, Richardson, Urbanke, Trans. Inform. Theory 2001]

3.9dBConvolutional Code + RS1990

0dBSHANNON1948
5.4dB(255,123) BCH 1967
4.5dBConvolutional Code1977

0.0045dB**Iterative Low Density
Parity Check (LDPC) Code

2001
0.7dB*Iterative Turbo Code1993

SNR Required
(BER = 10-5)

Rate ½ CodeYear

4 dB

6

Complexity Issues
Most systems are cost (area) and power constrained

And have certain throughput/latency requirements
Iterative decoders are by more than an order of
magnitude more complex than Viterbi decoders

The code that is 0.0245dB away from Shannon bound has
106 block length, 1000 iterations, irregular construction

To achieve practical systems:
Lower complexity codes
Scaling of CMOS

4

7

Relative Complexities

Difference in complexity ~ 5 orders of magnitude

Co
m

pu
ta

tio
na

l C
om

pl
ex

ity

SNR (dB)

For BER of 10-5

N : Block size
ν: Conv .code constraint length

8

Power-Performance-Area Tradeoffs
Microarchitectural transformations
Non-recursive systems

Parallelism, pipelining, retiming, transposition, …
Recursive systems

Loop unrolling, retiming, …
Circuit level optimizations

Gate sizing
Supply, threshold optimizations

5

9

Example: Viterbi Decoder
Most likely path through trellis is traced

()
()

sm sm bm sm bm

sm sm bm sm bm
n n n

n n n

1 1 1 2 3

2 1 2 2 4
1 1

1 1

= + +

= + +
− −

− −

min ,

min ,

Add Add
CompareSelect

sm n1 1−

sm n2 1−

sm n1

sm n2

timetn−1 tn

bm1

bm2 bm3

bm4

2-state example:

10

Example: Viterbi Decoder

Critical path: Add-compare-select (ACS) recursion

()10 +nsm
()nsm0

()nbm00

()nsm4

()nbm40

()10 +nsm

()12 +nsm

()14 +nsm

()16 +nsm

()11 +nsm

()15 +nsm

()17 +nsm

()nsm0

()nsm2

()nsm4

()nsm6

()nsm1

()nsm3

()nsm5

()nsm7

()13 +nsm

6

11

Viterbi Decoder: Loop Unrolling

Transforms radix-2 trellis into radix-4 trellis
Min operation is implemented through six parallel comparisons
Add-compare-select in 2 symbol times (with larger fanouts)

()20 +nsm

()nsm0

()nbm 00,00

()nsm2

()nbm 40,24

()nsm4

()nbm 00,40

()nsm6

()nbm 40,64

()20 +nsm

()22 +nsm

()24 +nsm

()26 +nsm

()21 +nsm

()25 +nsm

()27 +nsm

()nsm0

()nsm2

()nsm4

()nsm6

()nsm1

()nsm3

()nsm5

()nsm7

()23 +nsm

4

12

Viterbi Decoder: Retiming

Retiming usually doesn’t help in recursive algorithms

7

13

Viterbi Decoder: Compare/Add-Select

Another retiming pushes adds back through the select
Add and compare performed in paralell

-

Comp/Add Sel

+

+

+

+

14

ACS Comparison

Synthesis results using 0.18µm general-purpose standard cell library

Symbol Period (ns)

0

50

100

150

200

250

300

350

0 1 2 3 4

Symbol Period (ns)

A
re

a
(x

10
00

 u
m

2)

218,000µm2

0.18ns

Area vs. Throughput

0

50

100

150

200

250

0 1 2 3 4

Symbol Period (ns)

P
ow

er
 (m

W
)

105mW

0.18ns

Power vs. Throughput

CSA: Retimed Compare-Select-Add
[Fettweis, et. al., Globecom 1995] [Lee and Sonntag,
Globecom 2000]

R4 ACS: Radix-4 ACS [Yeung and Rabaey,
ISSCC 1995] [Black and Meng, JSSC 1992]

ACS: Traditional add-compare-select

Concurrent ACS: Concurrent add and
comparison [S. Sridharan and Carley, JSSC 2000]

8

15

Case Study: Disk Drive Read Channels

8-16-state Viterbi decoders were barely reaching 500Mb/s in 0.25µm
In 0.13µm they would be 2x faster and 4x smaller

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6 7 8

Bit period [ns]

A
re

a
[m

m
2]

Range of detector areas
in 350nm, 250nm

Small chips

500Mb/s1Gb/s

250nm

180nm

130nm
Scaling

300-500Mb/s, 0.6-1.5mm2

16

Case Study: Disk Drive Read Channels

Power is reduced by 4x, too
Allows integration of larger (e.g. 32-state detectors)

0

200

400

600

800

1000

1200

1400

1600

1800

0 1 2 3 4 5 6 7 8

Bit period [ns]

Po
w

er
 [m

W
]

Range of detector power
in 350nm, 250nm

500Mb/s

1Gb/s

250nm

180nm

130nm
Scaling

300-500Mb/s, 250-400mW

9

17

Iterative Decoders
Can they be made practical to fit:

Optical receivers
Disk drive read channels
Satellite (DVB) receivers
Digital subscriber line (xDSL) modems ?

Would a practical high-throughput iterative decoder be
feasible in 130nm? 90nm?

18

Iterative Decoders
Two classes: turbo and message passing decoders
Turbo decoders

Soft-input-soft-output building blocks
Maximum-a-posteriori (MAP) decoder implementing BCJR algorithm
Soft-output Viterbi decoder (SOVA)
Interleavers

Message-passing decoders
Low-density-parity check (LDPC) codes
Turbo-product codes are decoded similarly + interleaver

10

19

Turbo codes
Concatenated convolutional codes

Parallel [Berrrou93]
Serial [Benedetto96]

Turbo product codes
Transmitted bits fill 2D matrix
Rows/columns constrained by

Hamming
BCH [Pyndiah99]

Low density parity check codes [Gallager63]
Sparse binary parity check matrix, H
Nullspace of H forms set of codewords,
Simple even parity checksums and modulo-2 arithmetic

Density evolution [Richardson01]
Finite field constructions [Lin00]
Rammanujan graphs [Rosenthal00]

Examples of Iterative Codes
Conv. Enc1

Conv. Enc2

x
1u

x
2

π

































1100
00

1
001011

11
110

1110

..
..

.
.

...

x~
0~ =xH

20

Outer
Encoder

Inner
Encoder

Inner
Decoder

Outer
Decoder π

π

Noise

π-1

Turbo decoding for partial response channels:

• Inner Code: Trellis (Convolutional) Code based on Partial Response Channel

• Outer Code: Convolutional or LDPC Outer Code

π: Pseudo Random Interleaver

– T. Souvignier, et. al., “Turbo Decoding for PR4;
parallel vs. serial concatenation,” ICC 1999

Iterative Decoders: Turbo serial

11

21

Unrolled decoder employs
multiple pipelined SISO stages
to achieve desired throughput
rates (> 1Gbps)

SISO

Intrinsic

Extrinsic

Channel
Observations

D1
π−1

π

D2

D2

 D1
π−1

πD2

D1 π-1

- G. Masera, et. al., "VLSI Architectures for Turbo Codes", IEEE
Transactions On VLSI Systems, Vol. 7, No. 3, Sep. 1999.

Iterative Decoders: Unrolling

22

SISO Blocks: BCJR Algorithm

Implements Maximum A-Posteriori Decoding

Bi-directional trellis path propagation

Path metric is a probability measure of the particular ending state

Long latencies for full path propagation

Large memory requirements

Solution: Windowed Methods

time = 0 time =k time =N

STATE
‘000’
‘001’
‘010’
‘011’
‘100’
‘101’
‘110’
‘111’

12

23

MUXMUX
α-Memory

2L
α-Memory

2L

γ-Memory
3L x 2

β-ACS β-ACS

MUX
α-Memory

L

α-ACS

Λ-ACS

Λ-ACS

 .
 .
 .
Number of
States

[A. Viterbi, J. on Sel. Areas in Comm., 1998]

[E. Yeo, etc. , Trans. Magnetics, 2001]

SISO Blocks: Windowed BCJR
Decode
Block

Sync
Block

Backward Propagate

t=n + 2L

Decode
Block

Sync
Block

Backward Propagate

t=n + 3L

Decode
Block

Sync
Block

Backward Propagate

t=n + 4L

Decode
Block

Sync
Block

Backward Propagate

t=n + 5L

L L

One forward sliding window.

Two alternating backward propagating windows

24

Memory Access in MAP Decoder
Direct windowed approach: complex memory access.

Rescheduling

Partition memory into 3 sections

Memories to be implemented with fast shift registers.

Shift Register

Shift Register

Copy

Input

Output

[E. Yeo, et. al., TMRC 2000]
[A. Worm, et. al., VLSI Design 2001]
[Bougard, et. al., ISSCC 2003]

Trellis Position

T=4L

T=2L

T=3L

T=L

T=5L

T=0
L 2L 3L

Time

T=6L

T=7L

T=8L

Memory Partitioning &
Rescheduling

Forward Window

Backward Window 1

Backward Window 2

13

25

Soft Output Viterbi Algorithm (SOVA)

Determines the two most likely path (α and β) …

…that provide complementary bit decisions

Soft output = Difference in path metric of α and β

k-M k n
L-step VA M-step SOVA

α
mk β

Time:

26

SOVA Decoder Architecture

Survivor Path
Traceback:
α - path

Viterbi
Decoder

Channel
Inputs

Decoded
Soft

Output

Survivor Path
Traceback:
β - path

Memory: Path Metric Differences

Register exchange implementation of survivor path traceback

Throughput limited by Viterbi decoder

Cache realized with synthesized flip-flops

14

27

Die Micrograph

[E. Yeo, et.al. ESSCIRC 2002.]
…more details to appear in IEEE Journal of Solid-State Circuits, July 2003

164k395mW500Mb/s8-state EPR4
channel

174k400mW500Mb/s8-state Octal(11,13)

Trans.
Count

PowerSpeedDecoder

1.8V, 0.18µm CMOS with 6 metal layers

Standard cell design with
customized clock tree for 500MHz CLK

28

Parallel LDPC Decoder Architecture

1

2

PEc1

PEv1 PEv2
…

.

.

.

PEv3 PEv4

Interconnect Fabric

PEvN

PEc2 PEcM…

Fully parallel structure
e.g. satellite receiver:

13,000 variable node processing elements, PEv

6,000 check node processing elements, PEc

High throughput; low power
Routing complexity [A. Blanksby and C. J. Howland, JSSC 2002]

15

29

LDPC Code Performance
BER performance of LDPC depends on

Graph girth
Code expansion + block size
Hamming distance

“Random” parity-check matrices usually achieve good
performance

The interconnect network is random, too
A 1024-bit LDPC decoder in 0.15µm occupies 7mm x 7mm with
50% density [Blanksby, Howland, JSSC’02]

Structured codes achieve good performance with
structured interconnect

Ramanujan and Cayley graphs

30

Serial LDPC Decoder Architecture

1

2

3

4

5

6

7

8

A

B

C

time

...

A

B

C

1

2

3

4

5

6

7

8

Latency dependent on total number of nodes
Messages are stored in SRAM

Large memory requirement
Natural structure for microprocessors, DSPs, etc.
Parallelizing computation with limited PEs

PECPEV SRAM

[G. Al-Rawi, J. Cioffi, and M. Horowitz, ITCC 2001]

16

31

Staggered Serial LDPC Decoder

1

2

3

4

5

6

7

8

A

time

1

2

3

4

6

5

7

8

1

3

B

1

3

5

7

8

2

4

6 C

5

7

8

2

4

6

A

...

Increase number of variable node PEs
Staggered message updating

reduced complexity of PEv

Messages stored in variable node PEs
reduced memory requirement

Improved BER @ reduced iteration
counts

PEC

PEVPEVPEVPEVPEVPEVPEV

MUX

[E. Yeo, et. al. Globecom2001]

32

LDPC codes based on Galois Fields

[Y. Kou, et. al. ISIT 2000]

• Codes based on GF projections are low rate.
• No cycles of length 4 (short loop)
• Cyclic rows
• e.g. (1023 x 1023) code has rate of 0.68

• Column splitting
• Each column in original matrix is split into four
• Non-zero entries in original column are cycled

through the 4 new columns
• eg. (1023 x 4092) code has rate of 0.75
• Partial loss of regularity (cyclic structure)
• Complex O(N2) encoding

• Puncturing
• Truncate height of PC matrix
• Columns in the maximum zero runlength region

correspond to parity bit locations
• Cyclic encoding using direct application of PC matrix

now possible

17

33

Shift register-based implementation

• Staggered decoding.

• Regularity of codes based on Finite Field geometries.

...

Q4089

Q4090

Q4091

Q4092

Check-to-Bit Message Computation Block

Q4085

Q4086

Q4087

Q4088

Q0

Q1

Q2

Q3

+

+

+

+

Q4081

Q4082

Q4083

Q4084

...

+

+

+

+

Q29

Q30

Q31

Q32

[E. Yeo, et. al. Globecom2001]

34

BBerkeley EEmulation EEngine
A real-time FPGA-based hardware emulator, with speed up to 60 MHz
Emulation capacity of 10 Million ASIC gate-equivalents per module,
corresponding to 600 Gops (16-bit adds).
2400 external parallel I/O providing 192 Gbps raw bandwidth.
Automated design flow from Simulink to FPGA emulation, integrated
with INSECTA ASIC design flow.

C. Chang, et al, FPGA’03

18

35

BEEBEE Design Environment

Network

Simulink
MDL

BEE/Insecta
Design
Flow

FPGA
Bit Stream
& Conf File

ASIC
Layout

Analog Front-end

LVDS/LVTTL

BEE Processing Unit

Ethernet

Servers

Client PC

36

Design Flow: Users’ Perspective

Simulink
Schematics

BEE Compiler
(System Generator)

CORE, VHDL
Descriptions

FPGA
Backend

Flow

Xilinx Bit stream

Virtual
Components

MC, VHDL
Descriptions ASIC Flow

GDSII

VHDL Netlist

Performance
Estimation

19

37

Basic Blocks

Shifter VHDL ConcatEnable Const

Counter Delay MuxDown P to SConvert

ReInt S to P SyncSlice Up SmpRegister

FIFO DPRAM

ROM RAM

Accum CMultAddSub Inverter

Logical NegateMult Relat’n

Scale Sin CosShift Thresh

FPGA Support Only

FPGA+ASIC Support

38

Communication & DSP Blocks

FIRFFT

CIC
DDS

Puncture

DepunctureConv. Encoder

FPGA Support Only

FPGA+ASIC Support

20

39

MAP Simulation

10 MHz system clock
SNR 14db → -1db
10^9 Samples
<30minutes

BER-SNR Waterfall Curve (BCJR)

0.00001

0.0001

0.001

0.01

0.1

1
-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

SNR (dB)

BE
R

40

ASIC Flow: INSECTA
Tcl/Tk code drives the flow

Same scripting language used by
several EDA tools: First
Encounter, Nanoroute, ModelSim,
Synopsys…

GUI controls technology
selection, parameter
selection, flow sequencing

A real “Push Button” flow…
Users can refine flow-generated
scripts

21

41

ASIC Flow: Details

High-level
Design

Identify files and paths
[Insecta]

Resolve design
hierarchy [Insecta]

Check hierarchy
consistency [Insecta]

Identify bad VHDL
structures [Insecta]

Correct bad VHDL
structures [Insecta]

Generate synthesis
scripts [Insecta]

Virtual component
generation [MC]

Generate backend
scripts [Insecta]

Run physical synthesis
[DC/PSYN]

Run signal integrity
[First Encounter]

Run floorplanning
[First Encounter]

Re-run physical
synthesis [DC/PSYN]

Run route
[NanoRoute]

Run extraction &
checks [Calibre]

GDSII

Backannotate netlist
[DC]

Run (first)
logic synthesis [DC]

PC Software
1. Matlab R13 (6.5)
2. Xilinx ISE
3. Xilinx System

Generator 2.2
4. BEE ISE
5. Xilinx ChipScope
6. Xilinx Parallel Cable

UNIX SW Versions
1. TCL/TK 8.3
2. Synopsys 2002.05
3. Cadence SoC

Encounter 2.2.
(Nanoroute)

4. Modelsim 5.6
5. Cadence SE

(icfb 4.4.6)
6. Mentor Calibre

View hierarchy
[Insecta]

Optional design steps

View logic
schematic [DA]

View floorplan
[First Encounter]

Gate-level simulation
[Modelsim]

View routed design
[NanoRoute]

View log files
[Insecta]

View GDSII [pipo]

Generate GDSII
[pipo]

EPIC

Post process DFII
[icfb]

42

Conclusions
Communications and storage systems are power and
cost constrained, but performance is what sells
Iterative decoders are several times larger than
conventional Viterbi decoder
Scaling of technology allows integration of iterative
decoders
Emulation technology is necessary for evaluating BER
performance
90nm technology will likely bring us simple iterative
decoders at lower throughput

22

43

Acknowledgments
Most of iterative decoder work was done by
Engling Yeo, UC Berkeley
BEE and INSECTA were developed in
Berkeley Wireless Research Center, UC Berkeley
by C. Chang, K. Kuusilinna, R. Davis and many others
(Prof. Brodersen’s group)
ST Microelectronics, Marvell, Texas Instruments funded
through UC Micro program
ST Microelectronics fabricated chips and provided
support

