

Analog Verification

Ken Kundert

Designs They Are A-Changin'

The Complexity of Design is Growing Rapidly

Etc.

> 100K transistors

In Multiple Dimensions!

Copyright © 2009, Designer's Guide Consulting, Inc. – All Rights Reserved

Functional Errors

- Functional errors are often very simple errors
 - Inverted signals
 - Corrupt logic
 - Flipped busses
 - Unaccounted for dependencies (chicken/egg problem)
 - Communication errors
- But are generally catastrophic

In Recent Verification Efforts

We found

- swapped inputs
- logic error that precluded sleep mode
- busses swapped
- dependency loop (chicken & egg problem)
- inverted bias current
- wires swapped
- inverted input
- swapped reset & reset bar
- logic lines crossing supply domains w/o level shifters
- incorrect RTL
- undriven logic signal in analog top level
- errors in register map
- many spec errors
- And more...

The Three Basic Issues

- Detailed verification only performed at block level
 - All required signals are assumed to be present
 - Assumptions on inter-block dependencies never verified
- Verification on most modes never performed
 - Only typical or worst case modes
 - Any control logic that supports untested mode could contain hidden error
- No analog digital co-verification

Transistor-Level Verification

- Too expensive for functional verification
 - 10K transistors, 30K cycles, 250 modes
 - One week for one mode with timing simulator
- Need nightly regression tests
 - 10K× speed up needed
- Chip level requires
 - 100K-1M× speed ups

What's Needed

- Systematic approach to verifying design & specification
- Confidence that all flaws have been found
- More verification, earlier in design flow
 - Errors are easier to fix & less disruptive
- Help with performance verification
- Accurate model of mixed-signal section

The Answer

- Functional verification with ...
 - Model-based verification
 - Dramatically accelerates the simulation
 - Moves it earlier in design cycle
 - Exhaustive regression testing
 - Check every mode and every setting
 - Automated pass/fail tests (self-checking tests)
 - Creation of a verified "sign off" quality toplevel model
 - Often must be pure Verilog or VHDL

This is Analog Verification

- Exhaustive regression testing
- Traceable to transistor level
- Verifies both models and circuits
 - Test benches verify behavior of models
 - Methodology assures models are consistent with circuit
- Driven by analog verification engineer

We can now imagine a future where we are surprised when an analog chip does not function the first time.

Conclusions

- Complex system design requires a rigorous system verification methodology
- Chip design and analog implementation needs to be linked for verification
- AV can be done today
 - Modeling and Regression Testing
- The bigger the system, the more benefit will be derived from using AV

Designer's Guide Consulting

- Adopting analog verification is a difficult process, filled with potential pitfalls
- We can help guide you through the process
 - Teach classes
 - Training your verification engineers
 - Guide verification planning
 - Consult on difficult models & tests
 - How to create very fast analog models in verilog
 - How to overcome performance issues
 - Provide AV services

References

- H. Chang & K. Kundert. "Verification of Complex Analog and RF IC Designs." The Proceedings of the IEEE. March 2007.
- K. Kundert & H. Chang. "Verification of Complex Analog Integrated Circuits." *CICC-06*.
- K. Kundert & O. Zinke. The Designer's Guide to Verilog-AMS. 2004.
- K. Kundert. "Principles of top-down mixed-signal design." www.designers-guide.org/Design.
- A. Meyer. *Principles of Functional Verification*. 2003.
- Analog Verification Newsletter. www.designersguide.com/newsletters

For More Information

www.designers-guide.com