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RF Power AmplifiersRF Power Amplifiers

 Generate a high power replica of modulator output
 Accuracy of replication    Linearity

 Convert DC energy to RF energy
 Efficiency of this conversion  Efficiency

PAModulator

Antenna
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Linearity and Efficiency Trade-offLinearity and Efficiency Trade-off

 Higher efficiency:
 Battery lifetime
 Thermal management

 Higher linearity:
 Sophisticated modulation
 Spectral efficiency
 Data rate

 There is a trade-off between efficiency and linearity

 Goal: higher efficiency linear amplifiers
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Target ApplicationTarget Application

 IEEE 802.11g for WLAN
 Orthogonal Frequency Division Multiplexing (OFDM)
 2.4 GHz
 Peak-to-average-power-ratio (PAPR) = 52 (17dB)
 16.6MHz signal bandwidth

20MHz

52 subcarriers
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CMOS RF Power AmplifiersCMOS RF Power Amplifiers

 Usual technologies: GaAs HBT, SiGe HBT, Si BJT, …
 Advantages of CMOS:

 Low cost, high yield
 Possibility of integration with the transceiver
 Possibility of new architectures 

 Disadvantages of CMOS:
 Low gain
 Low breakdown voltage
 Substrate effects
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Research GoalResearch Goal

Explore new architectures to improve efficiency 

of linear power amplifiers in a 0.18µm standard 

CMOS technology with a focus on IEEE 802.11g 

as the target application
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OutlineOutline

 RF power amplification

 Proposed power amplifier architecture

 Implementation

 Experimental results

 Conclusions
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General Model of RF Power AmplifiersGeneral Model of RF Power Amplifiers

 Transconductance mode
 Class A-C

 Switch mode
 Class D-F

RL

VDD

RFC

Vin

Matching
Network
+ Filter
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Transconductance Amplifiers
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Switch-mode AmplifiersSwitch-mode Amplifiers
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Summary of Classic PA’s PerformanceSummary of Classic PA’s Performance
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Wireless Communication SignalsWireless Communication Signals

 Constant-envelope
 No amplitude information -  phase-only modulation
 Example: GSM
 Nonlinear power amplifiers such as class C, E, F
 Spectral efficiency traded for power efficiency

 Non-constant envelope
 Amplitude and phase modulation
 Examples: Mobile 2.5G, 3G, and 4G and IEEE 802.11g
 Linear power amplifiers such as class-A.
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Average Power EfficiencyAverage Power Efficiency

 Low average power efficiency
 10dB back-off for class-A  5% maximum average efficiency
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Effects of NonlinearityEffects of Nonlinearity

 Spectral regrowth
 Constellation error

Ide
al Real PA

Pin

Pout
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Spectral RegrowthSpectral Regrowth

 Nonlinearity  Spectrum spreading into adjacent channels

Original

Amplified
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Spectral MaskSpectral Mask

 IEEE 802.11g spectral mask
 Output should not exceed the mask

Frequency 
(MHZ)

fC-11-20-30 -9 9 11 20 30

Power Spectral Density (dB)

-20dBr

-28dBr

-40dBr

Spectral Mask

Typical Signal 
Spectrum
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Constellation ErrorConstellation Error
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 Deviation from the ideal constellation point in I/Q plane
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Error-vector-magnitude (EVM)Error-vector-magnitude (EVM)

 Definition: ratio of the root mean square (RMS) power of the 
error vector to the RMS power of the reference

Nonlinearity
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EVM Requirements of IEEE 802.11gEVM Requirements of IEEE 802.11g

Modulation Data rate (Mbits/s) EVM (dB) 

6 − 5 
BPSK 

9 − 8 

12 − 10 
QPSK 

18 − 13 

24 − 16 
16-QAM 

36 − 19 

48 − 22 
64-QAM 

54 − 25 
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Proposed Integrated Polar TransmitterProposed Integrated Polar Transmitter

 Efficient constant-envelope amplification, followed by 
amplitude modulation with selectively switching unit amplifiers

Decoder
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Equal-Weighted Unit AmplifiersEqual-Weighted Unit Amplifiers

 Advantages compared to binary-weighting:
 Better matching and better DNL 

 Better dynamic performance

 Challenges:
 Thermometer-decoding → increased area 

 Need to combine RF power from multiple devices
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Power CombiningPower Combining

 Transmission-line-based combiners
 Too large to integrate on chip at 2.4GHz
 Difficult to match paths

 Lumped-element combiners
 Large area for large number of amplifiers
 Low power efficiency
 Low bandwidth

 Transformer-based combiners
 Low power efficiency
 Difficult to implement large numbers
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Current-mode Power CombiningCurrent-mode Power Combining

 On-chip
 Power and area efficient
 Requires transconductance amplifiers (which

are class A)

Iout
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Circuit  TopologyCircuit  Topology

 Current source PA’s, wired in parallel at drains
 Thick-oxide cascode transistor acts as switch

 Thick-oxide transistors allow higher power supply

ctrl1 ctrl2 ctrlN

RF Phase

Vdd

Matching
Network
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EfficiencyEfficiency

 For a traditional class-A :
 Linear relationship with Pout

 For this approach :
 Square-root relationship with Pout
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Average EfficiencyAverage Efficiency

 For a non-constant amplitude signal, the average efficiency 
is: 

11.1 %3.1 %12 dB

14.0 %5.0 %10 dB

23.2 %14.2 %6 dB

Efficiency for  proposed 
approach with class-A 

stages

Efficiency for 
traditional ideal class-

A PA
Power backoff

 ~2-3x improvement in average efficiency
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Spectral ImagesSpectral Images

 Result from the discrete-time to continuous-time 
conversion

 Can violate spectral mask or requirements on maximum 
out-of-band emission
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Spectral Image SuppressionSpectral Image Suppression

 May use oversampling at input

4x oversampling
80MHz clock

 Needs still higher oversampling ratio
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L-fold Linear InterpolationL-fold Linear Interpolation

 L-fold linear interpolation* to suppress spectral images
 Approximates linear interpolation

*Ref: Y. Zhou and J. Yuan, JSSC, Vol. 38, pp. 1182-1188

First-order 
hold

Zero-order 
hold

L-fold linear 
interpolation

Time

Amplitude
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L-fold Interpolator ImplementationL-fold Interpolator Implementation

 The amplifier is divided into four sections that are clocked 
sequentially

 Challenge: introduces nonlinearites
 Can remove completely by phase compensation

(which requires an increased clock rate)
 Can remove partially by oversampling

Quadrature 
Clocks

RFin
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System Simulation ResultsSystem Simulation Results

4x oversampling
+ 4-fold interpolation

8x oversampling
+ 4-fold interpolation
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Circuit SchematicCircuit Schematic

Note: actual circuits are fully differential
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Output Stage LayoutOutput Stage Layout

 4 sections of 64 unit cells
each

 Quadrature-phased clocks 
for the sections

 Output pads in center

1 4

3 2
Output Pads

From driver stage

From driver stage
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Unit Amplifier LayoutUnit Amplifier Layout

 Thermometer decoding
 26 = 64 unit cells
 Randomized switching
 Current combination

Row
Col

Col+1 Iout
+ Iout

-

Vin
-

Unit Cell

Vin
+

 2  6  4  1  8  5  7  3
3
7
5
8
1
4
6
2
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Chip MicrographChip Micrograph

1.3x1.4mm2 in 0.18µm CMOS

Output PadsOutput Pads

33 22

11 44

GNDGND GNDGND

GNDGND GNDGND

Digital InputsDigital Inputs

DriverDriver
StageStage

CLK2CLK2
DecodersDecoders

DecodersDecodersCLK1CLK1

CLK4CLK4

CLK3CLK3
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Test BoardTest Board

OutputOutput

Digital InputsDigital Inputs

Bias Bias 
VoltagesVoltages

ClocksClocks

RFRFinin

4x5cm2, 4-layer FR-4 board



37

Digital
Signal

Processing

Generating Phase and Envelope SignalsGenerating Phase and Envelope Signals

Digital VCO

PA

Digital Envelope

Digital 
Phase

RF 
Phase RF Output
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FPGA DAC +
Quadrature
Modulator

Generating Signals Off-chipGenerating Signals Off-chip

 Decompose packet into phase-only modulated and envelope
 Decompose the phase signal into I' and Q'
 Load the phase (I' and Q') and Envelope onto FPGA
 A Dual-channel DAC followed by a Quadrature modulator 

converting I' and Q' to RF phase
 Directly drive the digital envelope input

IEEE 802.11g
Baseband (I, Q)

Envelope

Phase
I'

Q'

Envelope

RF 
Phase

PC
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Demonstration System : Class-A OperationDemonstration System : Class-A Operation

PAFPGA

10
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80MHz 80MHz 1.6GHz 80MHz

I

Q

Linear 
OFDM RF Output

 PAE = 3.1%

ENV = VDD

DAC
90o

DAC
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Demonstration System: Polar OperationDemonstration System: Polar Operation

PAFPGA

6

10
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80MHz 80MHz 1.6GHz 80MHz
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Digital Envelope

RF Phase RF Output

 Single Clock at 80MHz

DAC
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DAC
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Measurement ResultsMeasurement Results

 Pout = 14.7dBm (13.6dBm including balun loss)

 PAE = 8.9% (6.7% including balun loss)
 More than double the efficiency of class-A modeMore than double the efficiency of class-A mode
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Demonstration System: Image SuppressionDemonstration System: Image Suppression

PAFPGA
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10
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Digital Envelope

RF Phase RF Output

 Quadrature-phased clocks
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Image Suppression MeasurementImage Suppression Measurement
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Performance SummaryPerformance Summary

Technology 0.18µ m CMOS, 2P5M 
Supply Voltage 

Digital Hardware 
Driver Stage 
Output Stage 

 
1.8V 
2.2V 
1.7V 

Linear 64 QAM OFDM Output Power 14.7dBm  
13.6dBm (balun included) 

EVM for 64 QAM OFDM − 26.8dB 
Dissipated Power 

Output Stage 
Driver Stage 
Digital 

 
247mW 
66mW 
3.4mW 

PAE (for 64QAM OFDM) 8.9% 
6.7% (baluns included) 

Center Frequency 1.56GHz 
Total Chip Area 1.8mm2 
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ConclusionsConclusions

 Demonstrated a polar power amplifier with more than       
20-MHz bandwidth

 Digitally modulated RF power amplification architecture

 Meet the linearity required of 64QAM IEEE 802.11g signals

 Better than 2x improvement in power efficiency compared 
to backed-off class-A design

 L-fold linear interpolation used to suppress spectral images 
from the digital-to-RF power conversion
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