Enhancing Image Fidelity through Spatio-Spectral Design for Color Image Acquisition, Reconstruction, and Display

Keigo Hirakawa

hirakawa@stat.harvard.edu School of Engineering and Applied Sciences Department of Statistics, Harvard University

Joint work with Xiao-Li Meng (Harvard Statistics) and Patrick Wolfe (Harvard SEAS)

Outline

- Wavelet-Based Image Processing with Missing Data
- Spatio-Spectral Sampling for Acquisition
- 4 Spatio-Spectral Sampling for Display

・ 同 ト ・ ヨ ト ・ ヨ ト …

ъ

Outline

- 2 Wavelet-Based Image Processing with Missing Data
- 3 Spatio-Spectral Sampling for Acquisition
- 4 Spatio-Spectral Sampling for Display

5 Summary

・ロン ・ 一 レ ・ 日 と ・ 日 と

э

Image Processing

natural scene statistics

digital camera & hardware

signal & image processing

display device, human vision

 $\equiv \rightarrow$

▲ @ ▶ ▲ 三 ▶

Image Processing

natural scene statistics

digital camera & hardware

signal & image processing

display device, human vision

data generating model

discretization, noise

analysis, estimation, processing

subjective analysis

・ 同 ト ・ ヨ ト

Image Processing

natural scene statistics

digital camera

& hardware

signal & image processing

イロト イヨト イヨト イ

display device, human vision

DATA LOST HERE!! impose limits on DSP DATA LOST HERE!! impose limits on vision

Avenues for Improved Color Imaging

Color Image Acquisition

- quantitative analysis of the information loss
- fundamental limitations to DSP imposed by current hardware
- new hardware designs that minimize these losses and limitations
- new hardware designs that enable fast algorithms

Color Image Display

- quantitative analysis of the visual information loss
- fundamental limitations to vision imposed by current hardware
- new hardware designs that minimize these losses and limitations

Spatio-Spectro Sampling

- the loss of data comes from hardware noise and from representing the image signal with discrete samples of pixels and colors.
- we argue that there exist logical tradeoffs between spatial and spectral information.

ヘロン 人間 とくほ とくほ とう

Avenues for Improved Color Imaging

Color Image Acquisition

- quantitative analysis of the information loss
- fundamental limitations to DSP imposed by current hardware
- new hardware designs that minimize these losses and limitations
- new hardware designs that enable fast algorithms

Color Image Display

- quantitative analysis of the visual information loss
- fundamental limitations to vision imposed by current hardware
- new hardware designs that minimize these losses and limitations

Spatio-Spectro Sampling

- the loss of data comes from hardware noise and from representing the image signal with discrete samples of pixels and colors.
- we argue that there exist logical tradeoffs between spatial and spectral information.

<ロト <回 > < 回 > < 回 > < 回 > <

Avenues for Improved Color Imaging

Color Image Acquisition

- quantitative analysis of the information loss
- fundamental limitations to DSP imposed by current hardware
- new hardware designs that minimize these losses and limitations
- new hardware designs that enable fast algorithms

Color Image Display

- quantitative analysis of the visual information loss
- fundamental limitations to vision imposed by current hardware
- new hardware designs that minimize these losses and limitations

Spatio-Spectro Sampling

- the loss of data comes from hardware noise and from representing the image signal with discrete samples of pixels and colors.
- we argue that there exist logical tradeoffs between spatial and spectral information.

・ロト ・ 同ト ・ ヨト ・ ヨト

3

Outline

Wavelet-Based Image Processing with Missing Data

Spatio-Spectral Sampling for Acquisition

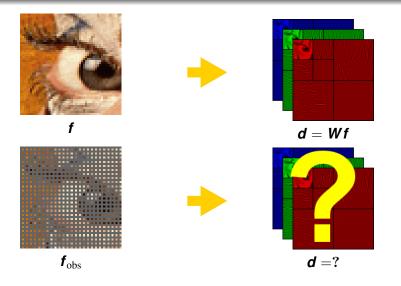
4 Spatio-Spectral Sampling for Display

5 Summary

ヘロン 人間 とくほ とくほ とう

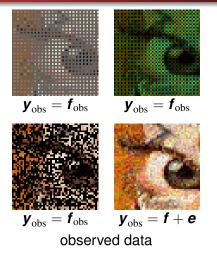
э

Wavelet Transform with Missing Data?



・ロト ・ 同ト ・ ヨト ・ ヨト

Types of Estimation Problems

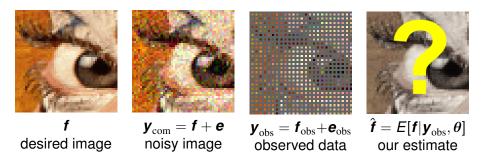


where θ is an estimate of hyper-parameter and nuisance parameter.

Keigo Hirakawa Spatio-Spectral Color Imaging

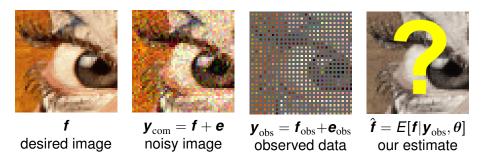
 $\hat{\boldsymbol{f}} = \boldsymbol{E}[\boldsymbol{f}|\boldsymbol{y}_{obs}, \boldsymbol{\theta}]$ our estimate

Interpolation + Denoising Problem



- Attempt to preserve sharpness in image also amplifies noise.
- Noise patterns form false edge structures.
- Interpolation adds structure to noise.
- Denoising before interpolation results in blurry output images.

Interpolation + Denoising Problem



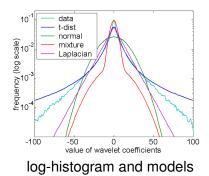
- Attempt to preserve sharpness in image also amplifies noise.
- Noise patterns form false edge structures.
- Interpolation adds structure to noise.
- Denoising before interpolation results in blurry output images.

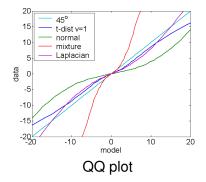
Empirical Partial Bayes Strategy (EPB)

- It is EPB because θ contains both hyper-parameter and nuisance parameter (e.g. Noise Covariance Matrix).
- The Chicken-and-Egg problem:
 - **(**) estimate d = Wf from θ and y_{obs} using posterior mean.
 - **2** estimate θ from d = Wf using maximum likelihood.
- Use Expectation-Maximization (EM) algorithm to iterate between these two steps!

イロン 不得 とくほう 不良 とう

Histogram of Wavelet Coefficients Comparison of Models





イロト 不同 トイヨト イヨト

ъ

Wavelet and Sampling Models

Wavelet Model (prior)

$$d = Wf$$

 $d_k | q_k \sim \mathcal{N}(\mathbf{0}, \Sigma_d/q_k)$
 $q_k \sim \chi^2_{\nu}/\nu$

Noise Model (likelihood) y = f + e w = Wy $w_k | d_k \sim \mathcal{N}(d_k, \Sigma_w)$

Marginal Likelihood Conditioned On q_k $w_k | q_k \sim \mathcal{N}(0, \Sigma_d/q_k + \Sigma_w)$

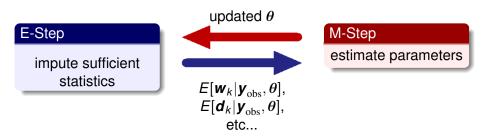
Sampling
$$\boldsymbol{y} = \begin{bmatrix} \boldsymbol{y}_{\text{obs}} \\ \boldsymbol{y}_{\text{mis}} \end{bmatrix}$$

parameters

$$\boldsymbol{\theta} = \{\boldsymbol{\Sigma}_{\boldsymbol{d}}, \boldsymbol{\Sigma}_{\boldsymbol{W}}, \nu\}$$

complete data
$$\boldsymbol{x} = \{\boldsymbol{d}, \boldsymbol{w}, \boldsymbol{q}\}$$
 $(\boldsymbol{q} = \{q_1, \dots, q_K\})$

Empirical Bayes & EM Algorithm



- impute **x** from y_{obs} and θ using posterior mean.
- estimate θ from y_{obs} (and x) using maximum likelihood.

$$\underbrace{\log p(\boldsymbol{y}_{\text{obs}} | \boldsymbol{\theta}^{\text{new}})}{\log p(\boldsymbol{y}_{\text{obs}} | \boldsymbol{\theta}^{\text{prev}})} \geq \log p(\boldsymbol{y}_{\text{obs}} | \boldsymbol{\theta}^{\text{prev}})$$

log likelihood of θ^{new}

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

3

EM Algorithm: M-Step

$$\boldsymbol{\theta}^{\text{new}} = \arg \max_{\boldsymbol{\theta}} \underbrace{E\left[\log p(\boldsymbol{x}|\boldsymbol{\theta}) | \boldsymbol{y}_{\text{obs}}, \boldsymbol{\theta}^{\text{prev}}\right]}_{Q(\boldsymbol{\theta}; \boldsymbol{\theta}^{\text{prev}})}$$

Assuming that ν is known...

$$Q(\theta; \theta^{\text{prev}}) = -\frac{1}{2} \sum_{k} E\Big[\log|\boldsymbol{\Sigma}_{w}| + (\boldsymbol{w}_{k} - \boldsymbol{d}_{k})^{T} \boldsymbol{\Sigma}_{w}^{-1} (\boldsymbol{w}_{k} - \boldsymbol{d}_{k}) + \log|\boldsymbol{\Sigma}_{d}| + q_{k} \boldsymbol{d}_{k}^{T} \boldsymbol{\Sigma}_{d}^{-1} \boldsymbol{d}_{k} \Big| \boldsymbol{y}_{\text{obs}}, \theta^{\text{prev}} \Big] + \text{constant}$$

Hyper- and Nuisance Parameters $\Sigma_{d}^{\text{new}} = K^{-1} \sum_{k} E \Big[q_{k} d_{k} d_{k}^{T} \Big| \mathbf{y}_{\text{obs}}, \theta^{\text{prev}} \Big]$ $\Sigma_{w}^{\text{new}} = K^{-1} \sum_{k} E \Big[w_{k} w_{k}^{T} - w_{k} d_{k}^{T} - d_{k} w_{k}^{T} + d_{k} d_{k}^{T} \Big| \mathbf{y}_{\text{obs}}, \theta^{\text{prev}} \Big]$

EM Algorithm: E-Step

noisy wavelet coefficients

$$\hat{\boldsymbol{w}}_{k|\boldsymbol{q}} = \boldsymbol{E}[\boldsymbol{w}_{k}|\boldsymbol{q}, \boldsymbol{y}_{\text{obs}}, \boldsymbol{\theta}] = \boldsymbol{W}_{k}\boldsymbol{E}[\boldsymbol{y}_{\text{com}}|\boldsymbol{q}, \boldsymbol{y}_{\text{obs}}, \boldsymbol{\theta}]$$

$$\hat{\boldsymbol{w}}_{k} = \boldsymbol{E}\left[\left.\boldsymbol{w}_{k}\right|\boldsymbol{y}_{\text{obs}}, \boldsymbol{\theta}\right] = \boldsymbol{E}\left[\left.\hat{\boldsymbol{w}}_{k|\boldsymbol{q}}\right|\boldsymbol{y}_{\text{obs}}, \boldsymbol{\theta}\right] = \int_{0}^{\infty} \hat{\boldsymbol{w}}_{k|\boldsymbol{q}} \boldsymbol{p}(\boldsymbol{q}|\boldsymbol{y}_{\text{obs}}, \nu) d\boldsymbol{q}$$

ideal wavelet coefficients

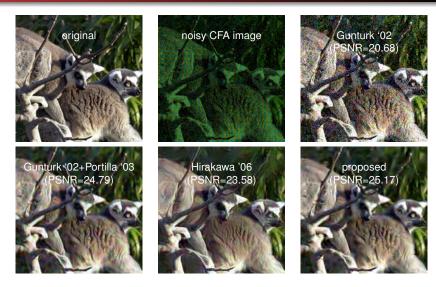
$$\hat{\boldsymbol{d}}_{k|\boldsymbol{q}} = E[\boldsymbol{d}_{k}|\boldsymbol{q},\boldsymbol{y}_{\text{obs}},\theta] = E[E[\boldsymbol{d}_{k}|\boldsymbol{w},\boldsymbol{q},\boldsymbol{y}_{\text{obs}},\theta]|\boldsymbol{q},\boldsymbol{y}_{\text{obs}},\theta]$$
$$= (\boldsymbol{\Sigma}_{w}^{-1} + \boldsymbol{\Sigma}_{d}^{-1}\boldsymbol{q}_{k})^{-1}\boldsymbol{\Sigma}_{w}^{-1}\hat{\boldsymbol{w}}_{k|\boldsymbol{q}}$$
$$\hat{\boldsymbol{d}}_{k} = E[\boldsymbol{d}_{k}|\boldsymbol{y}_{\text{obs}},\theta] = E\left[\hat{\boldsymbol{d}}_{k|\boldsymbol{q}}|\boldsymbol{y}_{\text{obs}},\theta\right] = \int_{0}^{\infty}\hat{\boldsymbol{d}}_{k|\boldsymbol{q}}\boldsymbol{p}(\boldsymbol{q}|\boldsymbol{y}_{\text{obs}},\nu)d\boldsymbol{q}$$

イロト 不得 トイヨト イヨト

ъ

Experimental Results: Interpolation + 10% noise

Experimental Results: Interpolation + 10% noise



・ロト ・ 同ト ・ ヨト ・ ヨト

Summary

- Combine sophisticated Wavelet Models with the Missing Data treatment.
- Empirical Partial Bayes using EM Algorithm.
 - Posterior Mean Estimation of Noisy and Clean Wavelet Coefficients.
 - Maximum Likelihood Estimation of Hyper- and Nuisance Parameters.
- Experimental Results:
 - Image quality better than treating denoising and interpolation independently.
 - Visible improvement over previous methods.

イロト イポト イヨト イヨト

Outline

2 Wavelet-Based Image Processing with Missing Data

Spatio-Spectral Sampling for Acquisition

4 Spatio-Spectral Sampling for Display

5 Summary

・ロン ・ 一 レ ・ 日 と ・ 日 と

э

Color Image Acquisition

What are the fundamental limitations to DSP imposed by the acquisition hardware?

- Types of data losses?
 - Spatial resolution (e.g. 6 megapixel)
 - Spectral resolution (e.g. red, green, blue)
 - Quantization (e.g. 24-bit color)
 - Temporal resolution (e.g. frame rate)
 - Noise (e.g. shot noise)
- Given natural scene statistics models, can we quantitatively analyze the information loss?
- Can we design hardware that minimizes information loss?
- Can new hardware enable fast algorithms?

イロト 不同 トイヨト イヨト

Color Image Acquisition

What are the fundamental limitations to DSP imposed by the acquisition hardware?

- Types of data losses?
 - Spatial resolution (e.g. 6 megapixel)
 - Spectral resolution (e.g. red, green, blue)
 - Quantization (e.g. 24-bit color)
 - Temporal resolution (e.g. frame rate)
 - Noise (e.g. shot noise)
- Given natural scene statistics models, can we quantitatively analyze the information loss?
- Can we design hardware that minimizes information loss?
- Can new hardware enable fast algorithms?

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・

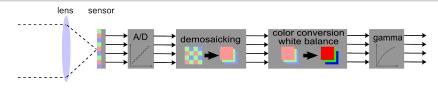
Color Image Acquisition

What are the fundamental limitations to DSP imposed by the acquisition hardware?

- Types of data losses?
 - Spatial resolution (e.g. 6 megapixel)
 - Spectral resolution (e.g. red, green, blue)
 - Quantization (e.g. 24-bit color)
 - Temporal resolution (e.g. frame rate)
 - Noise (e.g. shot noise)
- Given natural scene statistics models, can we quantitatively analyze the information loss?
- Can we design hardware that minimizes information loss?
- Can new hardware enable fast algorithms?

・ロン ・ 一 レ ・ 日 と ・ 日 と

Digital Camera Image Processing Pipeline



Observations:

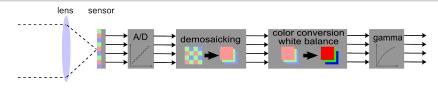
- CFA represents one of the very first steps in acquisition.
- Subsequent steps process sensor data acquired through CFA.
- We see diminishing return in image quality for additional complexity in algorithm.

Goal:

- Design a new CFA pattern that preserves the integrity of the signal.
- ... should yield better computation-quality trade-offs.
- ... should enhance the performance bounds.

イロト イポト イヨト イヨト

Digital Camera Image Processing Pipeline



Observations:

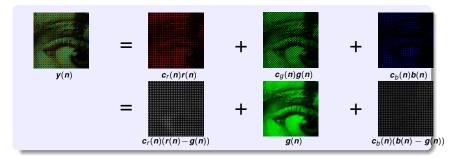
- CFA represents one of the very first steps in acquisition.
- Subsequent steps process sensor data acquired through CFA.
- We see diminishing return in image quality for additional complexity in algorithm.

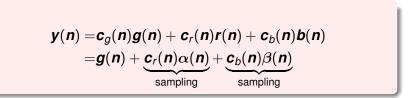
Goal:

- Design a new CFA pattern that preserves the integrity of the signal.
- ... should yield better computation-quality trade-offs.
- ... should enhance the performance bounds.

< ∃ >

CFA Image & Difference Image





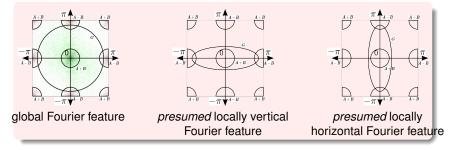
ъ

イロト イポト イヨト イヨト

CFA Image & Difference Image—Fourier Transform

$$y(\mathbf{n}) = g(\mathbf{n}) + c_r(\mathbf{n})\alpha(\mathbf{n}) + c_b(\mathbf{n})\beta(\mathbf{n})$$

$$\mathcal{F}\{\mathbf{y}\} = \mathcal{F}\{\mathbf{g}\} + \mathcal{F}\{\mathbf{c}_r\alpha\} + \mathcal{F}\{\mathbf{c}_b\beta\}$$

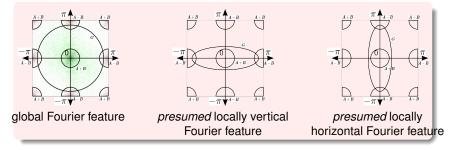


- No global solution to recovering the image signal
- Need additional assumptions about the signal
- Motivates nonlinear processing driven by local statistics
- Nonlinearity affects noise characterization

・ 同 ト ・ ヨ ト ・ ヨ ト

CFA Image & Difference Image—Fourier Transform

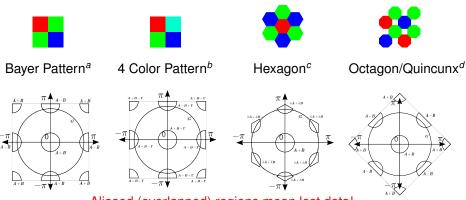
$$y(\mathbf{n}) = g(\mathbf{n}) + c_r(\mathbf{n})\alpha(\mathbf{n}) + c_b(\mathbf{n})\beta(\mathbf{n})$$
$$\mathcal{F}\{\mathbf{y}\} = \mathcal{F}\{\mathbf{g}\} + \mathcal{F}\{\mathbf{c}_r\alpha\} + \mathcal{F}\{\mathbf{c}_b\beta\}$$



- No global solution to recovering the image signal
- Need additional assumptions about the signal
- Motivates nonlinear processing driven by local statistics
- Nonlinearity affects noise characterization

★ E → ★ E →

Analysis of Data Loss in Image Acquisition

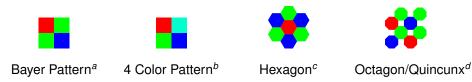


Aliased (overlapped) regions mean lost data!

^aB.E. Bayer, "Color imaging array," U.S. Patent 3 971 065, 1976. ^bwww.sony.net/sonyinfo/news/press_archive/200307/03-029E ^cR.M. Mersereau, "The processing of hexagonally sampled two-dimensional signals," Proceedings of the IEEE Vol.67, No.6, 1979 ^d home.fujfilm.com/pma2000/sprcd.html

イロト イポト イヨト イヨト

Analysis of Data Loss in Image Acquisition



Theorem (Hirakawa & Wolfe 2008)

No choice of pure-color CFA (Bayer, Hexagonal, Octagonal, etc.) will admit the maximal spectral radius at baseband.

Proof follows from the theory of (sampling) lattices.

^aB.E. Bayer, "Color imaging array," U.S. Patent 3 971 065, 1976. ^bwww.sony.net/sonyinfo/news/press_archive/200307/03-029E ^cR.M. Mersereau, "The processing of hexagonally sampled two-dimensional signals," Proceedings of the IEEE Vol.67, No.6, 1979 ^d home.fujifilm.com/pma2000/sprccd.html

イロト 不得 とくほ とくほう

AM Radio!

Amplitude modulation (AM) radio uses modulation of signal *x*(*n*) by carrier frequency *c*(*n*) via multiplication in the time domain:

$$\boldsymbol{y}(\boldsymbol{n}) = \boldsymbol{x}(\boldsymbol{n})\boldsymbol{c}(\boldsymbol{n}).$$

• The partitioning in the frequency domain allows transmission of multiply speech/music signals to be carried over the same media.

イロト イポト イヨト イヨト

Color Filter Array Sampling

Sensor Data Model

$$\boldsymbol{y}(\boldsymbol{n}) = \boldsymbol{c}_g(\boldsymbol{n})\boldsymbol{g}(\boldsymbol{n}) + \boldsymbol{c}_r(\boldsymbol{n})\boldsymbol{r}(\boldsymbol{n}) + \boldsymbol{c}_b(\boldsymbol{n})\boldsymbol{b}(\boldsymbol{n})$$

Simplification

Impose convex combination constraint: $c_g(n) + c_r(n) + c_b(n) = 1$. Then

 $\mathbf{y}(\mathbf{n}) = (1 - \mathbf{c}_r(\mathbf{n}) - \mathbf{c}_b(\mathbf{n}))\mathbf{g}(\mathbf{n}) + \mathbf{c}_r(\mathbf{n})\mathbf{r}(\mathbf{n}) + \mathbf{c}_b(\mathbf{n})\mathbf{b}(\mathbf{n})$ = $\mathbf{g}(\mathbf{n}) + \mathbf{c}_r(\mathbf{n})(\mathbf{r}(\mathbf{n}) - \mathbf{g}(\mathbf{n})) + \mathbf{c}_b(\mathbf{n})(\mathbf{b}(\mathbf{n}) - \mathbf{g}(\mathbf{n}))$ = $\mathbf{g}(\mathbf{n}) + \underbrace{\mathbf{c}_r(\mathbf{n})\alpha(\mathbf{n})}_{\text{amplitude modulation}} + \underbrace{\mathbf{c}_b(\mathbf{n})\beta(\mathbf{n})}_{\text{amplitude modulation}}$

・ロト ・ 同ト ・ ヨト ・ ヨト

Color Filter Array Sampling

Sensor Data Model

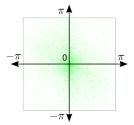
$$\boldsymbol{y}(\boldsymbol{n}) = \boldsymbol{c}_g(\boldsymbol{n})\boldsymbol{g}(\boldsymbol{n}) + \boldsymbol{c}_r(\boldsymbol{n})\boldsymbol{r}(\boldsymbol{n}) + \boldsymbol{c}_b(\boldsymbol{n})\boldsymbol{b}(\boldsymbol{n})$$

Simplification

Impose convex combination constraint: $c_g(n) + c_r(n) + c_b(n) = 1$. Then $y(n) = (1 - c_r(n) - c_b(n))g(n) + c_r(n)r(n) + c_b(n)b(n)$ $= g(n) + c_r(n)(r(n) - g(n)) + c_b(n)(b(n) - g(n))$ $= g(n) + \underbrace{c_r(n)\alpha(n)}_{\text{amplitude modulation}} + \underbrace{c_b(n)\beta(n)}_{\text{amplitude modulation}}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 ののの

Spatio-Spectral Sampling



It's a Sphere Packing problem!

- Recall spectral support of the green image.
- Green image spectrum does not occupy frequency regions far away from the origin.
- Main Idea: Use *c_r* and *c_b* to modulate *α*(*n*) and *β*(*n*) away from origin!

▲ ■ ト ▲ ヨ ト

.⊒...>

We design \boldsymbol{c}_r and \boldsymbol{c}_b in the 2D Fourier domain:

a
$$c_g = 1 - c_r - c_b$$
.

$$\mathcal{F}\{\boldsymbol{c}_{r} \cdot \boldsymbol{\alpha}\}(\boldsymbol{\omega}) = s_{0}\mathcal{F}\{\boldsymbol{\alpha}\}(\boldsymbol{\omega}) + \sum_{k} s_{k}\mathcal{F}\{\boldsymbol{\alpha}\}(\boldsymbol{\omega} - \tau_{k}) + \bar{s}_{k}\mathcal{F}\{\boldsymbol{\alpha}\}(\boldsymbol{\omega} + \tau_{k})$$
$$\mathcal{F}\{\boldsymbol{c}_{b} \cdot \boldsymbol{\beta}\}(\boldsymbol{\omega}) = t_{0}\mathcal{F}\{\boldsymbol{\beta}\}(\boldsymbol{\omega}) + \sum_{k} t_{k}\mathcal{F}\{\boldsymbol{\beta}\}(\boldsymbol{\omega} - \tau_{k}) + \bar{t}_{k}\mathcal{F}\{\boldsymbol{\beta}\}(\boldsymbol{\omega} + \tau_{k})$$

くぼと くほと くほと

We design \boldsymbol{c}_r and \boldsymbol{c}_b in the 2D Fourier domain:

- Pick carrier frequencies $\{ \tau_k \in \mathbb{R}^2 : \| \tau_k \|_{\infty} = \pi \}.$
- **2** Pick corresponding weights $\{\mathbf{s}_i, \mathbf{t}_i \in \mathbb{C}\}$.
- 3 Set $C_r(\omega) = s_0 + \sum_k s_k \delta(\omega \tau_k) + \bar{s}_k \delta(\omega + \tau_k).$
- Set $C_b(\omega) = t_0 + \sum_k t_k \delta(\omega \tau_k) + \overline{t}_k \delta(\omega + \tau_k).$

3 Take inverse Fourier transform: $\boldsymbol{c}_r = \mathcal{F}^{-1} \{ \boldsymbol{C}_r \},$ $\boldsymbol{c}_b = \mathcal{F}^{-1} \{ \boldsymbol{C}_b \}.$

6
$$c_g = 1 - c_r - c_b$$
.

$$\mathcal{F}\{\boldsymbol{c}_{r} \cdot \boldsymbol{\alpha}\}(\boldsymbol{\omega}) = s_{0}\mathcal{F}\{\boldsymbol{\alpha}\}(\boldsymbol{\omega}) + \sum_{k} s_{k}\mathcal{F}\{\boldsymbol{\alpha}\}(\boldsymbol{\omega} - \tau_{k}) + \bar{s}_{k}\mathcal{F}\{\boldsymbol{\alpha}\}(\boldsymbol{\omega} + \tau_{k})$$
$$\mathcal{F}\{\boldsymbol{c}_{b} \cdot \boldsymbol{\beta}\}(\boldsymbol{\omega}) = t_{0}\mathcal{F}\{\boldsymbol{\beta}\}(\boldsymbol{\omega}) + \sum_{k} t_{k}\mathcal{F}\{\boldsymbol{\beta}\}(\boldsymbol{\omega} - \tau_{k}) + \bar{t}_{k}\mathcal{F}\{\boldsymbol{\beta}\}(\boldsymbol{\omega} + \tau_{k})$$

イロト イポト イヨト イヨト

We design \boldsymbol{c}_r and \boldsymbol{c}_b in the 2D Fourier domain:

- Pick carrier frequencies $\{ \tau_k \in \mathbb{R}^2 : \| \tau_k \|_{\infty} = \pi \}.$
- **2** Pick corresponding weights $\{\mathbf{s}_i, \mathbf{t}_i \in \mathbb{C}\}$.

3 Take inverse Fourier transform: $\boldsymbol{c}_r = \mathcal{F}^{-1} \{ \boldsymbol{C}_r \},$ $\boldsymbol{c}_b = \mathcal{F}^{-1} \{ \boldsymbol{C}_b \}.$

(a)
$$c_g = 1 - c_r - c_b$$
.

$$\mathcal{F}\{\boldsymbol{c}_{r}\cdot\boldsymbol{\alpha}\}(\boldsymbol{\omega}) = s_{0}\mathcal{F}\{\boldsymbol{\alpha}\}(\boldsymbol{\omega}) + \sum_{k} s_{k}\mathcal{F}\{\boldsymbol{\alpha}\}(\boldsymbol{\omega}-\tau_{k}) + \bar{s}_{k}\mathcal{F}\{\boldsymbol{\alpha}\}(\boldsymbol{\omega}+\tau_{k})$$
$$\mathcal{F}\{\boldsymbol{c}_{b}\cdot\boldsymbol{\beta}\}(\boldsymbol{\omega}) = t_{0}\mathcal{F}\{\boldsymbol{\beta}\}(\boldsymbol{\omega}) + \sum_{k} t_{k}\mathcal{F}\{\boldsymbol{\beta}\}(\boldsymbol{\omega}-\tau_{k}) + \bar{t}_{k}\mathcal{F}\{\boldsymbol{\beta}\}(\boldsymbol{\omega}+\tau_{k})$$

イロト イポト イヨト イヨト

We design \boldsymbol{c}_r and \boldsymbol{c}_b in the 2D Fourier domain:

• Pick carrier frequencies
$$\{ \boldsymbol{\tau}_{k} \in \mathbb{R}^{2} : \| \boldsymbol{\tau}_{k} \|_{\infty} = \pi \}.$$

② Pick corresponding weights $\{s_i, t_i \in \mathbb{C}\}$.

3 Set
$$C_r(\omega) = s_0 + \sum_k s_k \delta(\omega - \tau_k) + \bar{s}_k \delta(\omega + \tau_k)$$
.

3 Set
$$C_b(\omega) = t_0 + \sum_k t_k \delta(\omega - \tau_k) + \overline{t}_k \delta(\omega + \tau_k).$$

5 Take inverse Fourier transform: $\boldsymbol{c}_r = \mathcal{F}^{-1} \{ \boldsymbol{C}_r \},$ $\boldsymbol{c}_b = \mathcal{F}^{-1} \{ \boldsymbol{C}_b \}.$

(a)
$$c_g = 1 - c_r - c_b$$
.

$$\mathcal{F}\{\boldsymbol{c}_{r}\cdot\boldsymbol{\alpha}\}(\boldsymbol{\omega}) = s_{0}\mathcal{F}\{\boldsymbol{\alpha}\}(\boldsymbol{\omega}) + \sum_{k} s_{k}\mathcal{F}\{\boldsymbol{\alpha}\}(\boldsymbol{\omega}-\tau_{k}) + \bar{s}_{k}\mathcal{F}\{\boldsymbol{\alpha}\}(\boldsymbol{\omega}+\tau_{k})$$
$$\mathcal{F}\{\boldsymbol{c}_{b}\cdot\boldsymbol{\beta}\}(\boldsymbol{\omega}) = t_{0}\mathcal{F}\{\boldsymbol{\beta}\}(\boldsymbol{\omega}) + \sum_{k} t_{k}\mathcal{F}\{\boldsymbol{\beta}\}(\boldsymbol{\omega}-\tau_{k}) + \bar{t}_{k}\mathcal{F}\{\boldsymbol{\beta}\}(\boldsymbol{\omega}+\tau_{k})$$

3

We design \boldsymbol{c}_r and \boldsymbol{c}_b in the 2D Fourier domain:

() Pick carrier frequencies
$$\{ \boldsymbol{\tau}_{k} \in \mathbb{R}^{2} : \| \boldsymbol{\tau}_{k} \|_{\infty} = \pi \}.$$

2 Pick corresponding weights $\{\mathbf{s}_i, \mathbf{t}_i \in \mathbb{C}\}$.

3 Set
$$C_r(\omega) = s_0 + \sum_k s_k \delta(\omega - \tau_k) + \bar{s}_k \delta(\omega + \tau_k)$$
.

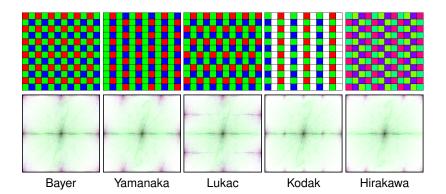
3 Set
$$C_b(\omega) = t_0 + \sum_k t_k \delta(\omega - \tau_k) + \overline{t}_k \delta(\omega + \tau_k)$$
.

3 Take inverse Fourier transform: $\boldsymbol{c}_r = \mathcal{F}^{-1}\{\boldsymbol{C}_r\},$ $\boldsymbol{c}_b = \mathcal{F}^{-1}\{\boldsymbol{C}_b\}.$

(a)
$$c_g = 1 - c_r - c_b$$
.

$$\mathcal{F}\{\boldsymbol{c}_{r}\cdot\boldsymbol{\alpha}\}(\boldsymbol{\omega}) = \boldsymbol{s}_{0}\mathcal{F}\{\boldsymbol{\alpha}\}(\boldsymbol{\omega}) + \sum_{k}\boldsymbol{s}_{k}\mathcal{F}\{\boldsymbol{\alpha}\}(\boldsymbol{\omega}-\boldsymbol{\tau}_{k}) + \bar{\boldsymbol{s}}_{k}\mathcal{F}\{\boldsymbol{\alpha}\}(\boldsymbol{\omega}+\boldsymbol{\tau}_{k})$$
$$\mathcal{F}\{\boldsymbol{c}_{b}\cdot\boldsymbol{\beta}\}(\boldsymbol{\omega}) = \boldsymbol{t}_{0}\mathcal{F}\{\boldsymbol{\beta}\}(\boldsymbol{\omega}) + \sum_{k}\boldsymbol{t}_{k}\mathcal{F}\{\boldsymbol{\beta}\}(\boldsymbol{\omega}-\boldsymbol{\tau}_{k}) + \bar{\boldsymbol{t}}_{k}\mathcal{F}\{\boldsymbol{\beta}\}(\boldsymbol{\omega}+\boldsymbol{\tau}_{k})$$

CFA Image & Difference Image—Fourier Transform



・ロト ・ 同ト ・ ヨト ・ ヨト

Minimizing Data Loss in Image Acquisition

Disadvantages to traditional CFA design

- aliasing occurs when one signal "contaminates" another signal.
- anti-aliasing reduces resolution.
- "un-doing" aliasing is an ill-posed problem ⇒ additional assumption and complexity! (e.g. directionality).

Benefits to spatio-spectral CFA design

- minimize data loss ⇒ improved image quality
- not sensitive to directions ⇒ completely linear fast reconstruction method
- Iow-complexity, low-power, low-memory
- improvements for noise and video (panchromatic)

Main idea: with sufficient partitioning in Fourier domain, a very crude filter will suffice for reconstruction.

イロト イロト イヨト イヨト

Minimizing Data Loss in Image Acquisition

Disadvantages to traditional CFA design

- aliasing occurs when one signal "contaminates" another signal.
- anti-aliasing reduces resolution.
- "un-doing" aliasing is an ill-posed problem ⇒ additional assumption and complexity! (e.g. directionality).

Benefits to spatio-spectral CFA design

- minimize data loss \Rightarrow improved image quality
- not sensitive to directions ⇒ completely linear fast reconstruction method
- Iow-complexity, low-power, low-memory
- improvements for noise and video (panchromatic)

Main idea: with sufficient partitioning in Fourier domain, a very crude filter will suffice for reconstruction.

イロト イポト イヨト イヨト 三臣

Minimizing Data Loss in Image Acquisition

Disadvantages to traditional CFA design

- aliasing occurs when one signal "contaminates" another signal.
- anti-aliasing reduces resolution.
- "un-doing" aliasing is an ill-posed problem ⇒ additional assumption and complexity! (e.g. directionality).

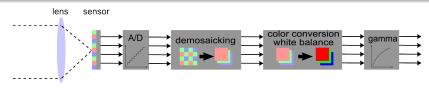
Benefits to spatio-spectral CFA design

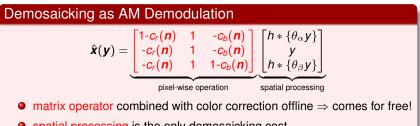
- minimize data loss \Rightarrow improved image quality
- not sensitive to directions ⇒ completely linear fast reconstruction method
- Iow-complexity, low-power, low-memory
- improvements for noise and video (panchromatic)

Main idea: with sufficient partitioning in Fourier domain, a very crude filter will suffice for reconstruction.

・ロト ・ 同ト ・ ヨト ・ ヨト

Efficient Linear Demosaicking for Spatio-Spectral CFA





spatial processing is the only demosaicking cost.

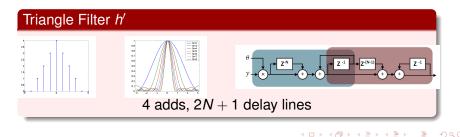
$$h * \{\theta_{\alpha}y\} = h'(n_{2}) * \{\theta'_{\alpha}(n_{2})y'(n)\}$$

$$h * \{\theta_{\beta}y\} = h'(n_{2}) * \{\theta'_{\beta}(n_{2})y'(n)\}$$

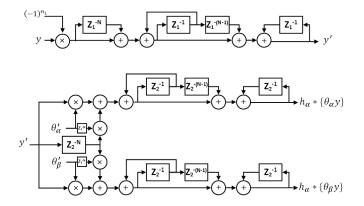
$$y' = h'(n_{1}) * \{(-1)^{n_{1}}y\}$$

Efficient Linear Demosaicking for Spatio-Spectral CFA

- with sufficient partitioning in Fourier domain, a very crude filter will suffice for reconstruction.
- so, can we use cheap filters? YES!
- we rival state-of-the-art demosaicking with
 - only 10 add operations per full-pixel reconstruction!
 - no nonlinear elements such as *if-then* or *greater-than*.
 - no multiplier (except $\theta \in \{0, \pm 1\}$)



Efficient Linear Demosaicking for Spatio-Spectral CFA

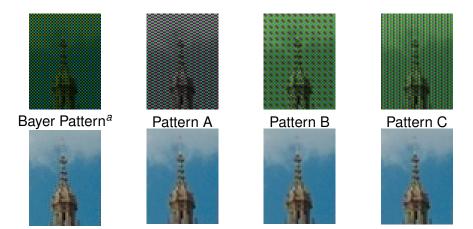


• $\theta'_{\alpha}, \theta'_{\beta} \in \{0, \pm 1\} \Rightarrow$ savings with $\theta'_{\alpha}y' = 0$ and $\theta'_{\beta}y' = 0$

- Z₁ line buffers, Z₂ registers (ASIC)
- 10 adds, 2N + 1 line buffers, 3N + 2 registers

イロト 不同 とくほ とくほ とう

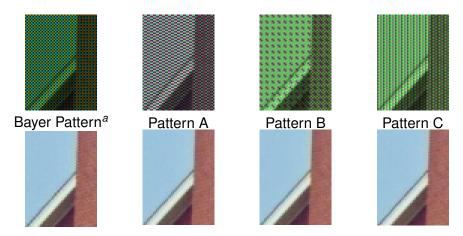
Example of Data Acquisition and Reconstruction



^a Gunturk et al, "Demosaicking: Color Filter Array Interpolation," IEEE Signal Processing Magazine, Jan. 2005

イロト イポト イヨト イヨト

Example of Data Acquisition and Reconstruction

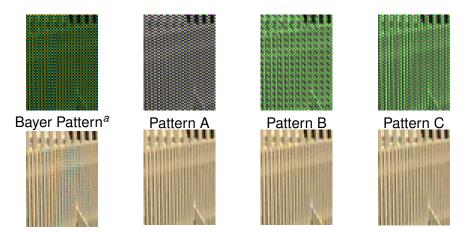


^a Gunturk et al, "Demosaicking: Color Filter Array Interpolation," IEEE Signal Processing Magazine, Jan. 2005

ヘロン 人間 とくほ とくほ とう

ъ

Example of Data Acquisition and Reconstruction



^a Gunturk et al, "Demosaicking: Color Filter Array Interpolation," IEEE Signal Processing Magazine, Jan. 2005

ヘロン 人間 とくほ とくほ とう

э

Example of Noisy Sensor

Spatio-Spectral Linear Demosaicking

Bayer Nonlinear Demosaicking

ъ

Outline

2 Wavelet-Based Image Processing with Missing Data

3 Spatio-Spectral Sampling for Acquisition

4 Spatio-Spectral Sampling for Display

5 Summary

ヘロン 人間 とくほ とくほ とう

э

Motivation

signal & image processing

natural scene statistics

digital camera & hardware DATA LOST HERE!! ↓ impose limits on DSP

display device, human vision DATA LOST HERE!! ↓ impose limits on vision

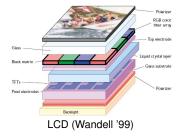
э

・ロト ・回ト ・ヨト ・ヨト

What limitations does hardware impose on visual perception?

- Types of data losses? Resolutions in Spatial, Spectral, Quantization, Temporal...
- Given human visual system models and what we know about the signal, can we quantify information loss?
- Can we design a hardware that minimizes information loss?

Color Filter Array & Display Device



Observations:

- CFA represents one of the very last steps in display device.
- Human visual system processes image data displayed via CFA.

Goal:

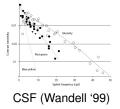
- Design a new CFA pattern that preserves the integrity of the signal.
- ... should yield better resolution-quality trade-offs.

イロト イポト イヨト イヨト

э

... should enhance the performance bounds.

Quick Review: Luminance-Chrominance (L-C)



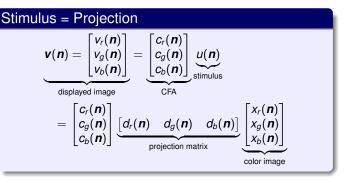
- Visual spatial processing organized as parallel channels (components) in the nervous system.
- luminance ("intensity") & chrominance ("red-green" and "blue-yellow")
- The contrast sensitivity functions (CSF) reveal that the passband structure in vision.

ヘロト ヘヨト ヘヨト

.⊒...>

$$\underbrace{\mathcal{W}\{\boldsymbol{x}\}}_{\text{perceived}} = \begin{bmatrix} h_1(\boldsymbol{n}) * y_1(\boldsymbol{n}) \\ h_2(\boldsymbol{n}) * y_2(\boldsymbol{n}) \\ h_3(\boldsymbol{n}) * y_3(\boldsymbol{n}) \end{bmatrix} = \underbrace{\begin{bmatrix} h_1(\boldsymbol{n}) * \\ h_2(\boldsymbol{n}) * \\ h_3(\boldsymbol{n}) * \end{bmatrix}}_{\text{CSF}} \underbrace{\underbrace{\mathsf{M}_{\mathsf{CGB}}^{\mathsf{CGB} \text{ color}}}_{\mathsf{L-C \text{ color}}}$$

Color Filter Array & Display Stimuli



イロト イポト イヨト イヨト 二日

Stimulus $u(\mathbf{n})$ controls the intensity of color $\mathbf{c}(\mathbf{n})$.

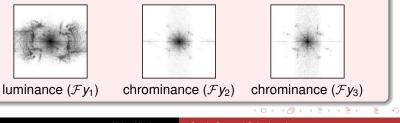
Keigo Hirakawa Spatio-Spectral Color Imaging

Color Filter Array & Display Stimuli

Stimulus

$$u(\mathbf{n}) = \underbrace{\begin{bmatrix} d_r(\mathbf{n}) & d_g(\mathbf{n}) & d_b(\mathbf{n}) \end{bmatrix} \mathbf{M}^{-1}}_{\phi^T = \text{projection in L-C}} \underbrace{\mathbf{M}}_{\mathbf{y}=\text{image in L-C}} \begin{bmatrix} x_r(\mathbf{n}) \\ x_g(\mathbf{n}) \\ x_b(\mathbf{n}) \end{bmatrix}}_{\mathbf{y}=\text{image in L-C}}$$
$$= \underbrace{\phi_1(\mathbf{n})y_1(\mathbf{n})}_{\text{luminance}} + \underbrace{\phi_2(\mathbf{n})y_2(\mathbf{n})}_{\text{chrominance}} + \underbrace{\phi_3(\mathbf{n})y_3(\mathbf{n})}_{\text{chrominance}}$$

Fourier Transform

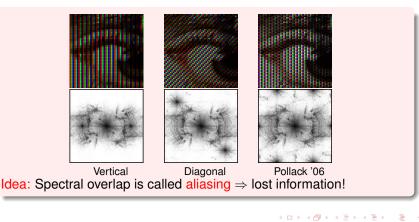


Keigo Hirakawa Spatio-Spectral Color Imaging

Aliasing in Display Stimuli

$$\mu(n) = \phi_1(n)y_1(n) + \phi_2(n)y_2(n) + \phi_3(n)y_3(n)$$

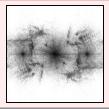
Idea: When ϕ_i is a sinusoid, $\phi_i y_i$ is a modulation and ϕ_i called carrier.



Oversampling To Overcome Aliasing

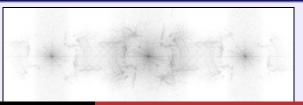
Aliasing is eliminated with oversampling, but it increases pixel count.

Vertical (2500 subpixels)



Oversampled by 3 (7500 subpixels)

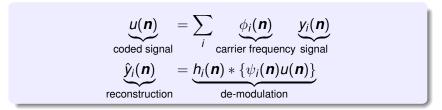




Keigo Hirakawa Spat

Spatio-Spectral Color Imaging

Quick Review: Amplitude Modulation



The partitioning in the frequency domain allows transmission of multiply speech/music signals to be carried over the same media.

イロト 不得 とくほ とくほ とう

э

Motivation

Ultimately, want $\mathcal{W}\{x\} \approx \mathcal{W}\{v\}$, where observed image is...

$$\mathcal{W}\{\mathbf{v}\} = \begin{bmatrix} h_1 * \\ h_2 * \\ h_3 * \end{bmatrix} \underbrace{\mathbf{M} \begin{bmatrix} c_r(\mathbf{n}) \\ c_g(\mathbf{n}) \\ c_b(\mathbf{n}) \end{bmatrix}}_{\psi(\mathbf{n})} u(\mathbf{n}) = \underbrace{\begin{bmatrix} h_1 * \\ h_2 * \\ h_3 * \end{bmatrix}}_{\text{de-modulation}} \psi(\mathbf{n}) \underbrace{\underbrace{\phi(\mathbf{n})^T \mathbf{y}(\mathbf{n})}_{\text{modulation}}}_{\text{modulation}}$$

- This is Amplitude Modulation and De-Modulation!!!
- Idea 1: Design φ_i and ψ_i such that W{V} is an amplitude demodulation. We "borrow" the convolution filters from the observer's eye.
- Idea 2: Parameterize φ_i and ψ_i in Fourier domain explicitly such that we achieve partitioning (i.e. no aliasing).

・ロト ・ 同ト ・ ヨト ・ ヨト

Motivation

Ultimately, want $\mathcal{W}\{x\} \approx \mathcal{W}\{v\}$, where observed image is...

$$\mathcal{W}\{\mathbf{v}\} = \begin{bmatrix} h_1 * \\ h_2 * \\ h_3 * \end{bmatrix} \underbrace{\mathbf{M} \begin{bmatrix} c_r(\mathbf{n}) \\ c_g(\mathbf{n}) \\ c_b(\mathbf{n}) \end{bmatrix}}_{\psi(\mathbf{n})} u(\mathbf{n}) = \underbrace{\begin{bmatrix} h_1 * \\ h_2 * \\ h_3 * \end{bmatrix}}_{\text{de-modulation}} \psi(\mathbf{n}) \underbrace{\underbrace{\phi(\mathbf{n})^T \mathbf{y}(\mathbf{n})}_{\text{modulation}}}_{\text{modulation}}$$

- This is Amplitude Modulation and De-Modulation!!!
- Idea 1: Design φ_i and ψ_i such that W{v} is an amplitude demodulation. We "borrow" the convolution filters from the observer's eye.
- Idea 2: Parameterize φ_i and ψ_i in Fourier domain explicitly such that we achieve partitioning (i.e. no aliasing).

・ロト ・ 同ト ・ ヨト ・ ヨト

Fourier Domain CFA Design

We design the carrier frequencies $\phi_i(\mathbf{n}) = k_i \psi_i(\mathbf{n})$ such that:

- $h_i(\mathbf{n}) * \{\psi_i(\mathbf{n})\phi_j(\mathbf{n})\} = 1$ when i = j.
- $h_i(\mathbf{n}) * \{\psi_i(\mathbf{n})\phi_j(\mathbf{n})\} = 0$ when $i \neq j$.
- $u = \phi_1 y_1 + \phi_2 y_2 + \phi_3 y_3$ is alias free.

● *u* ≥ 0.

We choose $\phi(\mathbf{n})$ in the 2D Fourier domain:

1 Set
$$\phi_1(\mathbf{n}) = 1$$
.

2 Pick carrier frequencies $\{\boldsymbol{\tau}_k \in \mathbb{R}^2 : \|\boldsymbol{\tau}_k\}_{\infty} = \pi\}.$

3 Pick corresponding weights $\{s_k, t_k \in \mathbb{C}^2\}$.

^(a) Set
$$\Phi_2(\omega) = \sum_k s_k \delta(\omega - \tau_k) + \bar{s}_k \delta(\omega + \tau_k)$$
.

5 Set
$$\Phi_3(\omega) = \sum_k t_k \delta(\omega - \tau_k) + \overline{t}_k \delta(\omega + \tau_k)$$
.

I Take inverse FFT: $\phi_2 = \mathcal{F}^{-1}{\{\Phi_2\}}, \phi_3 = \mathcal{F}^{-1}{\{\Phi_3\}}.$

ψ follows immediately from ϕ .

<ロト < 同ト < 巨ト < 巨ト < 巨 > つへの

Fourier Domain CFA Design

We design the carrier frequencies $\phi_i(\mathbf{n}) = k_i \psi_i(\mathbf{n})$ such that:

- $h_i(\mathbf{n}) * \{\psi_i(\mathbf{n})\phi_j(\mathbf{n})\} = 1$ when i = j.
- $h_i(\mathbf{n}) * \{\psi_i(\mathbf{n})\phi_j(\mathbf{n})\} = 0$ when $i \neq j$.
- $u = \phi_1 y_1 + \phi_2 y_2 + \phi_3 y_3$ is alias free.
- *u* ≥ 0.

We choose $\phi(\mathbf{n})$ in the 2D Fourier domain:

) Set
$$\phi_1(n) = 1$$
.

2 Pick carrier frequencies $\{ \boldsymbol{\tau}_k \in \mathbb{R}^2 : \| \boldsymbol{\tau}_k \}_{\infty} = \pi \}.$

③ Pick corresponding weights $\{s_k, t_k \in \mathbb{C}^2\}$.

3 Set
$$\Phi_2(\omega) = \sum_k s_k \delta(\omega - \tau_k) + \bar{s}_k \delta(\omega + \tau_k)$$
.

5 Set
$$\Phi_3(\omega) = \sum_k t_k \delta(\omega - \tau_k) + \overline{t}_k \delta(\omega + \tau_k)$$
.

() Take inverse FFT: $\phi_2 = \mathcal{F}^{-1}{\{\Phi_2\}}, \phi_3 = \mathcal{F}^{-1}{\{\Phi_3\}}.$

 ψ follows immediately from ϕ .

<ロト < 同ト < 巨ト < 巨ト < 巨 > つへの

Fourier Analysis of Stimuli

Fourier Transform of Stimuli

$$\mathcal{F}{U} = \mathcal{F}{\phi^{\mathsf{T}} \mathbf{y}}$$
$$= \mathcal{F}{y_1}(\omega) + \sum_k {s_i \mathcal{F}{y_2} + t_i \mathcal{F}{y_3}}(\omega - \tau_k)$$
$$+ \sum_k {\bar{s}_i \mathcal{F}{y_2} + \bar{t}_i \mathcal{F}{y_3}}(\omega - \tau_k)$$

By choosing the carriers τ_k away from the baseband (high frequency),

- The chances of $\phi_2 y_2$ and $\phi_3 y_3$ overlapping with $\phi_1 y_1$ is minimized.
- $\phi_1\psi_2, \phi_1\psi_3, \phi_2\psi_1, \phi_3\psi_1$ fall outside of the passband for h_1, h_1, h_2, h_3 , respectively.

Fourier Analysis of Stimuli

Fourier Transform of Stimuli

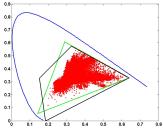
$$\begin{split} \mathcal{F}\{\boldsymbol{u}\} = & \mathcal{F}\{\boldsymbol{\phi}^{\mathsf{T}}\boldsymbol{y}\} \\ = & \mathcal{F}\{\boldsymbol{y}_1\}(\boldsymbol{\omega}) + \sum_{k} \{\boldsymbol{s}_i \mathcal{F}\{\boldsymbol{y}_2\} + t_i \mathcal{F}\{\boldsymbol{y}_3\}\}(\boldsymbol{\omega} - \boldsymbol{\tau}_k) \\ & + \sum_{k} \{\bar{\boldsymbol{s}}_i \mathcal{F}\{\boldsymbol{y}_2\} + \bar{t}_i \mathcal{F}\{\boldsymbol{y}_3\}\}(\boldsymbol{\omega} - \boldsymbol{\tau}_k) \end{split}$$

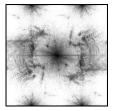
By choosing the carriers τ_k away from the baseband (high frequency),

- The chances of φ₂y₂ and φ₃y₃ overlapping with φ₁y₁ is minimized.
- $\phi_1\psi_2, \phi_1\psi_3, \phi_2\psi_1, \phi_3\psi_1$ fall outside of the passband for h_1, h_1, h_2, h_3 , respectively.

э

An Example of New CFA





x-y chromaticity plot

proposed CFA

stimulus

- black=display device; green=RGB; red=real image data.
- Not unique to the above—offers much flexibility in design!
- Larger gamut, but does not cover all of RGB.

Display Example

Striped

Diagonal

Proposed

イロン 不聞と 不良と 不良とい

э

Outline

- 2 Wavelet-Based Image Processing with Missing Data
- Spatio-Spectral Sampling for Acquisition
- 4 Spatio-Spectral Sampling for Display

ヘロン 人間 とくほ とくほ とう

э

Summary

- Color Image Acquisition: avoidance of information loss.
 - Examined the aliasing inherent in CFA patterns.
 - Theorem: suboptimality of pure-color CFA patterns.
 - Designed a new way to capture color image data using CFA as a modulation operator.
- Color Image Processing: representation of sampled data in transform domain.
 - Combine sophisticated wavelet models with missing data treatment.
 - Empirical partial Bayes using EM Algorithm.
 - L² estimation of clean wavelet coefficient.
 - MLE of parameters
- Color Image Display: avoidance of visual information loss.
 - Designed a new way to display color image data using CFA as a modulation operator.

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

3

Summary

- Color Image Acquisition: avoidance of information loss.
 - Examined the aliasing inherent in CFA patterns.
 - Theorem: suboptimality of pure-color CFA patterns.
 - Designed a new way to capture color image data using CFA as a modulation operator.
- Color Image Processing: representation of sampled data in transform domain.
 - Combine sophisticated wavelet models with missing data treatment.
 - Empirical partial Bayes using EM Algorithm.
 - L² estimation of clean wavelet coefficient.
 - MLE of parameters
- Color Image Display: avoidance of visual information loss.
 - Designed a new way to display color image data using CFA as a modulation operator.

・ロト ・ 同ト ・ ヨト ・ ヨト

Summary

- Color Image Acquisition: avoidance of information loss.
 - Examined the aliasing inherent in CFA patterns.
 - Theorem: suboptimality of pure-color CFA patterns.
 - Designed a new way to capture color image data using CFA as a modulation operator.
- Color Image Processing: representation of sampled data in transform domain.
 - Combine sophisticated wavelet models with missing data treatment.
 - Empirical partial Bayes using EM Algorithm.
 - L² estimation of clean wavelet coefficient.
 - MLE of parameters
- Color Image Display: avoidance of visual information loss.
 - Designed a new way to display color image data using CFA as a modulation operator.

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

э

Thank you!

- hirakawa@stat.harvard.edu
- www.accidentalmark.com/research
- sisl.seas.harvard.edu

ъ

イロト イポト イヨト イヨト