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Introduction to LDPC

� Channel Encoder  introduces redundancy in transmitted bit 

stream

� Channel decoder use the redundancy to correct the errors 

due to channel impairments and noise.

� Low-Density Parity-Check (LDPC) Code is the best 

available error correction code.
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Figure 1: Block Diagram of Communication System
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Progress in Error Correction Systems

LDPC

�Source :Trellis coding by C. Schlegel, IEEE Press
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Some Notation and Terminology

� k- number of input (information) bits. 

n – number of output (coded) bits

� Code is a set of 2k vectors of length n

� Encoder is a specific mapping of 2k inputs to codewords

� Decoder tries to recover the information bits from the received code word that is 

corrupted with channel impairments

� dmin – minimum distance of the code

Smallest Hamming distance between any two codewords. 

� from Dr. Krishna Narayanan (Texas A&M)’s presentation
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Shannon’s Idea in the proof

� Pick 2k codewords of length n at random

� Code is guaranteed to be good as k ! 1

� Problem: How to decode this?

� Brute force: we require storage of 2k codewords

� There are only about 1079 (~ 2250) atoms in the universe

� from Dr. Krishna Narayanan (Texas A&M)’s presentation
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� As k ! 1 code must correct up to the Shannon limit

� Encoding/Decoding complexities don’t increase drastically

with k

� Storage does not increase drastically with k

� Randomness Vs Structure

� Random codes are good

� But structure is needed to make it practical

Good Code Requirements

� from Dr. Krishna Narayanan (Texas A&M)’s presentation
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� There are two kinds of codes: Block Codes and  Convolutional 

codes

� In an (n,k) block code, k bits are encoded in to n bits. Block code is 

specified by k x n generator matrix G or an (n-k) x n parity check 

matrix H 

� Block Codes: Hamming, BCH, Reed Solomon Codes. Hard decision 

decoding is used. Soft decoding possible- but complex.

� Convolutional codes: Can encode infinite sequence of bits using 

shift registers. Soft decision decoding such as viterbi can achieve 

optimal maximum likelihood decoding performance.

� Turbo Codes (1993): Parallel concatenated convolutional. Codes

� Rediscovery:  LDPC Block code(1962, 1981, 1998). Near shannon

limit code, Efficient soft decoding (message passing) and with 

iterations.

Coding Theory Advances
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� LDPC codes were invented by Robert Gallager [R1] in his PhD 

thesis. 

� Soon after their invention, they were largely forgotten, and 

reinvented several times for the next 30 years. 

� Their comeback is one of the most intriguing aspects of their 

history, since different communities reinvented codes similar to

Gallager’s LDPC codes, but for entirely different reasons.

[R1] R. Gallager, “Low-density parity-check codes," IRE Trans. Information 

Theory, pp. 21, 28, January 1962.

[R2] M. R. Tanner, “A recursive approach to low complexity codes,” IEEE Trans. 

Inform. Theory, vol. 27, pp. 533–547, 1981.

[R3] D. MacKay, “Good error correcting codes based on very sparse matrices," 

IEEE Trans. Information Theory, pp. 399-431, March 1999.

Coding Theory Advances

� from “LDPC Codes: An Introduction” Amin Shokrnollahi
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LDPC Characteristics

� Excellent Bit Error Rate performance!

� Computationally easier decoding than Turbo Codes

� Moderate storage requirements

0.0045 dBIterative Code LDPC

0.7 dBIterative Code Turbo

4.5 dBConvolutional Code

5.4 dB(255,123) BCH

0 dBShannon, Random Code

SNR required for 

BER <1e-5

Rate ½ Code

Table 1:  BER performance for different codes
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Example LDPC  Code

Variable nodes correspond to the soft information of received bits.

Check nodes describe the parity equations of the transmitted bits.

eg. v1+v4+v7= 0; v2+v5+v8 =0 and so on.

The decoding is successful when all the parity checks are satisfied (i.e. 

zero).



2/27/2008

12

Micro-Architecture  for VNU

Serial Variable Node Unit (VNU) to compute the variable node 

messages (Q) from check node messages
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Micro-Architecture  for CNU
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Decoder Architectures

� Fully Parallel Architecture: 

� All the check updates in one clock cycle and all 

the bit updates in one more clock cycle. 

� Huge Hardware resources and routing 

congestion. 
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Decoder Architectures, Serial

Serial Architecture 
[1] Levine,.etal Implementation of near Shannon limit error-correcting codes using reconfigurable hardware

IEEE Field-Programmable Custom Computing Machines, 2000 

Serial Architecture[1-2]

Check updates and bit updates in a serial fashion.

Huge Memory requirement. Memory in critical path.
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Decoder Architectures, Serial

Serial Architecture. 
[2] E. Yeo, "VLSI architectures for iterative decoders in magnetic recording channels,“ IEEE Trans. Magnetics, 

vol.37, no.2, pp. 748-55, March 2001.

Serialized and fully pipelined implementation requires two memory 

buffers per stage, alternating between read/write.
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Semi-Parallel Architecture

Semi Parallel Architecture
[3] T. Zhang and K. K. Parhi, Joint (3,k)-Regular LDPC Code and  Decoder/Encoder Design, IEEE Transactions on 

Signal Processing April, 2004.

Check updates and bit updates using several units.

Partitioned memory by imposing structure on H matrix.

Practical solution for most of the applications.

Complexity differs based on architecture and scheduling
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Semi-Parallel Architecture

Semi Parallel Architecture
[4] Karkooti etal. Semi-parallel reconfigurable architectures for real-time  LDPC decoding ; Proceedings. ITCC 

2004.
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Semi-Parallel Architecture

Semi Parallel Architecture
[5] A. Selvarathinam, G.Choi, K. Narayanan, A.Prabhakar, E. Kim, “A Massively Scalable Decoder Architecture 

for Low-Density Parity-Check Codes”, in proceedings of ISCAS’2003 
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� The authors in [6] reported that 95%  of power consumption of the 
decoder chip developed  in [2] results from memory accesses. 

� The authors in [7] reported that 50% of their decoder power is from 
memory accesses. 

� Memory access is a bottleneck in preventing full utilization of units. 

� Efficient implementations for the irregular codes is a hard problem

Problem Statement

[6] Yijun Li et al, "Power efficient architecture for (3,6)-regular low-density parity-check code decoder,“ IEEE 

ISCAS 2004

[7] Mansour et al  “A 640-Mb/s 2048-Bit Programmable LDPC Decoder Chip”-IEEE  Journal of Solid-State 

Circuits, March 2006
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Structured LDPC Codes

Array Codes
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[8] J. L. Fan, ”Array-codes as low-density parity-check codes”, In Proc. TPP

Example H Matrix

r row/ check node degree=5

c columns/variable node degree=3

P=7

N=P*r=35
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Structured LDPC Codes
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r row degree=5

c column degree =3

P=211

N=P*r=1055
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On-the-fly computation

This research introduces the following concepts to LDPC decoder implementation

[ICASSP’04,Asilomar’06,VLSI’07,ISWPC’07,ISCAS’07,ICC’07]

1. Block serial scheduling

2. Value-reuse, 

3. Scheduling of layered processing,

4. Out-of-order block processing,

5. Master-slave router,

6. Dynamic state,

7. Speculative Computation

8. Run-time Application Compiler [support for different LDPC codes with in a class of 
codes. Class:802.11n,802.16e,Array, etc. Off-line re-configurable for several regular 
and irregular LDPC codes]

All these concepts are termed as On-the-fly computation as the core of these

concepts are based on minimizing memory and re-computations by employing just

in-time scheduling.

[Items in bold are covered in more detail for this presentation]
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Decoder Architectures utilizing 

On-the-fly Computation

� Block Serial standard message passing Decoder

� Block Serial Layered Decoder  

� Block Parallel Layered Decoder
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Block Serial Standard Message 

Passing Decoder
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Key Observations and Results
Represent R and Q messages by the following matrices (similar to physical 

message storage employed in other architectures) except that these matrices are 

not really stored in the proposed architecture [9]. 

[9] K. Gunnam, G. Choi and M. B. Yeary, “An LDPC Decoding Schedule for Memory Access Reduction”,  IEEE 

International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2004)

R –Check Node to 
Variable Node 
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Block Independence Property

The variable nodes in each block column has support only on the 

one block column edges of the check nodes.

2,1R
r

2,23R 4,1R
r

4,1Q
r

4,3Q
r

R check node messages, 

Q variable node messages

[ ]Tkpjpkpjlkpjkj RmRmRmR ,)1(,,)1(,)1(1, ...,,..., −+−+−+=
r
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Q Vector  Computation

The bit nodes in each block column has support only on the one 

block column edges of the check nodes.
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Check Node Processing

� Partial State Computation of Block row of R 
messages is only dependent on the block 

column of Q messages if Block Serial 

Processing of multiple block columns of Q 
messages is used. 

� Final State is only one vector for  each Block 

row of R messages.
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R Vector  Computation

The check nodes has support on all block columns. Once the 

computation is split into accumulate and subtraction stages, the

dependency is on only one block column

2,1R
r

2,23R 4,1R
r

4,1Q
r

4,3Q
r

Block Row 1

Block Row 2

Block Row 3

,       
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Proposed Scheduling schemes for no 

Message Passing Memory

� Key Finding: Doing Computations in Block Column fashion and Block 

row serial fashion 

� P serial CNU and VNU along with PxP Cyclic shifters [On-the-Fly 

Type 1]. 

� P*c serial CNU and P Parallel VNU: [On-the-Fly Type 2]. 

� Transpose to Key Finding: Doing Computations in Block row  fashion 

and Block column serial fashion . P parallel CNU and P*r serial VNU 

[On-the-Fly Type 3].
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Q Init

Cyclic 

Shifter

CNU 1 

CNU  P

VNU 1 

VNU  P
SS

Cyclic 

Shifter

Majority Function
Iteration CounterIteration Estimate

In

Out

Proposed Architecture for Memory Less 

Decoding

[9] K. Gunnam, G. Choi and M. B. Yeary, “An LDPC Decoding Schedule for Memory Access Reduction”,  

IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2004)

Decoder for  (3, 5) – structured LDPC code of length 1055. No 

message communication memory is needed. Possible due to 

structured property and scheduling. 
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Proposed Micro Architecture for 

CNU min-sum

� Simplifies the number of comparisons required as well as the memory 

needed to store CNU outputs. 

� The correction has to be applied to only two values instead of  distinct 

values. 

� Need to apply 2’s complement to only 1 or 2 values instead of  values at 

the output of CNU.  
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CNU Micro Architecture for min-sum

M1_M2 finder
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On-the-fly Type 2 Architecture for min-
sum
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Block Serial Layered Decoder
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Block Serial Layered Decoder

� The Block Serial Standard Message Passing Decoder architecture 

discussed in the previous slides (proposed in 2003) is used in high 

throughput applications using short length and regular LDPC codes.

� Block Serial Standard Message Passing Decoder is the one that is

recently adapted in the industry (for read channel in hard disk drive 

electronics, for custom radio applications for NASA and DoD).

� Our recent work, Block Serial Layered Decoder and  Block Parallel 

Layered Decoder are more efficient architectures for long length

LDPC codes( for read channels in holographic storage, flash storage 

and hard disk drive electronics)  and irregular LDPC codes (IEEE

802.11n, IEEE 802.16e) are discussed now!
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Irregular QC-LDPC codes

Different base matrices to support different rates.

Different expansion factors (z) to support multiple lengths.

All the shift coefficients for different codes for a given rate are obtained from the 

same base matrix using modulo arithmetic
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Irregular LDPC codes
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Irregular LDPC codes
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Irregular LDPC codes
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Irregular LDPC codes

� Existing implementations [12] show that these are more complex to 

implement. 

�These codes have the better BER performance and selected for IEEE 

802.16e and IEEE 802.11n. 

� It is anticipated that these codes will be the default choice for most of 

the standards. 

� We show that with out-of-order processing and scheduling of layered 

processing, it is possible to design very efficient architectures.

� The same type of codes can be used in storage applications 

(holographic, flash and magnetic recording) if  variable node degrees 

of 2 and 3 are avoided in the code construction for low error floor

[12] Hocevar, D.E., "A reduced complexity decoder architecture via layered decoding of LDPC 

codes," IEEE Workshop on Signal Processing Systems, 2004. SIPS 2004.  .pp. 107- 112, 13-15 

Oct. 2004
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Decoder architecture
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Decoder operation
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New Dataflow Graph for Layered Decoding
for irregular mother matrices
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Pipeline for Irregular codes

R selection for Rnew operates out-of-order to feed the data for PS 

processing of next layer
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Out-of-order layer processing for 

R Selection

R selection is out-of-order so that it can feed the data required for the PS processing of the 

second layer.

So here we decoupled the execution of R new messages with the execution of CNU processing.

Here we execute the instruction/computation at precise moment when the result is needed!!!

PS processing R selection
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Out-of-order block processing for 

Partial State

Re-ordering of block processing . While processing the layer 2,

the blocks which depend on layer 1 will be processed last to allow for the pipeline latency.

In the above example, the pipeline latency can be 5.

The vector pipeline depth is 5.so no stall cycles are needed while processing the layer 2 due to 
the pipelining. [In other implementations, the stall cycles are introduced – which will effectively 

reduce the throughput by a huge margin.]

Also we will sequence the operations in layer such that we process the block first that has 

dependent data available for the longest time.

This naturally leads us to true out-of-order processing across several layers. In practice we wont 

do out-of-order partial state processing involving more than 2 layers.

PS processing R selection
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Block Parallel Layered Decoder
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Block Parallel Layered Decoder
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Results
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FPGA Results for Block Serial 
Standard Message Passing Decoder

[4] Karkooti etal. Semi-parallel reconfigurable architectures for real-time  LDPC decoding ; 

Proceedings. ITCC 2004. 

[10] T. Brack etal. “Disclosing the LDPC Code Decoder Design Space” Design, 

Automation and Test in Europe (DATE) Conference 2006, March 2006, Munich, Germany
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Layered Decoder Throughput Results-

FPGA, 802.11n
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Layered Decoder Throughput Results-

ASIC, 802.11n

[13] Rovini, M.; L'Insalata, N.E.; Rossi, F.; Fanucci, L., "VLSI design of a high-throughput 

multi-rate decoder for structured LDPC codes," Digital System Design, 2005. Proceedings.

8th Euromicro Conference on , vol., no.pp. 202- 209, 30 Aug.-3 Sept. 2005
[14] Y.Sun, M. Karkooti and J. R. Cavallaro, “High Throughput, Parallel, Scalable LDPC 

Encoder/Decoder Architecture for OFDM Systems” Fifth IEEE Dallas Circuits and Systems 

Workshop: Design, Application, Integration and Software. Oct 2006, Dallas.

Proposed decoder takes around 100K logic gates and 55344 memory bits for a throughput of 1.6 Gbps

[13] takes 375 K logic gates and 88452 RAM bits for memory for a throughput of 940 Mbps

[14] takes 195 K logic gates for pipelined implementation, plus 77, 760 bits memories. for a throughput 

of 1 Gbps
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Contributions

� An area (logic and memory) and power efficient multi-rate 
architecture for standard message passing decoder of LDPC

� An area (logic and memory) and power efficient multi-rate 
architecture for Layered decoding of regular QC- LDPC (IEEE 
802.3 10-GB Ethernet)

� An area (logic and memory) and power efficient multi-rate 
architecture for Layered decoding of irregular QC- LDPC for IEEE 
802.11n (Wi-Fi), IEEE 802.16e(Wimax) and storage applications.

� An area (logic and memory) efficient parallel layered decoder for 
regular LDPC for storage and other applications

� FPGA prototyping and ASIC design clearly illustrates the 
advantages of the proposed decoder architectures
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More Information

� Check http://dropzone.tamu.edu for technical reports.

� 1. Gunnam, KK; Choi, G. S.; Yeary, M. B.; Atiquzzaman, M.; “VLSI Architectures for Layered 
Decoding for Irregular LDPC Codes of WiMax,” Communications, 2007. ICC '07. IEEE International 
Conference on 24-28 June 2007 Page(s):4542 - 4547 

� 2. Gunnam, K.; Gwan Choi; Weihuang Wang; Yeary, M.; “Multi-Rate Layered Decoder Architecture 
for Block LDPC Codes of the IEEE 802.11n Wireless Standard,” Circuits and Systems, 2007. ISCAS 
2007. IEEE International Symposium on 27-30 May 2007 Page(s):1645 – 1648

� 3. Gunnam, K.; Weihuang Wang; Gwan Choi; Yeary, M.; “VLSI Architectures for Turbo Decoding 
Message Passing Using Min-Sum for Rate-Compatible Array LDPC Codes,” Wireless Pervasive 
Computing, 2007. ISWPC '07. 2nd International Symposium on 5-7 Feb. 2007

� 4. Gunnam, Kiran K.; Choi, Gwan S.; Wang, Weihuang; Kim, Euncheol; Yeary, Mark B.; “Decoding 
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