
Next-generation mobile WiMAX– IEEE 802.16m

Jong-Kae (JK) Fwu

jong-kae.fwu@intel.com

Vice Chair, IEEE 802.16 WG, TGm Wireless Standards and Technology Intel Architecture Group/Mobile Wireless Group


Outline

- Introduction, Motivations and overview
- ►IEEE 802.16m Technology Overview
- ►IEEE 802.16m Technology Details
 - Frame Structure
 - Symbol Structure, Subchannelization and pilot pattern
 - DL Sync Channel (Advanced Preamble)
 - DL & UL Control Channels (PHY design)
 - Network Entry PHY Stages
 - DL/UL MIMO
 - Coding and HARQ

Introduction – 802.16m

- ➤ WiMAX stands for "Worldwide Interoperability for Microwave Access".
- ➢ Mobile WiMAX: Rel 1.0 (802.16e) → Rel 1.5 → Rel 2.0 (802.16m)
- IEEE 802.16 Task Group m (TGm) is chartered to develop an amendment (802.16m) which provides performance improvements necessary to support future advanced services and applications.
- Meet/Exceed IMT-Advanced requirements for next generation mobile networks with legacy support for WirelessMAN-OFDMA equipments.
- IEEE 802.16m spec is currently at letter ballot stage and was submitted as IEEE 802.16 IMT-Advanced candidate to the ITU-R.

Why do 802.16m?

- Provide continuity to the first release of Mobile WiMAX (802.16e) and offer evolution path to existing WiMAX operators and win new operators targeting 2012+ deployments
- Improve system performance
 - New technology ingredients over 16e
 - Significantly increase performance lead over HSPA/HSPA+ and LTE
 - Reduce overall system overhead and design complexity
 - Enable more flexible radio network architectures

IEEE 802.16m Status Overview

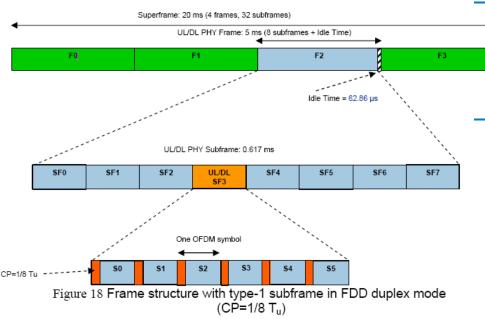
Stage-1: System Requirements Document (SRD) http://ieee802.org/16/tgm/docs/80216m-07_002r9.pdf Stage-2: System Description Document (SDD) http://ieee802.org/16/tgm/docs/80216m-09_0034r2.zip Stage-3: 802.16m Amendment Working Document (AWD) http://ieee802.org/16/tgm/docs/80216m-09_0010r2.zip Letter Ballot : (Working Group and EC review) IEEE 802.16m Draft Standards Draft 1 - 07/09 IEEE 802.16m Draft Standards Draft 2 - 10/09 IEEE 802.16m Draft Standards Draft 3 - 12/09 http://ieee802.org/16/pubs/80216m.html Sponsor Ballot: (EC review & standard board approval)

To start at 1st half of 2010,

To be completed and published at 2nd half of 2010

802.16m Technology Overview

- Fully backwards compatibility with 802.16e
- Multi-User MIMO for higher system capacity
- Advanced Interference Mitigation Techniques, e.g. Multi-BS MIMO, Fractional Freq Reuse, etc.
- Reduced Air interface one-way latency < 10ms and handover latency < 30ms
- Improved Voice support with lesser MAC overhead and more capacity
- Integrated relay capability and femto-cell support
- Improved support for LBS and MBS services
- Support for self-organizing networks


Frame Structure

802.16m Frame Structure

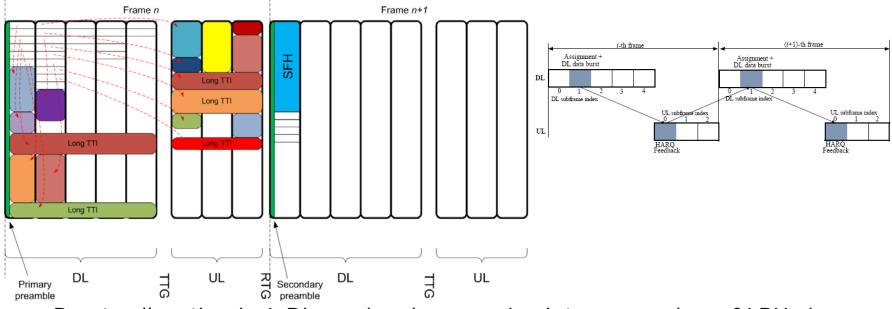
– Super frame – 20 ms

- Periodicity of PA-Preamble and SFH

– Frame – 5 ms

- Includes 1 preamble symbol and 1
 DL→UL transition in TDD
- Includes 8 (or 7/6/5) subframes

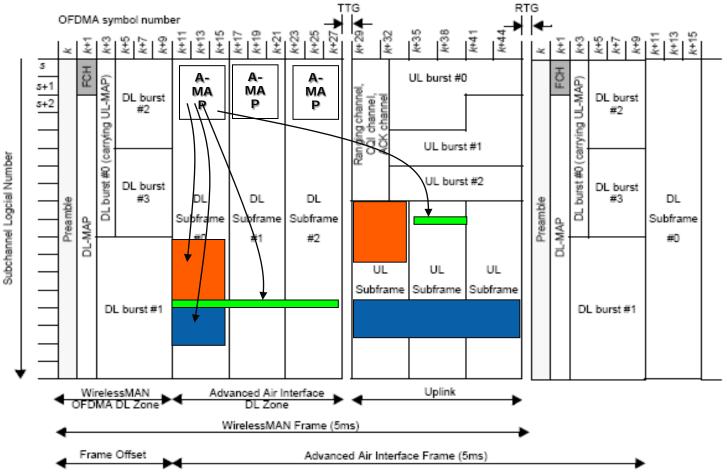
– Subframe – 6 or 5 (or 7/9) OFDM Symbols


- Slot duration
- Pilot periodicity
- Time unit for allocations
- A-MAPs are transmitted on each subframe

- Frame structures support:

- CP=1/8, 1/16, 1⁄4
- TDD, FDD (and H-FDD as special case)
- Different subcarrier spacing for 7, 8.75 MHz may be used.

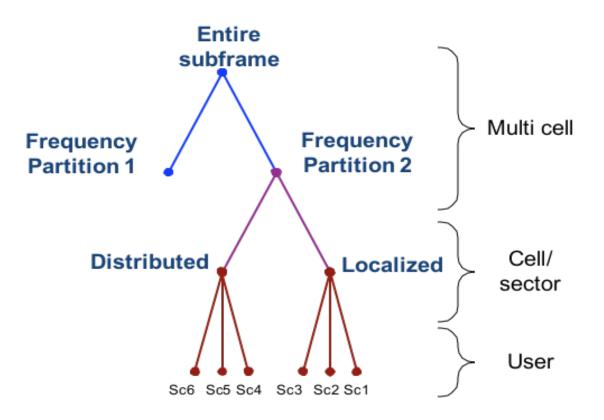
Burst shape and maps relevance



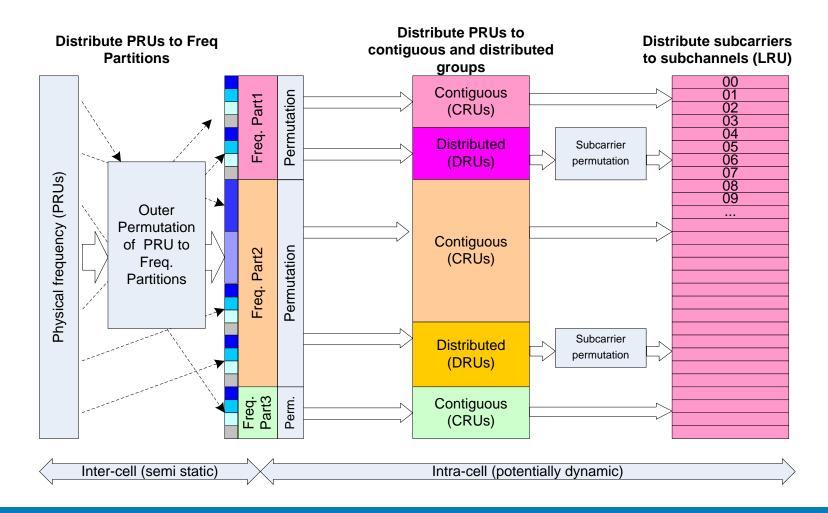
- Bursts allocation is 1-Dimensional occupies integer number of LRUs in frequency domain –Long or Short TTI
 - Short TTI burst is contained in 1 subframe
 - Long TTI burst occupies all of the DL or UL subframes
- A-MAP is present on every DL subframe, and describes:
 - DL bursts starting in this subframe
 - UL bursts starting 4 subframes later (with some exceptions)
- HARQ retransmission is possible after one frame as shown above

Mixed mode frame structure

- AAI DL subframes are <u>TDM-ed</u> with legacy DL as a new zone (ignored by legacy MS)
- AAI UL can be <u>TDM-ed or FDM-ed</u> with legacy UL PUSC

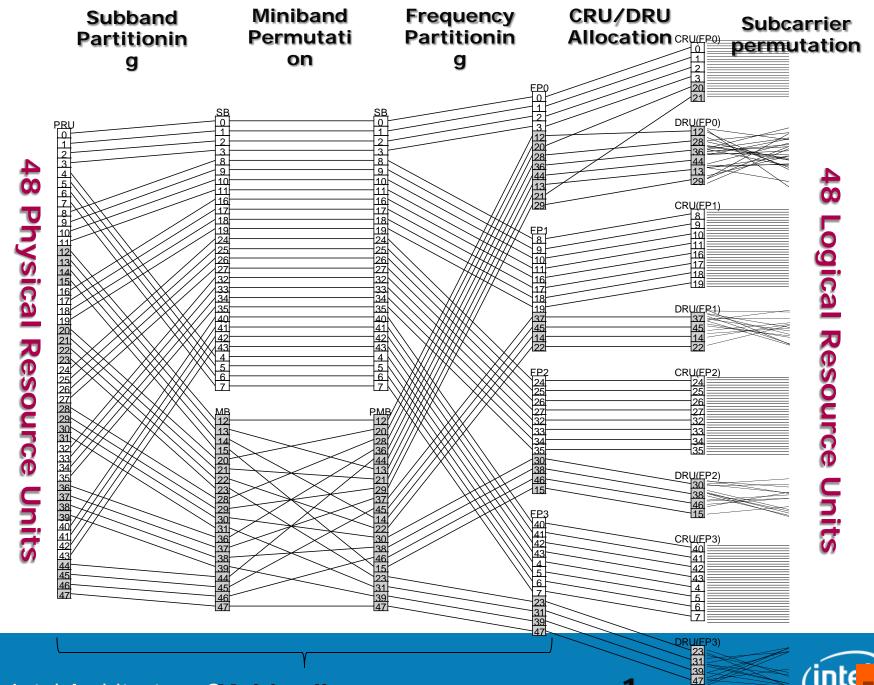


DL/UL Symbol Structure



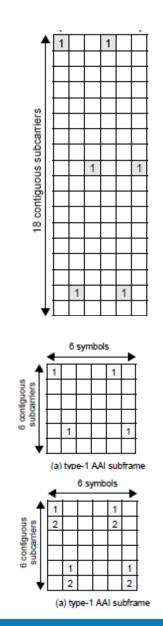
802.16m Downlink Physical Structure

802.16m DL Symbol Structure (Abst)



Subchannelization/Permutation

- Concurrent distributed and localized transmissions in the subframe:
 - UL/DL DRU: tiles/tone-pair permutation (~UL/DL PUSC)
 - Subband CRU: localized resource w. band selection (~band AMC)
 - Miniband CRU: diversity resource w. dedicated pilots
- Concurrent reuse-1 and "soft" reuse-3 (FFR)
 - Up to 4 frequency partitions: 1 reuse-1 and 3 reuse-3
 - Low power transmission is allowed on other segments' reuse-3 frequency partitions
- Resource units are divided among the various usages

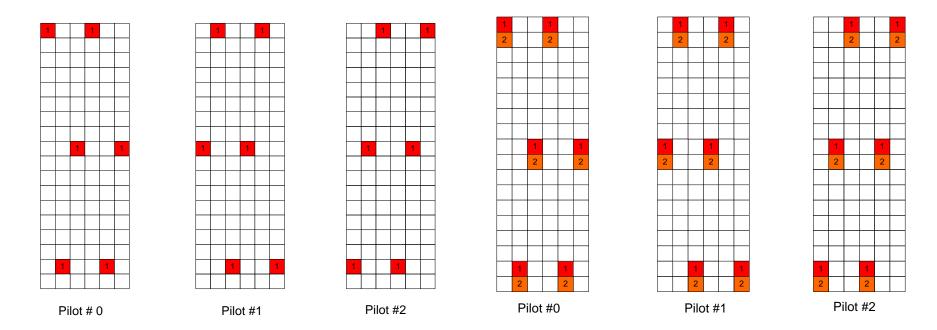


15 Intel Architecture GMulti-cell steps

inte

Pilot patterns

- Dedicated precoded pilots are used
- Shared pilots for DL DRU, always two streams
- Pilots density is adapted to number of streams
 - 5.6% pilot overhead
 per stream for DL 1 or
 2 streams
 - 3.7% per stream for 3 or 4 streams
- Interlaced pilots (pilots collides with data) are used to exploit pilot boosting gain


	1						1				
	2						2				
	L										
	L										
	L										
								_			
	L							_			
	L				1			_		1	
					2			_		2	
		_		_				_			
	L			_				_			
	\vdash			_				_			
	\vdash	_		_				_			
	\vdash	_		_				_			
	\vdash	_						_			
	\vdash	_	1					_	1		
	L		2						2		
3		Γ			2	Γ					
		t		ľ		ŀ					
		t		ſ		ŀ					
		t		ſ		ſ					
		t		Γ							
		Γ			1		3				
		L									
		L									
		L									
		1									

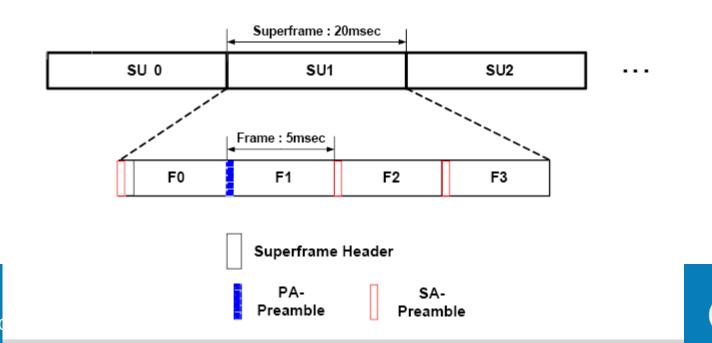
3 1

1	3		2	4
2	4		1	3
3	1		4	2
4	2		3	1

802.16m Pilot Interlacing

Single Stream Interlaced Pilots

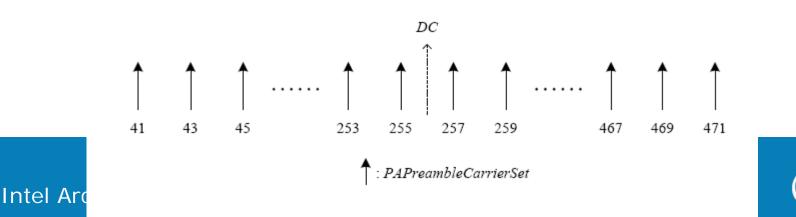
2 Stream Interlaced Pilots



Advanced Preamble (A-Preamble)

DL Sync Channel - Preamble

- Hierarchical Structure
- Primary Advanced Preamble
 - One symbol per superframe
 - Super frame synchronization
 - Initial acquisition (timing/carrier recovery)
- Secondary Advanced Preamble
 - Three symbols per superframe
 - Fine synchronization and cell identification

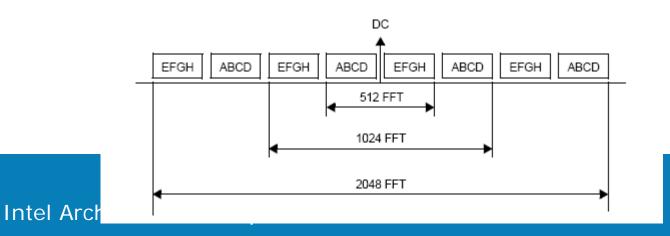


PA-Preamble

- Fixed BW (5 MHz), Reuse 1 and 216 sequence length
- 11 binary sequences
- Primary Preamble NFFT, initial acquisition, frequency & timing estimation and carrier scanning
- Every other subcarrier is null (2x repetition in time)
- Carries BW information
 - Index 0 : 5MHz, Index 1 : 7, 8.75, 10 MHz
 - Index 2 : 20 MHz

20

- Indices 3~9 : reserved
- Index 10 : Partially configured carrier



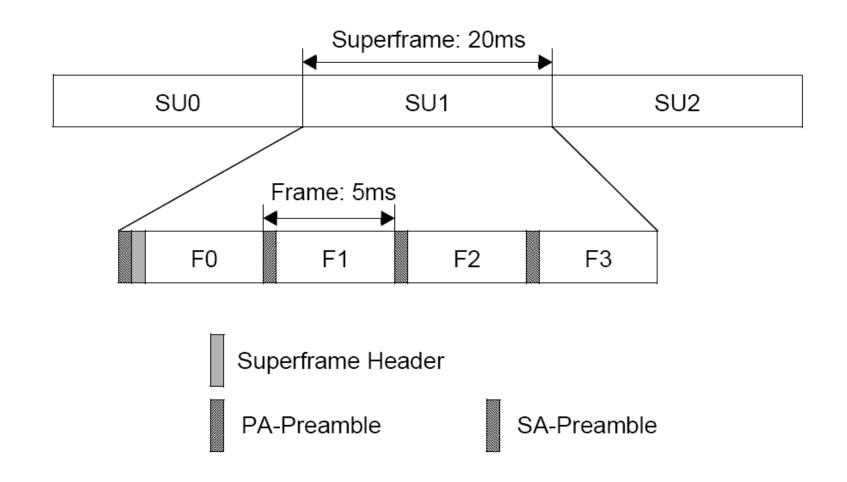
SA-Preamble

- Carries 768 cell IDs: 3x256
- QPSK

21

- Frequency reuse 3 (one third of the subcarriers)
- Scalable structure
 - Support multiple BW 5 MHz (8 subblocks) and extend to 10/20 MHz
 - Support Tone dropping for irregular BW
 - Support multiple Tx antenna (divided to blocks for different antennas)
- Block cyclic shift avoid the ambiguity of legacy preamble detection
- SA-Preamble:
 - Used for cell selection and RSSI/CINR measurements.
 - Different size for different BW.
 - Sequence depends on the segment (3 different segments).

DL/UL Control Channels

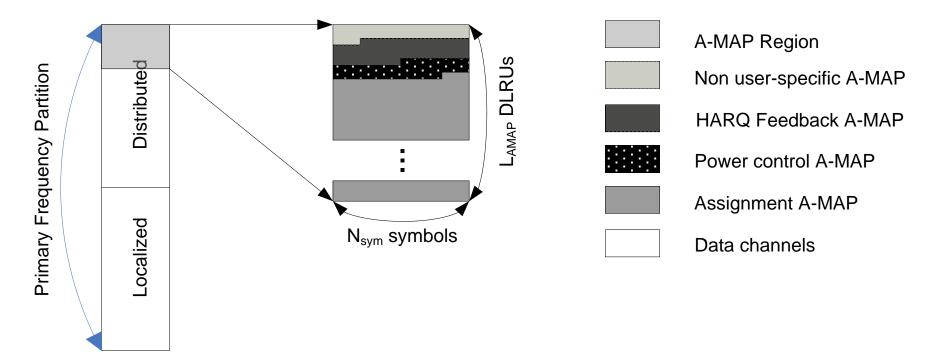


DL control channels overview

- Super Frame Header (P-SFH & S-SFH)
 - Transmitted/ broadcasts every superframe (20 ms
 - SFH carries essential system parameters and system configuration information. It's located in the first DL subframe of a superframe and is divided into primary SFH (P-SFH) and second SFH (S-SFH).
- A-MAP
 - Contains information for either unicast or broadcast traffic control.
 - Transmitted every DL subframe (~600 us) and contains:
 - (UL) HARQ feedback (HF)
 - UL Power Control (PC)
 - Non User Specific broadcasts the configuration of Unicast Control in current subframe + indexing information for HF and PC
 - Unicast Control IEs that describe DL and UL assignments

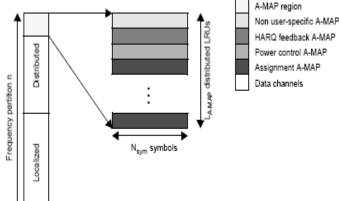
SFH Physical Structure (1)

Service Providers Business Group 24 Intel Wirter Personal

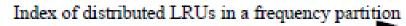

SFH Physical Structure (2)

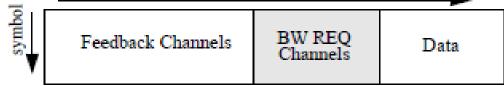
- Transmitted in the beginning of the 1st sub-frame of the super frame, fixed permutation (1 freq partition, all DRU)
- Contains P-SFH and/or S-SFH
 - Primary super frame header (P-SFH):
 - Always transmitted every superframe and occupies the first few DLRUs of the subframe.
 - Defines repetition of secondary SFH
 - 3 bytes, TBCC, QPSK with effective code rate of 1/24 using 1/4 TBCC as the mother code.
 - Secondary super frame header (S-SFH):
 - S-SFH takes DLRUs after P-SFH and has a variable size, depending on the MCS and S-SFH subpacket to be transmitted
 - Consists of 3 types of subpackets. Each optimized for different activity.
 - SP1 optimized for NW re-entry, SP2 optimized for initial NW entry and NW discovery and SP3 contains remaining information.
 - ~20 bytes (limited to 15 LRUs), TBCC, QPSK with optional code rates of: 1/4, 1/8, 1/12 or 1/16.

A-MAP Region Location and Structure


A-MAP	A-MAP	A-MAP	A-MAP				
DL	DL	DL	DL	UL	UL	UL	UL
SF0	SF1	SF2	SF3	SF4	SF5	SF6	SF7

DL Control Channels - A-MAP


- A-MAP stands for the DL control channels at each subframe. It includes:
 - Non-user-specific information to decode the rest of the A-MAP
 - Code rate, # of Assignment A-MAPs, etc
 - UL HARQ Feedback (N/ACK)
 - Closed-loop power control commands
 - Unicast control IEs describe DL and UL allocations in User-Specific Information Elements:
 - Basic DL/UL assignment
 - Subband Assignment, Persistent allocation (PA), Group resource allocation (GRA), Composite PA ...
- User-specific IEs are separately encoded
 - to allow different power boosting for each user according to its link adaptation
 - Each IE has 16 bits CRC which is masked with the target STation ID
 - IEs can be encoded with two code rates for reuse
 - 1, rate=1/2 for reuse-3 frequency partitions



UL control channels

- UL Fast Feedback Channel
 - Primary Fast feedback Channels
 - Secondary Fast feedback Channels
- HARQ ACK/NACK feedback
- BW request: support 3 & 5 step BW REQ
- Ranging: Non-synchronized and Synchronized ranging
- Sounding

Allocation of UL control and data channels in the distributed LRUs of a frequency partition of an UL AAI subframe. Figure 523—Allocation of channels in the UL frequency partition

Fast feedback Channels

– Primary & Secondary- Fast feedback Channels

- Three 2x6 Feedback mini-tiles
- Supported features: MIMO mode selection, Band selection, CQI, PMI, Event driven reports (buffers overflow, FFR group selection)

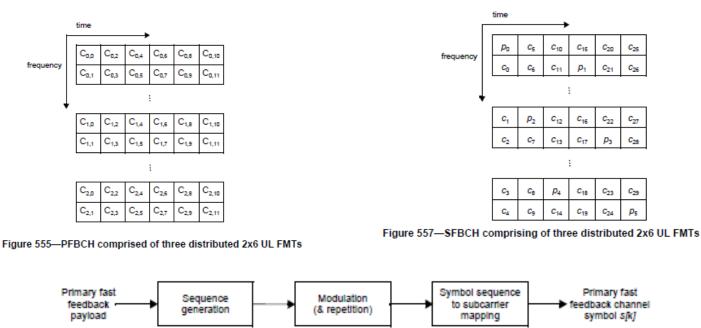


Figure 556—Mapping of information in the PFBCH

BW REQ, HARQ, Ranging & Sounding

– BW request

- Three 6x6 UL-tiles (same as UL data tile)
- Fast 3 stages BW REQ, by attaching certain info. (MS identification and required allocation size)
- Fall-back 5 stages BW REQ (16e like BW)
- HARQ Feedback
 - Each HF control CH contains 3 HARQ Mini-Tiles (HMT) sized 2x2 each & carry 2 HARQ feedback channels
 - 3 Reordered FMTs (2x6 each) → form 9
 HMT → Up to 6 HARQ feedbacks.
- Ranging
 - Asynchronous with two formats, to support large cell sizes
 - Synchronous (incl. handover to Femto)
- Sounding
 - For UL CL MIMO and UL Scheduling

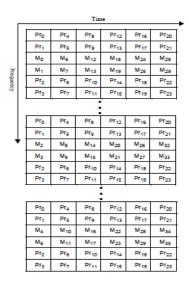
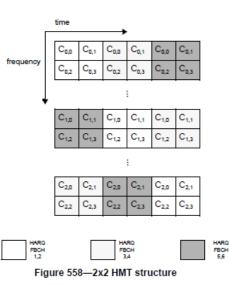
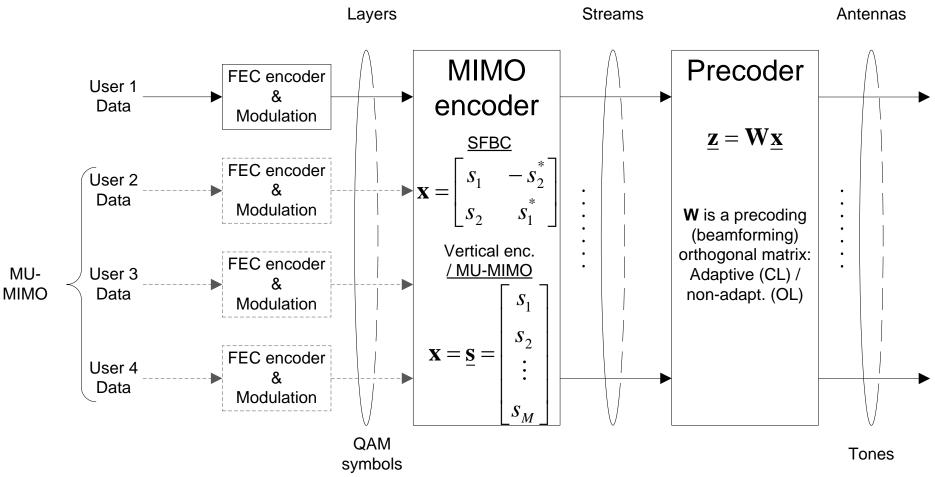



Figure 560—6x6 BR Tile Structure in the Advance Air Interface

Network entry PHY stages


	Opera	ation	Transmission	Useful properties		
1	super	e symbol timing, frame time and ency sync.	PA-Preamble	¹ / ₂ symbol periodicity, same signal is transmitted by all of the BSs		
2	Cell se	election	SA-Preamble	Reuse-3, 768 sequences		
3	3 Obtaining system cnfg.					
3. 1		Essential system configuration	P-SFH → S-SFH (SP1 and SP2)	P-SFH location and code-rate are fixed, and tells the S-SFH parameters		
3. 2		Less essential configurations	SP3 of SFH + ABI (Additional Broadcast Information)	Not urgent for network-entry		
4	Read A-MAP					
4. 1		Get A-MAP cnfg. In current subframe	Non User Specific (NUS)	Code-rate and permutation parameters are known from SFH		
4. 2		Try to get DL/UL assignments	A-A-MAP	Code-rate and location are known from NUS. CRC is masked with STID to identify the assignments' destination		
5	Async	Ranging	UL ranging → RNG_ACK			

DL/UL MIMO

MIMO – DL TX diagram

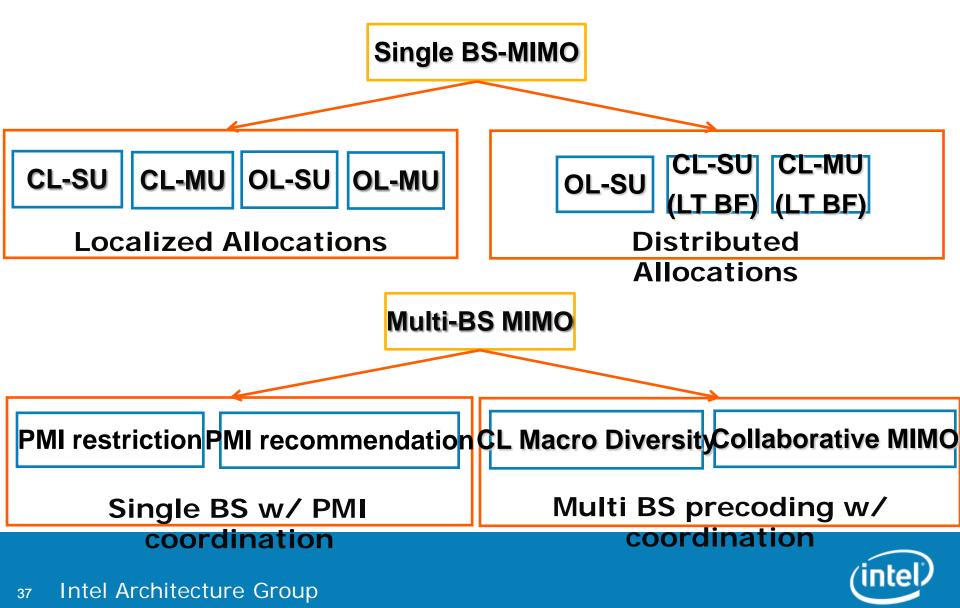
MIMO Terminologies Definitions

- Layer: An information path fed to the MIMO encoder as an input, which is the output of a single FEC encoder and modulator
- Stream: Each information path encoded by the MIMO encoder that is passed to the precoder
- MIMO Rate (rank): The number of QAM symbols signaled per array channel use. For the spatial multiplexing modes in SU-MIMO, the number of streams to be used for the user allocated to the Resource Unit (RU)
- Single User MIMO: A MIMO transmission scheme in which a single MS is scheduled in one RU
- Multi-User MIMO: A MIMO transmission scheme in which multiple MSs are scheduled in one RU, by virtue of spatial separation of the transmitted signals (SDMA)
- Vertical encoding: Indicates transmitting a single FEC-encoded layer over multiple antennas. The number of encoded layers is always 1. Used in SU-MIMO. Horizontal encoding is used for Multi-User, where each user is assigned to 1 stream at most.

Overview of DL MIMO

- Key features of 802.16m DL MIMO
 - Single-BS and Multi-BS MIMO
 - Single-User MIMO (SU-MIMO) and Multi-User MIMO (MU-MIMO)
 - Vertical encoding for SU-MIMO
 - Horizontal encoding for MU-MIMO
 - Adaptive-precoding (closed loop) and non-adaptive (open loop) MIMO precoding
 - Codebook and sounding based precoding
 - Short and long term adaptive precoding
 - Dedicated (precoded) pilots for MIMO operation
 - Enhanced codebook design
 - Enhanced base codebook
 - Transformed codebook
 - Differential codebook

Key MIMO Features


- Single-BS and Multi-BS MIMO
- SU-MIMO & MU-MIMO
- OL-MIMO & CL-MIMO
- Various Encoding types:
 - SFBC (Space Frequency Block Code): Uses two streams and rate=1
 - Single stream Tx ("SIMO") -- SMI with one stream (rank-1)
 - Spatial-Multiplexing (SM) (e: Matrix-B) of 2-8 streams
 - MU-MIMO SM with horizontal encoding (1 stream/user)
 - CDR (Conjugate Data Repetition) : 1 stream, rate=1/2

- Precoding types:

- Non-Adaptive precoding (i.e. Open Loop): predefined precoder predefined across frequency bands and constant in time, MS selects best-M subbands with effective channel = channel + precoder
- Adaptive precoding (Closed Loop): (1) codebook based the MS choose best matrix from codebook, or (2) sounding based for TDD

16m DL MIMO classification

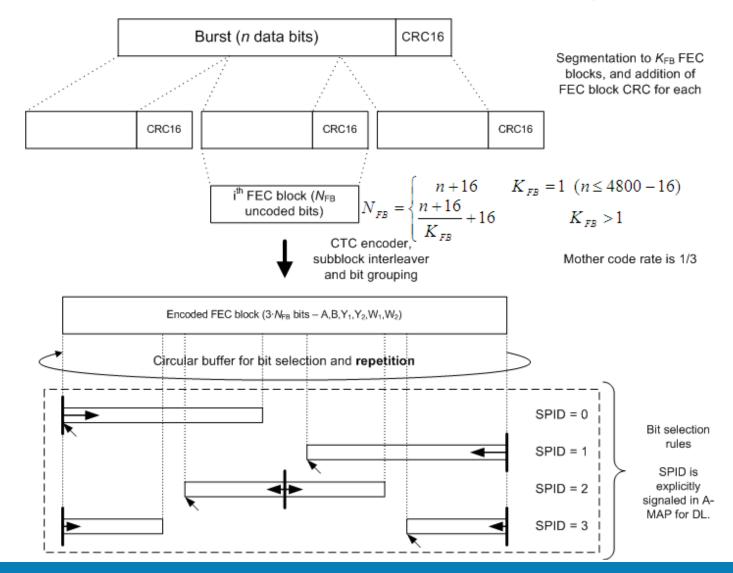
Coding and HARQ

FEC

- Turbo Code
 - Minimal code rate 1/3
 - FEC block sizes ranging from 48 to 4800
 - Bit grouping: solve the 64QAM degradation problem
 - FEC CRC and burst CRC
- Burst size signaling
 - A small set of burst sizes and simple concatenation rule
 - Rate matching -> continuous code rate

HARQ

- HARQ coding
 - HARQ-IR:
 - 4 SPID defined for DL, signaled in A-MAP
 - Contiguous transmission in UL
 - CoRe: 2 versions for 16QAM and 64QAM
 - DL: CoRe version signaled in A-MAP
 - UL: CoRe version change when circular buffer wrap around



TBCC for Control Channel

- Control channels (DL: SFH and A-A-MAP; UL: SFBCH and BWREQ) FEC is based on 16e TBCC with some modifications
 - Minimal code rate is 1/4 for DL and 1/5 for UL
 - New puncturing scheme ("random" puncturing with subblock interleaver and rate-matching

Incremental Redundancy HARQ

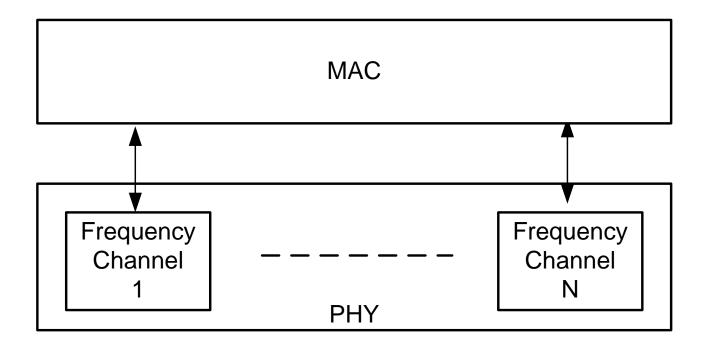
IEEE Project 802.16m: Key Documents

- <u>P802.16m PAR</u> and <u>Five Criteria Statement</u>
 - Project Authorization: Scope, Purpose, deadline, etc.
- Project 802.16m Work Plan
 - timeline
- Project 802.16m System Requirements Document (SRD)
 - high-level system requirements for 802.16m project ("Stage 1")
- Project 802.16m System Description Document (SDD)
 - system level description based on the SRD ("Stage 2")
- Project 802.16m Evaluation Methodology Document (EMD)

 link-level and system-level simulation models and parameters
- Draft 802.16m amendment standard or "Stage 3"

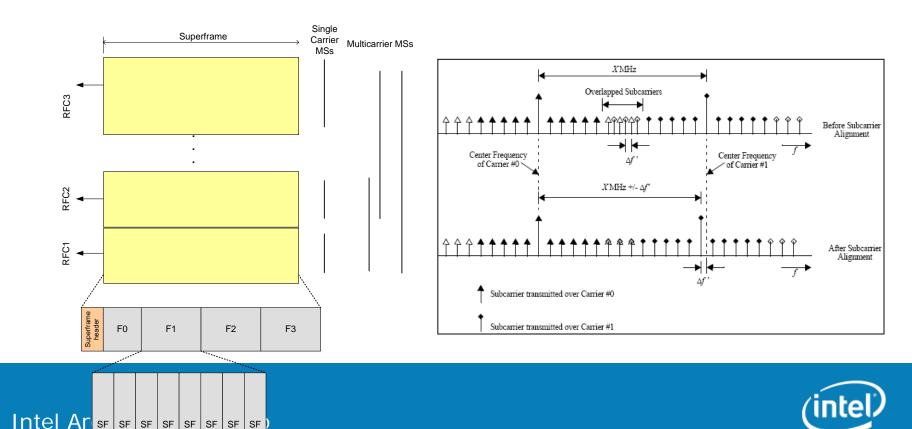
Acknowledgment

- Tom Harel
- Hujun Yin
- Yang-seok Choi
- Yi Hsuan
- Huaning Niu
- Jose Puthenkulam
- Xiaoshu Qian
- Alexei Davydov
- Xinrong Wang


Thank You

Backup Slides

Multi-Carrier Support


Multi carrier

– Primary vs. secondary channels

48

2 3 4 5 6

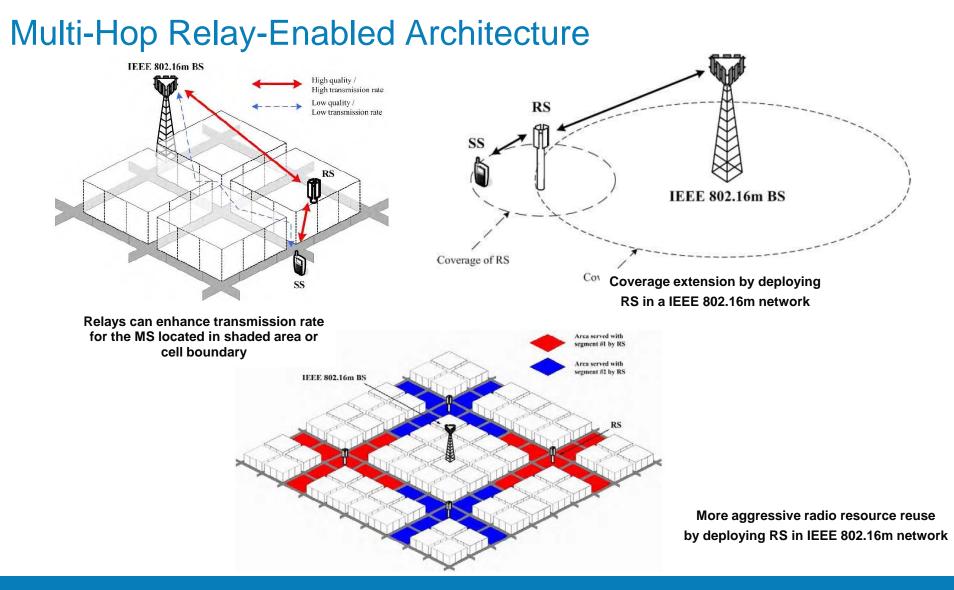
- Partially vs. fully configured channels
- Subcarrier alignment and transmission on guard subcarriers

802.16e & 802.16m Comparison

Feature	IEEE 802.16e/Mobile WiMAX R1*	IEEE 802.16m*
IMT-Advanced 1Gbps	Not planned	>1Gbps with 3x20MHz Multicarrier
Duplexing Modes	TDD	TDD, FDD
Channel Bandwidths	5, 3.5, 7, 8.75, 10 MHz	5, 10, 20, 40 MHz
Peak Data Rates	DL: 64 Mbps (2x2) @ 10 MHz UL: 28 Mbps (2x2 CSM) @ 10 MHz	DL: > 300 Mbps (4x4) @ 20 MHz UL: > 135 Mbps (2x4) @ 20 MHz
Mobility	Up to 60-120 km/hr	Up to 350 km/hr
Latency	Link-Layer Access: ~20ms Handoff: ~35-50ms	Link-Layer Access: <10ms Handoff: <30ms
MIMO Configuration	DL: 2x2 MIMO UL: 1x2 MIMO	DL: 2x2, 2x4, 4x2, 4x4 MIMO UL: 1x2, 1x4, 2x2, 2x4 MIMO
Average Sector Throughput TDD (DL:UL=2:1)	DL: 25 Mbps (achieved by band AMC) UL: 6 Mbps @10 MHz	DL: > 35 Mbps (min. requirements) UL: > 8.7 Mbps @ 20MHz
Spectral efficiency (per sector)	Peak: DL 6.4 bps/Hz, UL 2.8 bps/Hz Sustained: DL 1.55 bps/Hz, UL 0.9 bps/Hz	Peak: DL > 15 bps/Hz UL > 6.75 bps/Hz Sustained: DL > 2.6 bps/Hz, UL > 1.3 bps/Hz
Coverage (km)	1/5/30 km	1/5/30km (Optimal at 5km)
Number of VoIP Active Users	~ 25 users/sector/MHz	> 60 users/sector/MHz

Source: Intel Corporation & IEEE 802.16m System Requirements Document

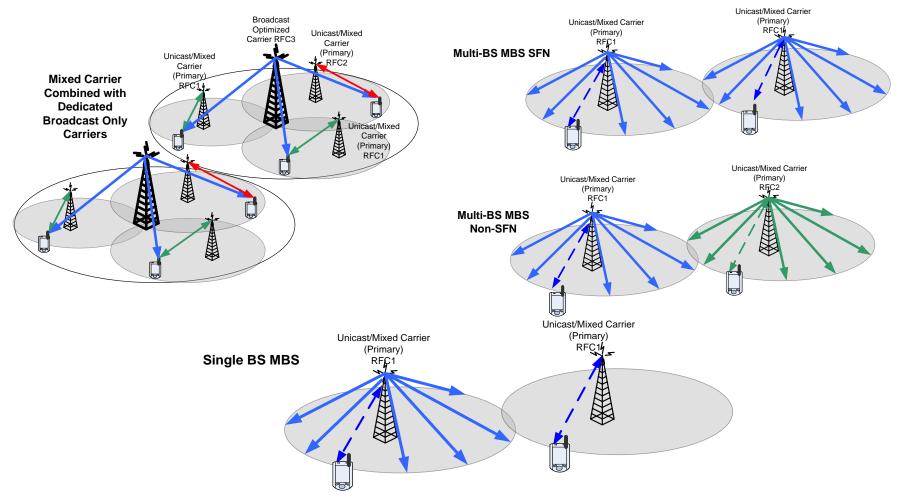
Copyright Intel Corporation © 2008



Fractional Frequency Reuse - IM

- FFR across sectors to create multiple reuse settings in a cell
- Implemented by creating frequency partitions with different power levels
 - Each partition incurs a cost due to system resources (power, bandwidth) used
 - Best (system-wide) resource for MS is selected based in S/I per resource and system cost of resource
- Performance gains of 20% for all users and up to 90% for cell-edge users
 - Frequency Partition Adaptation is a slow process and network controlled
- Power P₁₋₃ Sector 1 Frequency Partitions: $K = 3 \sim 7$ partitions to P₁₋₅ P₁₋₆ P₁₋₇ P_{1.5} P₁₋₄ support reuse 1, 2/3, 1/3 Power Sector 2 Attributes of each Partition P₂₋₁ P2-6 Bandwidth/Resource units (W) Power P₃₋₁ Sector 3 P₃₋₄ P₃₋₆ P₃₋₇ Power level (P) P3-3 P3-5 P3-2 - Resource cost metric (C) (transmitted by BS) W_2 W1 W₃ W₂₃ W₁₂ W₁₃ W₁₂₃ Soft reuse achieved by setting power level of • Reuse 1/3 Reuse 2/3 Reuse 1 each partition based on feedback by the MS about the best partition based on Cost (C) Frequency

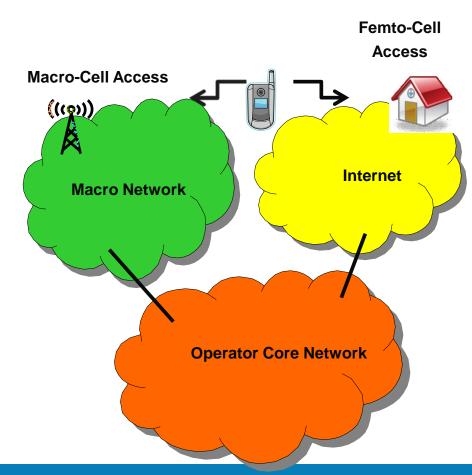
(intel)


Copyright Intel Corporation © 2009

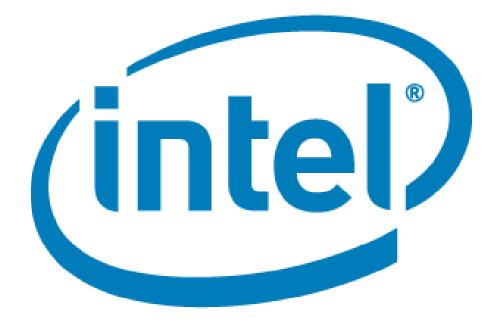
51 Intel Architecture Group

(intel)

Enhanced Multicast and Broadcast Service (E-MBS)



eMBS can be multiplexed with unicast services or deployed on a dedicated carrier



Support of Femto-Cells and Self-Organization

- Femto-cell support to offer service providers greater deployment flexibility
- Self-configuration support to enable plug and play installation; i.e. selfadaptation of initial configuration, including neighbor update as well as means for fast reconfiguration and compensation in failure cases.
- Self-optimization support to enable automated or autonomous optimization of network performance with respect to service availability, QoS, network efficiency, and throughput.

