Adaptive Processing in a World of Projections

Sergios Theodoridis¹

Joint work with Konstantinos Slavakis² and Isao Yamada³

¹University of Athens, Greece

²University of Peloponnese, Greece

³Tokyo Institute of Technology, Japan

January 16, 2009

"ΟΥΔΕΙΣ ΑΓΕΩΜΕΤΡΗΤΟΣ ΕΙΣΙ"

"ΟΥΔΕΙΣ ΑΓΕΩΜΕΤΡΗΤΟΣ ΕΙΣΙ"

("Those who do not know geometry are not welcome here")

Plato's Academy of Philosophy

Outline

- The fundamental tool of metric projections in Hilbert spaces.
- The Set Theoretic Estimation approach and multiple intersecting closed convex sets.
- Online classification and regression in Reproducing Kernel Hilbert Spaces (RKHS).
- Incorporating a-priori constraints in the design.
- An algorithmic solution to constrained online learning in RKHS.
- A nonlinear adaptive beamforming application.

Machine Learning

Problem Definition

Given

- A set of measurements $(x_n,y_n)_{n=1}^N$, which are jointly distributed, and
- A parametric set of functions

$$\mathcal{F} = \{ f_{\alpha}(\boldsymbol{x}) : \alpha \in A \subset \mathbb{R}^k \}.$$

Compute an $f(\cdot)$ that best approximates y, given the value of x:

$$y \approx f(\boldsymbol{x}).$$

Machine Learning

Problem Definition

Given

- A set of measurements $(x_n,y_n)_{n=1}^N$, which are jointly distributed, and
- A parametric set of functions

$$\mathcal{F} = \{ f_{\alpha}(\boldsymbol{x}) : \alpha \in A \subset \mathbb{R}^k \}.$$

Compute an $f(\cdot)$ that best approximates y, given the value of x:

$$y \approx f(\boldsymbol{x}).$$

Special Cases

Smoothing, prediction, filtering, system identification, beamforming, curve-fitting, regression, and classification.

The More Classical Approach

Select a loss function $\ell(\cdot,\cdot)$ and estimate $f(\cdot)$ so that

$$f(\cdot) \in \{f_{\alpha}(\cdot) \in \operatorname{arg\,min}_{\alpha} \sum_{n=1}^{N} \ell(y_n, f_{\alpha}(\boldsymbol{x}_n))\}.$$

The More Classical Approach

Select a loss function $\ell(\cdot,\cdot)$ and estimate $f(\cdot)$ so that

$$f(\cdot) \in \{f_{\alpha}(\cdot) \in \operatorname{arg\,min}_{\alpha} \sum_{n=1}^{N} \ell(y_n, f_{\alpha}(\boldsymbol{x}_n))\}.$$

Drawbacks

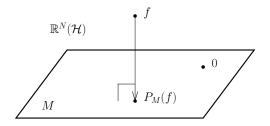
- Most often, in practice, the choice of the cost is dictated not by physical reasoning but by the computational tractability.
- The existence of a-priori information in the form of constraints makes the task even more difficult.
- The optimization task is solved iteratively, and iterations freeze after a finite number of steps. Thus, the obtained solution lies in a neighborhood of the optimal one.
- The stochastic nature of the data and the existence of noise add another uncertainty on the optimality of the obtained solution.

- In this talk we are concerned in finding a set of solutions that are in agreement with all the available information.
- This will be achieved in the general context of fixed point theory, using convex analysis and the powerful tool of projections.

Projection onto a Closed Subspace

Theorem

Given a Euclidean \mathbb{R}^N or a Hilbert space \mathcal{H} , the projection of a point f onto a closed subspace M is the point $P_M(f) \in M$ that lies closest to f (Pythagoras Theorem).



Projection onto a Closed Convex Set

Theorem

Let C be a closed convex set in a Hilbert space \mathcal{H} . Then, for each $f \in \mathcal{H}$ there exists a unique $f_* \in C$ such that

$$||f - f_*|| = \min_{g \in C} ||f - g||.$$

Projection onto a Closed Convex Set

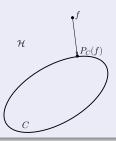
Theorem

Let C be a closed convex set in a Hilbert space \mathcal{H} . Then, for each $f \in \mathcal{H}$ there exists a unique $f_* \in C$ such that

$$||f - f_*|| = \min_{g \in C} ||f - g||.$$

Definition (Metric Projection Mapping)

Projection is the mapping $P_C: \mathcal{H} \to C: f \mapsto f_*$.



Projection onto a Closed Convex Set

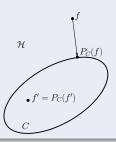
Theorem

Let C be a closed convex set in a Hilbert space \mathcal{H} . Then, for each $f \in \mathcal{H}$ there exists a unique $f_* \in C$ such that

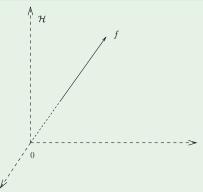
$$||f - f_*|| = \min_{g \in C} ||f - g||.$$

Definition (Metric Projection Mapping)

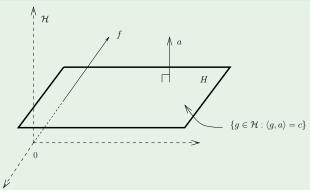
Projection is the mapping $P_C: \mathcal{H} \to C: f \mapsto f_*$.



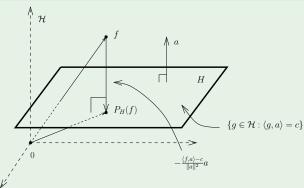
Example (Hyperplane $H := \{g \in \mathcal{H} : \langle g, a \rangle = c\}$)



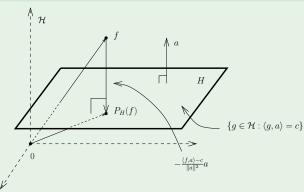
Example (Hyperplane $H:=\{g\in\mathcal{H}:\langle g,a\rangle=c\}$)



Example (Hyperplane $H:=\{g\in\mathcal{H}:\langle g,a\rangle=c\}$)

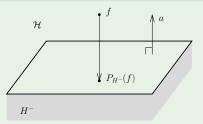


Example (Hyperplane $H := \{g \in \mathcal{H} : \langle g, a \rangle = c\}$)

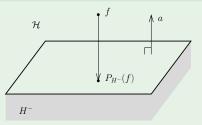


$$P_H(f) = f - \frac{\langle f, a \rangle - c}{\|a\|^2} a, \quad \forall f \in \mathcal{H}.$$

Example (Halfspace $H^- := \{g \in \mathcal{H} : \langle g, a \rangle \leq c\}$)

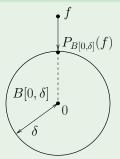


Example (Halfspace $H^- := \{g \in \mathcal{H} : \langle g, a \rangle \leq c\}$)

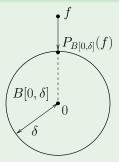


$$P_{H^{-}}(f) = f - \frac{\max\{0, \langle f, a \rangle - c\}}{\|a\|^2} a, \quad \forall f \in \mathcal{H}.$$

Example (Closed Ball $B[0, \delta] := \{g \in \mathcal{H} : ||g|| \le \delta\}$)

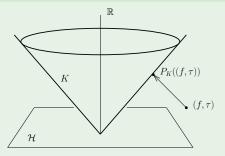


Example (Closed Ball $B[0, \delta] := \{g \in \mathcal{H} : ||g|| \leq \delta\}$)

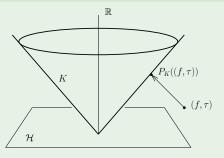


$$P_{B[0,\delta]}(f) := \begin{cases} f, & \text{if } \|f\| \leq \delta, \\ \frac{\delta}{\|f\|} f, & \text{if } \|f\| > \delta. \end{cases}, \qquad \forall f \in \mathcal{H}.$$

Example (Icecream Cone $K := \{(f, \tau) \in \mathcal{H} \times \mathbb{R} : ||f|| \ge \tau\}$)



Example (Icecream Cone $K := \{(f, \tau) \in \mathcal{H} \times \mathbb{R} : ||f|| \geq \tau\}$)



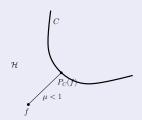
$$P_K((f,\tau)) = \begin{cases} (f,\tau), & \text{if } \|f\| \leq \tau, \\ (0,0), & \text{if } \|f\| \leq -\tau, \\ \frac{\|f\|+\tau}{2}(\frac{f}{\|f\|},1), & \text{otherwise}, \end{cases} \quad \forall (f,\tau) \in \mathcal{H} \times \mathbb{R}.$$

Definition

$$T_C(f) := f + \mu(P_C(f) - f), \mu \in (0, 2), \quad \forall f \in \mathcal{H}.$$

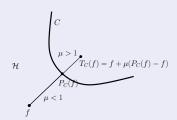
Definition

$$T_C(f) := f + \mu(P_C(f) - f), \mu \in (0, 2), \quad \forall f \in \mathcal{H}.$$



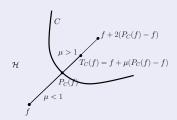
Definition

$$T_C(f) := f + \mu(P_C(f) - f), \mu \in (0, 2), \quad \forall f \in \mathcal{H}.$$



Definition

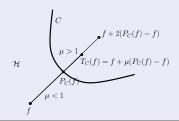
$$T_C(f) := f + \mu(P_C(f) - f), \mu \in (0, 2), \quad \forall f \in \mathcal{H}.$$



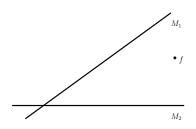
Definition

Given a closed convex set C and its associated projection mapping P_C , the relaxed projection mapping is defined as

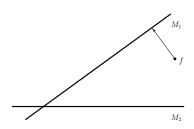
$$T_C(f) := f + \mu(P_C(f) - f), \mu \in (0, 2), \quad \forall f \in \mathcal{H}.$$



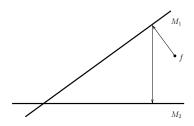
Remark: The use of the relaxed projection operator with $\mu>1$ can, potentially, speed up the convergence rate of the algorithms to be presented.



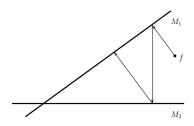
$$P_{M_1}(f)$$
.



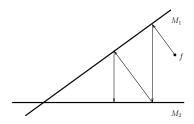
$$P_{M_2}P_{M_1}(f).$$



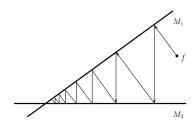
$$P_{M_1}P_{M_2}P_{M_1}(f)$$
.



$$P_{M_2}P_{M_1}P_{M_2}P_{M_1}(f).$$

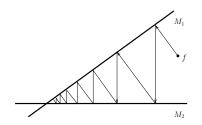


$$\cdots P_{M_2}P_{M_1}P_{M_2}P_{M_1}(f).$$



Composition of Projection Mappings: Let M_1 and M_2 be closed subspaces in the Hilbert space \mathcal{H} . For any $f \in \mathcal{H}$, define the sequence of projections:

$$\cdots P_{M_2}P_{M_1}P_{M_2}P_{M_1}(f).$$



Theorem (Von Neumann '33)

For any $f \in \mathcal{H}$, $\lim_{n \to \infty} (P_{M_2} P_{M_1})^n(f) = P_{M_1 \cap M_2}(f)$.

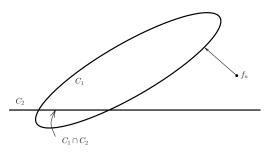
Projections Onto Convex Sets (POCS)

Given a finite number of closed convex sets C_1,\ldots,C_q , with $\bigcap_{i=1}^q C_i \neq \emptyset$, let their associated relaxed projection mappings be T_{C_1},\ldots,T_{C_q} . For any $f_0\in\mathcal{H}$, this defines the sequence of points

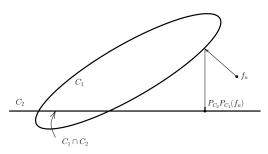
$$f_{n+1} := T_{C_q} \cdots T_{C_1}(f_n), \quad \forall n.$$

$$f_{n+1} := T_{C_q} \cdots T_{C_1}(f_n), \quad orall n.$$

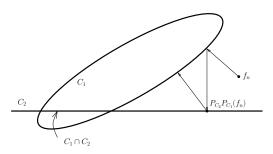
$$f_{n+1} := T_{C_q} \cdots T_{C_1}(f_n), \quad \forall n.$$



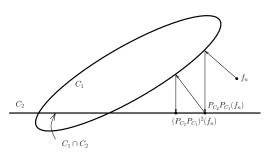
$$f_{n+1} := T_{C_q} \cdots T_{C_1}(f_n), \quad \forall n.$$



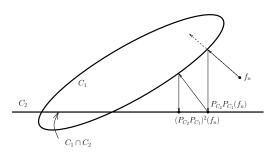
$$f_{n+1} := T_{C_q} \cdots T_{C_1}(f_n), \quad \forall n.$$



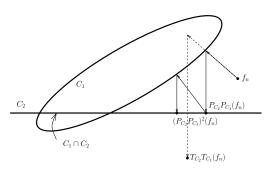
$$f_{n+1} := T_{C_q} \cdots T_{C_1}(f_n), \quad \forall n.$$



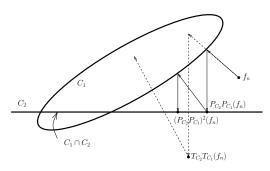
$$f_{n+1} := T_{C_q} \cdots T_{C_1}(f_n), \quad \forall n.$$



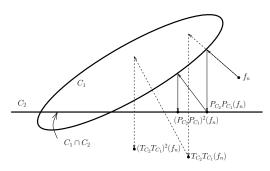
$$f_{n+1} := T_{C_q} \cdots T_{C_1}(f_n), \quad \forall n.$$



$$f_{n+1} := T_{C_q} \cdots T_{C_1}(f_n), \quad \forall n.$$

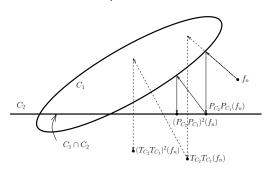


$$f_{n+1} := T_{C_q} \cdots T_{C_1}(f_n), \quad \forall n.$$



Given a finite number of closed convex sets C_1, \ldots, C_q , with $\bigcap_{i=1}^q C_i \neq \emptyset$, let their associated relaxed projection mappings be T_{C_1}, \ldots, T_{C_q} . For any $f_0 \in \mathcal{H}$, this defines the sequence of points

$$f_{n+1} := T_{C_q} \cdots T_{C_1}(f_n), \quad \forall n.$$



Theorem ([Bregman '65], [Gubin, Polyak, Raik '67])

For any
$$f \in \mathcal{H}$$
, $(T_{C_q} \cdots T_{C_1})^n(f) \xrightarrow{w} \exists f_* \in \bigcap_{i=1}^q C_i$.

Recall

 $T_C(f) := f + \mu(P_C(f) - f)$, with $\mu \in (0, 2)$, and $f_{n+1} := T_{C_q} \cdots T_{C_1}(f_n)$, $\forall n$.

Recall

$$T_C(f) := f + \mu(P_C(f) - f)$$
, with $\mu \in (0, 2)$, and $f_{n+1} := T_{C_q} \cdots T_{C_1}(f_n)$, $\forall n$.

Convex Combination of Projection Mappings [Pierra '84]

Given a finite number of closed convex sets C_1,\ldots,C_q , with $\bigcap_{i=1}^q C_i \neq \emptyset$, let their associated projection mappings be P_{C_1},\ldots,P_{C_q} . Let also a set of positive constants w_1,\ldots,w_q such that $\sum_{i=1}^q w_i=1$. Then for any f_0 , the sequence

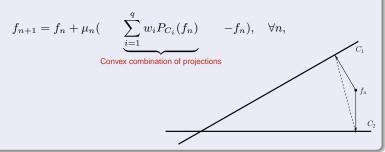
$$f_{n+1} = f_n + \mu_n (\sum_{i=1}^q w_i P_{C_i}(f_n) - f_n), \quad \forall n,$$

Convex combination of projections

Recall

$$T_C(f) := f + \mu(P_C(f) - f)$$
, with $\mu \in (0, 2)$, and $f_{n+1} := T_{C_q} \cdots T_{C_1}(f_n)$, $\forall n$.

Convex Combination of Projection Mappings [Pierra '84]



Recall

$$T_C(f) := f + \mu(P_C(f) - f)$$
, with $\mu \in (0, 2)$, and $f_{n+1} := T_{C_q} \cdots T_{C_1}(f_n)$, $\forall n$.

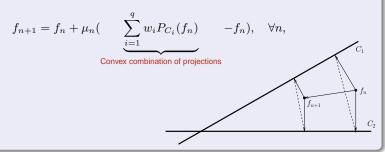
Convex Combination of Projection Mappings [Pierra '84]

$$f_{n+1} = f_n + \mu_n (\sum_{i=1}^q w_i P_{C_i}(f_n) \\ -f_n), \quad \forall n,$$
 Convex combination of projections
$$f_n = \int_{f_{n+1}}^{f_n} w_i P_{C_i}(f_n) \\ -f_n = \int$$

Recall

$$T_C(f) := f + \mu(P_C(f) - f)$$
, with $\mu \in (0, 2)$, and $f_{n+1} := T_{C_q} \cdots T_{C_1}(f_n)$, $\forall n$.

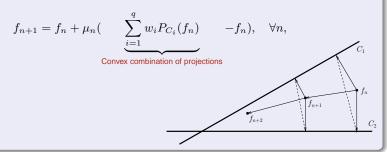
Convex Combination of Projection Mappings [Pierra '84]



Recall

 $T_C(f) := f + \mu(P_C(f) - f)$, with $\mu \in (0, 2)$, and $f_{n+1} := T_{C_q} \cdots T_{C_1}(f_n)$, $\forall n$.

Convex Combination of Projection Mappings [Pierra '84]



Recall

$$T_C(f) := f + \mu(P_C(f) - f)$$
, with $\mu \in (0, 2)$, and $f_{n+1} := T_{C_q} \cdots T_{C_1}(f_n)$, $\forall n$.

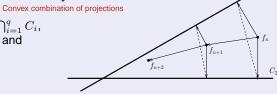
Convex Combination of Projection Mappings [Pierra '84]

Given a finite number of closed convex sets C_1,\ldots,C_q , with $\bigcap_{i=1}^q C_i \neq \emptyset$, let their associated projection mappings be P_{C_1},\ldots,P_{C_q} . Let also a set of positive constants w_1,\ldots,w_q such that $\sum_{i=1}^q w_i=1$. Then for any f_0 , the sequence

$$f_{n+1} = f_n + \mu_n \left(\sum_{i=1}^q w_i P_{C_i}(f_n) - f_n \right), \quad \forall n,$$

converges weakly to a point f_* in $\bigcap_{i=1}^q C_i$, where $\mu_n \in (\epsilon, \mathcal{M}_n)$, for $\epsilon \in (0, 1)$, and

$$\mathcal{M}_n := \frac{\sum_{i=1}^q w_i \| P_{C_i}(f_n) - f_n \|^2}{\| \sum_{i=1}^q w_i P_{C_i}(f_n) - f_n \|^2}.$$



Adaptive Projected Subgradient Method (APSM) [Yamada '03], [Yamada, Ogura '04]

$$f_{n+1} = f_n + \mu_n (\sum_{j \in \{n-q+1,...,n\}} w_j P_{C_j}(f_n) - f_n), \quad \forall n,$$

Adaptive Projected Subgradient Method (APSM) [Yamada '03], [Yamada, Ogura '04]

$$f_{n+1} = f_n + \mu_n \left(\sum_{j \in \{n-q+1, ..., n\}} w_j P_{C_j}(f_n) - f_n \right), \quad \forall n,$$

$$C_n$$
• f_n

Adaptive Projected Subgradient Method (APSM) [Yamada '03], [Yamada, Ogura '04]

$$f_{n+1} = f_n + \mu_n (\sum_{j \in \{n-q+1,...,n\}} w_j P_{C_j}(f_n) - f_n), \quad \forall n,$$

Adaptive Projected Subgradient Method (APSM) [Yamada '03], [Yamada, Ogura '04]

$$f_{n+1} = f_n + \mu_n (\sum_{j \in \{n-q+1,...,n\}} w_j P_{C_j}(f_n) - f_n), \quad \forall n,$$

Adaptive Projected Subgradient Method (APSM) [Yamada '03], [Yamada, Ogura '04]

$$f_{n+1} = f_n + \mu_n (\sum_{j \in \{n-q+1,...,n\}} w_j P_{C_j}(f_n) - f_n), \quad \forall n,$$

Adaptive Projected Subgradient Method (APSM) [Yamada '03], [Yamada, Ogura '04]

$$f_{n+1} = f_n + \mu_n (\sum_{j \in \{n-q+1,...,n\}} w_j P_{C_j}(f_n) - f_n), \quad \forall n,$$

Adaptive Projected Subgradient Method (APSM) [Yamada '03], [Yamada, Ogura '04]

$$f_{n+1} = f_n + \mu_n (\sum_{j \in \{n-q+1,...,n\}} w_j P_{C_j}(f_n) - f_n), \quad \forall n,$$

Adaptive Projected Subgradient Method (APSM) [Yamada '03], [Yamada, Ogura '04]

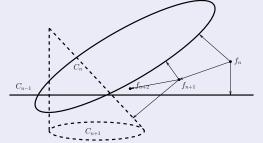
Given an infinite number of closed convex sets $(C_n)_{n\geq 0}$, let their associated projection mappings be (P_{C_n}) . For any starting point f_0 , let the sequence

$$f_{n+1} = f_n + \mu_n (\sum_{j \in \{n-q+1,...,n\}} w_j P_{C_j}(f_n) - f_n), \quad \forall n,$$

where $\mu_n \in [0, 2\mathcal{M}_n]$, and $\mathcal{M}_n := \frac{\sum_{j \in \{n-q+1, \dots, n\}} w_j \|P_{C_j}(f_n) - f_n\|^2}{\|\sum_{j \in \{n-q+1, \dots, n\}} w_j P_{C_j}(f_n) - f_n\|^2}$.

Under certain mild constraints the above sequence converges strongly to a point

$$f_* \in \operatorname{clos}(\bigcup_{m>0} \bigcap_{n>m} C_n).$$



Application to Machine Learning

The Task

Given a set of training samples $x_0, \ldots, x_N \subset \mathbb{R}^m$ and a set of corresponding desired responses y_0, \ldots, y_N , estimate a function $f(\cdot) : \mathbb{R}^m \to \mathbb{R}$ that fits the data.

Application to Machine Learning

The Task

Given a set of training samples $x_0, \ldots, x_N \subset \mathbb{R}^m$ and a set of corresponding desired responses y_0, \ldots, y_N , estimate a function $f(\cdot) : \mathbb{R}^m \to \mathbb{R}$ that fits the data.

The Expected / Empirical Risk Function approach

Estimate f so that the expected risk based on a loss function $\ell(\cdot, \cdot)$ is minimized:

$$\min_{f} \mathsf{E}\{\ell(f(\boldsymbol{x}), y)\},\$$

or, in practice, the empirical risk is minimized:

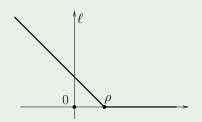
$$\min_{f} \sum_{n=0}^{N} \ell(f(\boldsymbol{x}_n), y_n).$$

Loss Functions

Example (Classification)

For a given margin $\rho \geq 0$, and $y_n \in \{+1, -1\}$, $\forall n$, define the soft margin loss functions:

$$\ell(f(\boldsymbol{x}_n), y_n) := \max\{0, \rho - y_n f(\boldsymbol{x}_n)\}, \quad \forall n.$$

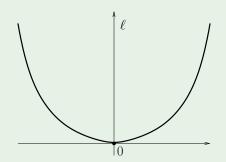


Loss Functions

Example (Regression)

The square loss functions:

$$\ell(f(\boldsymbol{x}_n), y_n) := (y_n - f(\boldsymbol{x}_n))^2, \quad \forall n.$$



Main Idea

The goal here is to have a solution that is in agreement with all the available information, that resides in the data as well as in the available a-priori information.

Main Idea

The goal here is to have a solution that is in agreement with all the available information, that resides in the data as well as in the available a-priori information.

The Means

• Each piece of information, associated with the training pair (x_n, y_n) , is represented in the solution space by a set.

Main Idea

The goal here is to have a solution that is in agreement with all the available information, that resides in the data as well as in the available a-priori information.

The Means

- Each piece of information, associated with the training pair (x_n, y_n) , is represented in the solution space by a set.
- Each piece of a-priori information, i.e., each constraint, is also represented by a set.

Main Idea

The goal here is to have a solution that is in agreement with all the available information, that resides in the data as well as in the available a-priori information.

The Means

- Each piece of information, associated with the training pair (x_n, y_n) , is represented in the solution space by a set.
- Each piece of a-priori information, i.e., each constraint, is also represented by a set.
- The intersection of all these sets constitutes the family of solutions.

Main Idea

The goal here is to have a solution that is in agreement with all the available information, that resides in the data as well as in the available a-priori information.

The Means

- Each piece of information, associated with the training pair (x_n, y_n) , is represented in the solution space by a set.
- Each piece of a-priori information, i.e., each constraint, is also represented by a set.
- The intersection of all these sets constitutes the family of solutions.
- The family of solutions is known as the feasibility set.

That is, represent each cost and constraint by an equivalent set C_n and find the solution

$$f \in \bigcap_n C_n \subset \mathcal{H}.$$

Classification: The Soft Margin Loss

The Setting

Let the training data set $(x_n, y_n) \subset \mathbb{R}^m \times \{+1, -1\}$, $n = 0, 1, \ldots$ Assume the two class task,

$$\begin{cases} y_n = +1, & \boldsymbol{x}_n \in W_1, \\ y_n = -1, & \boldsymbol{x}_n \in W_2. \end{cases}$$

Assume linear separable classes.

Classification: The Soft Margin Loss

The Setting

Let the training data set $(x_n, y_n) \subset \mathbb{R}^m \times \{+1, -1\}$, $n = 0, 1, \ldots$ Assume the two class task,

$$\begin{cases} y_n = +1, & \boldsymbol{x}_n \in W_1, \\ y_n = -1, & \boldsymbol{x}_n \in W_2. \end{cases}$$

Assume linear separable classes.

The Goal (for $\rho = 0$)

Classification: The Soft Margin Loss

The Setting

Let the training data set $(x_n, y_n) \subset \mathbb{R}^m \times \{+1, -1\}$, $n = 0, 1, \ldots$ Assume the two class task,

$$\begin{cases} y_n = +1, & \boldsymbol{x}_n \in W_1, \\ y_n = -1, & \boldsymbol{x}_n \in W_2. \end{cases}$$

Assume linear separable classes.

The Goal (for $\rho = 0$)

Find
$$f(x)=w^tx+b$$
, so that
$$\begin{cases} \boldsymbol{w}^t\boldsymbol{x}_n+b\geq 0, & \text{if } y_n=+1,\\ \boldsymbol{w}^t\boldsymbol{x}_n+b\leq 0, & \text{if } y_n=-1. \end{cases}$$

Classification: The Soft Margin Loss

The Setting

Let the training data set $(x_n, y_n) \subset \mathbb{R}^m \times \{+1, -1\}$, $n = 0, 1, \ldots$ Assume the two class task,

$$\begin{cases} y_n = +1, & \boldsymbol{x}_n \in W_1, \\ y_n = -1, & \boldsymbol{x}_n \in W_2. \end{cases}$$

Assume linear separable classes.

The Goal (for $\rho = 0$)

$$\begin{cases} \boldsymbol{w}^t\boldsymbol{x}_n+b\geq 0, & \text{if } y_n=+1,\\ \boldsymbol{w}^t\boldsymbol{x}_n+b\leq 0, & \text{if } y_n=-1. \end{cases} \text{ Hereafter, } (\boldsymbol{w}\leftarrow \left[\begin{smallmatrix} \boldsymbol{w}\\b \end{smallmatrix}\right], \qquad \boldsymbol{x}_n\leftarrow \left[\begin{smallmatrix} \boldsymbol{x}_n\\1 \end{smallmatrix}\right]).$$

Set Theoretic Estimation Approach to Classification

The Piece of Information

Find all those w so that $y_n w^t x_n \ge 0$, n = 0, 1, ...

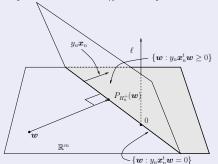
Set Theoretic Estimation Approach to Classification

The Piece of Information

Find all those w so that $y_n w^t x_n \ge 0$, n = 0, 1, ...

The Equivalent Set

$$H_n^+ := \{ m{w} \in \mathbb{R}^m : y_n m{x}_n^t m{w} \geq 0 \}, \, n = 0, 1, \ldots$$



For each pair (\boldsymbol{x}_n,y_n) , form the equivalent halfspace H_n^+ , and

find
$$w_* \in \bigcap_n H_n^+$$
.

If linearly separable, the problem is feasible.

For each pair (\boldsymbol{x}_n,y_n) , form the equivalent halfspace H_n^+ , and

find
$$w_* \in \bigcap_n H_n^+$$
.

If linearly separable, the problem is feasible.

The Algorithm

Each H_n^+ is a convex set.

• Start from an arbitrary initial w_0 .

For each pair (x_n, y_n) , form the equivalent halfspace H_n^+ , and

find
$$w_* \in \bigcap_n H_n^+$$
.

If linearly separable, the problem is feasible.

The Algorithm

- Start from an arbitrary initial w_0 .
- Keep projecting as each H_n⁺ is formed.

For each pair (x_n, y_n) , form the equivalent halfspace H_n^+ , and

find
$$w_* \in \bigcap_n H_n^+$$
.

If linearly separable, the problem is feasible.

The Algorithm

- Start from an arbitrary initial w_0 .
- Keep projecting as each H_n⁺ is formed.
- $\begin{array}{ll} \bullet & P_{H_n^+}(w) = w \frac{\min\{0, \langle w, y_n x_n \rangle\}}{\|x_n\|^2} y_n x_n, \\ \forall w \in \mathcal{H}. \end{array}$

For each pair (x_n, y_n) , form the equivalent halfspace H_n^+ , and

find
$$w_* \in \bigcap_n H_n^+$$
.

If linearly separable, the problem is feasible.

The Algorithm

Each H_n^+ is a convex set.

- Start from an arbitrary initial w_0 .
- Keep projecting as each H_n⁺ is formed.

 \dot{w}_{n-1}

 $P_{H_n^+}(\boldsymbol{w}) = \boldsymbol{w} - \frac{\min\{0, \langle \boldsymbol{w}, y_n \boldsymbol{x}_n \rangle\}}{\|\boldsymbol{x}_n\|^2} y_n \boldsymbol{x}_n,$ $\forall \boldsymbol{w} \in \mathcal{H}.$

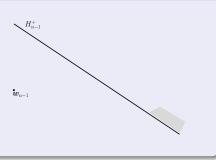
For each pair (x_n, y_n) , form the equivalent halfspace H_n^+ , and

find
$$w_* \in \bigcap_n H_n^+$$
.

If linearly separable, the problem is feasible.

The Algorithm

- Start from an arbitrary initial w_0 .
- Keep projecting as each H_n⁺ is formed.
- $\begin{array}{ll} \bullet & P_{H_n^+}(\boldsymbol{w}) = \boldsymbol{w} \frac{\min\{0, \langle \boldsymbol{w}, y_n \boldsymbol{x}_n \rangle\}}{\|\boldsymbol{x}_n\|^2} y_n \boldsymbol{x}_n, \\ \forall \boldsymbol{w} \in \mathcal{H}. \end{array}$



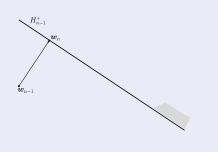
For each pair (x_n, y_n) , form the equivalent halfspace H_n^+ , and

find
$$w_* \in \bigcap_n H_n^+$$
.

If linearly separable, the problem is feasible.

The Algorithm

- Start from an arbitrary initial w_0 .
- Keep projecting as each H_n⁺ is formed.
- $\begin{array}{ll} \bullet & P_{H_n^+}(\boldsymbol{w}) = \boldsymbol{w} \frac{\min\{0, \langle \boldsymbol{w}, y_n \boldsymbol{x}_n \rangle\}}{\|\boldsymbol{x}_n\|^2} y_n \boldsymbol{x}_n, \\ \forall \boldsymbol{w} \in \mathcal{H}. \end{array}$



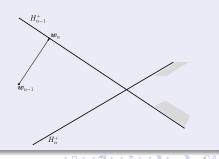
For each pair (x_n, y_n) , form the equivalent halfspace H_n^+ , and

find
$$w_* \in \bigcap_n H_n^+$$
.

If linearly separable, the problem is feasible.

The Algorithm

- Start from an arbitrary initial w₀.
- Keep projecting as each H_n^+ is formed.
- $\bullet P_{H_n^+}(\boldsymbol{w}) = \boldsymbol{w} \frac{\min\{0, \langle \boldsymbol{w}, y_n \boldsymbol{x}_n \rangle\}}{\|\boldsymbol{x}_n\|^2} y_n \boldsymbol{x}_n,$ $\forall w \in \mathcal{H}$.



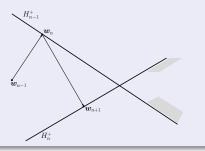
For each pair (x_n, y_n) , form the equivalent halfspace H_n^+ , and

find
$$w_* \in \bigcap_n H_n^+$$
.

If linearly separable, the problem is feasible.

The Algorithm

- Start from an arbitrary initial w_0 .
- Keep projecting as each H_n⁺ is formed.
- $\begin{array}{ll} \bullet & P_{H_n^+}(\boldsymbol{w}) = \boldsymbol{w} \frac{\min\{0, \langle \boldsymbol{w}, y_n \boldsymbol{x}_n \rangle\}}{\|\boldsymbol{x}_n\|^2} y_n \boldsymbol{x}_n, \\ \forall \boldsymbol{w} \in \mathcal{H}. \end{array}$



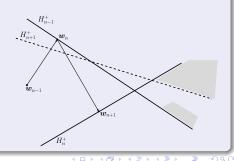
For each pair (x_n, y_n) , form the equivalent halfspace H_n^+ , and

find
$$w_* \in \bigcap_n H_n^+$$
.

If linearly separable, the problem is feasible.

The Algorithm

- Start from an arbitrary initial w_0 .
- Keep projecting as each H_n⁺ is formed.
- $\begin{array}{l} \bullet \ \ P_{H_n^+}(w) = w \frac{\min\{0, \langle w, y_n x_n \rangle\}}{\|x_n\|^2} y_n x_n, \\ \forall w \in \mathcal{H}. \end{array}$



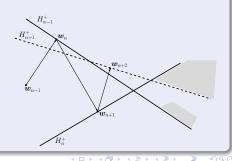
For each pair (x_n, y_n) , form the equivalent halfspace H_n^+ , and

find
$$w_* \in \bigcap_n H_n^+$$
.

If linearly separable, the problem is feasible.

The Algorithm

- Start from an arbitrary initial w_0 .
- Keep projecting as each H_n⁺ is formed.
- $\begin{array}{l} \bullet \ \ P_{H_n^+}(w) = w \frac{\min\{0, \langle w, y_n x_n \rangle\}}{\|x_n\|^2} y_n x_n, \\ \forall w \in \mathcal{H}. \end{array}$



$$w_{n+1} := w_n + \mu_n (\sum_{j \in \{n-q+1,...,n\}} \omega_j^{(n)} P_{H_n^+}(w_n) - w_n),$$

$$\mu_n \in [0, 2\mathcal{M}_n]$$
, and

$$\mathcal{M}_n := \begin{cases} \frac{\sum_{j \in \{n-q+1,\dots,n\}} \omega_j^{(n)} \|P_{H_n^+}(\boldsymbol{w}_n) - \boldsymbol{w}_n\|^2}{\|\sum_{j \in \{n-q+1,\dots,n\}} \omega_j^{(n)} P_{H_n^+}(\boldsymbol{w}_n) - \boldsymbol{w}_n\|^2}, & \text{if } \boldsymbol{w}_n \notin \bigcap_{j \in \{n-q+1,\dots,n\}} H_n^+, \\ 1, & \text{otherwise}. \end{cases}$$

$$\mathbf{w}_{n+1} := \mathbf{w}_n + \mu_n (\sum_{j \in \{n-q+1,\dots,n\}} \omega_j^{(n)} P_{H_n^+}(\mathbf{w}_n) - \mathbf{w}_n),$$

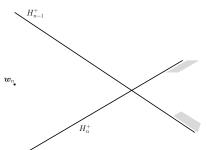
$$\mu_n \in [0, 2\mathcal{M}_n],$$
 and

$$\mathcal{M}_n := \begin{cases} \frac{\sum_{j \in \{n-q+1,\dots,n\}} \omega_j^{(n)} \|P_{H_n^+}(\boldsymbol{w}_n) - \boldsymbol{w}_n\|^2}{\|\sum_{j \in \{n-q+1,\dots,n\}} \omega_j^{(n)} P_{H_n^+}(\boldsymbol{w}_n) - \boldsymbol{w}_n\|^2}, & \text{if } \boldsymbol{w}_n \notin \bigcap_{j \in \{n-q+1,\dots,n\}} H_n^+, \\ 1, & \text{otherwise}. \end{cases}$$

 \boldsymbol{w}_n

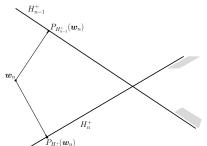
$$\mathbf{w}_{n+1} := \mathbf{w}_n + \mu_n (\sum_{j \in \{n-q+1,\dots,n\}} \omega_j^{(n)} P_{H_n^+}(\mathbf{w}_n) - \mathbf{w}_n),$$

$$\mathcal{M}_n := \begin{cases} \frac{\sum_{j \in \{n-q+1,\dots,n\}} \omega_j^{(n)} \|P_{H_n^+}(\boldsymbol{w}_n) - \boldsymbol{w}_n\|^2}{\|\sum_{j \in \{n-q+1,\dots,n\}} \omega_j^{(n)} P_{H_n^+}(\boldsymbol{w}_n) - \boldsymbol{w}_n\|^2}, & \text{if } \boldsymbol{w}_n \notin \bigcap_{j \in \{n-q+1,\dots,n\}} H_n^+, \\ 1, & \text{otherwise}. \end{cases}$$



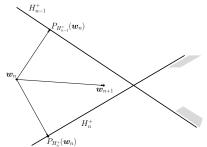
$$\mathbf{w}_{n+1} := \mathbf{w}_n + \mu_n (\sum_{j \in \{n-q+1,\dots,n\}} \omega_j^{(n)} P_{H_n^+}(\mathbf{w}_n) - \mathbf{w}_n),$$

$$\mathcal{M}_n := \begin{cases} \frac{\sum_{j \in \{n-q+1,\dots,n\}} \omega_j^{(n)} \|P_{H_n^+}(\boldsymbol{w}_n) - \boldsymbol{w}_n\|^2}{\|\sum_{j \in \{n-q+1,\dots,n\}} \omega_j^{(n)} P_{H_n^+}(\boldsymbol{w}_n) - \boldsymbol{w}_n\|^2}, & \text{if } \boldsymbol{w}_n \notin \bigcap_{j \in \{n-q+1,\dots,n\}} H_n^+, \\ 1, & \text{otherwise}. \end{cases}$$



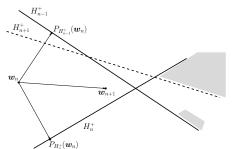
$$w_{n+1} := w_n + \mu_n (\sum_{j \in \{n-q+1,\dots,n\}} \omega_j^{(n)} P_{H_n^+}(w_n) - w_n),$$

$$\mathcal{M}_n := \begin{cases} \frac{\sum_{j \in \{n-q+1,\dots,n\}} \omega_j^{(n)} \|P_{H_n^+}(\boldsymbol{w}_n) - \boldsymbol{w}_n\|^2}{\|\sum_{j \in \{n-q+1,\dots,n\}} \omega_j^{(n)} P_{H_n^+}(\boldsymbol{w}_n) - \boldsymbol{w}_n\|^2}, & \text{if } \boldsymbol{w}_n \notin \bigcap_{j \in \{n-q+1,\dots,n\}} H_n^+, \\ 1, & \text{otherwise}. \end{cases}$$



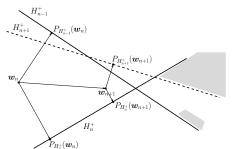
$$\mathbf{w}_{n+1} := \mathbf{w}_n + \mu_n (\sum_{j \in \{n-q+1,\dots,n\}} \omega_j^{(n)} P_{H_n^+}(\mathbf{w}_n) - \mathbf{w}_n),$$

$$\mathcal{M}_n := \begin{cases} \frac{\sum_{j \in \{n-q+1,\dots,n\}} \omega_j^{(n)} \|P_{H_n^+}(\boldsymbol{w}_n) - \boldsymbol{w}_n\|^2}{\|\sum_{j \in \{n-q+1,\dots,n\}} \omega_j^{(n)} P_{H_n^+}(\boldsymbol{w}_n) - \boldsymbol{w}_n\|^2}, & \text{if } \boldsymbol{w}_n \notin \bigcap_{j \in \{n-q+1,\dots,n\}} H_n^+, \\ 1, & \text{otherwise}. \end{cases}$$



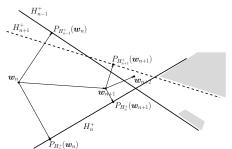
$$\mathbf{w}_{n+1} := \mathbf{w}_n + \mu_n (\sum_{j \in \{n-q+1,\dots,n\}} \omega_j^{(n)} P_{H_n^+}(\mathbf{w}_n) - \mathbf{w}_n),$$

$$\mathcal{M}_n := \begin{cases} \frac{\sum_{j \in \{n-q+1,\dots,n\}} \omega_j^{(n)} \|P_{H_n^+}(\boldsymbol{w}_n) - \boldsymbol{w}_n\|^2}{\|\sum_{j \in \{n-q+1,\dots,n\}} \omega_j^{(n)} P_{H_n^+}(\boldsymbol{w}_n) - \boldsymbol{w}_n\|^2}, & \text{if } \boldsymbol{w}_n \notin \bigcap_{j \in \{n-q+1,\dots,n\}} H_n^+, \\ 1, & \text{otherwise}. \end{cases}$$



$$\mathbf{w}_{n+1} := \mathbf{w}_n + \mu_n (\sum_{j \in \{n-q+1,\dots,n\}} \omega_j^{(n)} P_{H_n^+}(\mathbf{w}_n) - \mathbf{w}_n),$$

$$\mathcal{M}_n := \begin{cases} \frac{\sum_{j \in \{n-q+1,\dots,n\}} \omega_j^{(n)} \|P_{H_n^+}(\boldsymbol{w}_n) - \boldsymbol{w}_n\|^2}{\|\sum_{j \in \{n-q+1,\dots,n\}} \omega_j^{(n)} P_{H_n^+}(\boldsymbol{w}_n) - \boldsymbol{w}_n\|^2}, & \text{if } \boldsymbol{w}_n \notin \bigcap_{j \in \{n-q+1,\dots,n\}} H_n^+, \\ 1, & \text{otherwise}. \end{cases}$$



Transfer the Problem into High Dimensional Spaces

Theorem (Cover '65)

The probability of linearly separating any two subgroups of a given finite number of data approaches unity as the dimension of the space, where classification is carried out, increases.

Definition

Consider a Hilbert space \mathcal{H} of functions $f: \mathbb{R}^m \to \mathbb{R}$.

Definition

Consider a Hilbert space \mathcal{H} of functions $f: \mathbb{R}^m \to \mathbb{R}$.

Assume there exists a kernel function $\kappa(\cdot,\cdot):\mathbb{R}^m\times\mathbb{R}^m\to\mathbb{R}$ such that

Definition

Consider a Hilbert space \mathcal{H} of functions $f: \mathbb{R}^m \to \mathbb{R}$.

Assume there exists a kernel function $\kappa(\cdot,\cdot):\mathbb{R}^m\times\mathbb{R}^m\to\mathbb{R}$ such that

 \bullet $\kappa(\boldsymbol{x},\cdot) \in \mathcal{H}, \forall \boldsymbol{x} \in \mathbb{R}^m,$

Definition

Consider a Hilbert space \mathcal{H} of functions $f: \mathbb{R}^m \to \mathbb{R}$.

Assume there exists a kernel function $\kappa(\cdot,\cdot):\mathbb{R}^m\times\mathbb{R}^m\to\mathbb{R}$ such that

- \bullet $\kappa(\boldsymbol{x},\cdot) \in \mathcal{H}, \forall \boldsymbol{x} \in \mathbb{R}^m,$
- ullet $\langle f, \kappa(x, \cdot) \rangle = f(x), \forall x \in \mathbb{R}^m, \forall f \in \mathcal{H}, \text{ (reproducing property)}.$

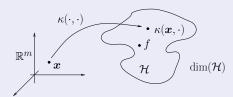
Definition

Consider a Hilbert space \mathcal{H} of functions $f: \mathbb{R}^m \to \mathbb{R}$.

Assume there exists a kernel function $\kappa(\cdot,\cdot):\mathbb{R}^m\times\mathbb{R}^m\to\mathbb{R}$ such that

- \bullet $\kappa(\boldsymbol{x},\cdot)\in\mathcal{H}$, $\forall \boldsymbol{x}\in\mathbb{R}^m$,
- \bullet $\langle f, \kappa(x, \cdot) \rangle = f(x), \forall x \in \mathbb{R}^m, \forall f \in \mathcal{H}, \text{ (reproducing property)}.$

Then \mathcal{H} is called a Reproducing Kernel Hilbert Space (RKHS).



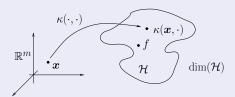
Definition

Consider a Hilbert space \mathcal{H} of functions $f: \mathbb{R}^m \to \mathbb{R}$.

Assume there exists a kernel function $\kappa(\cdot,\cdot):\mathbb{R}^m\times\mathbb{R}^m\to\mathbb{R}$ such that

- \bullet $\kappa(x,\cdot) \in \mathcal{H}, \forall x \in \mathbb{R}^m$,
- \bullet $\langle f, \kappa(x, \cdot) \rangle = f(x), \forall x \in \mathbb{R}^m, \forall f \in \mathcal{H}, \text{ (reproducing property)}.$

Then \mathcal{H} is called a Reproducing Kernel Hilbert Space (RKHS).



Properties

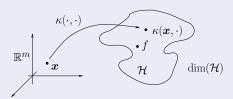
Definition

Consider a Hilbert space \mathcal{H} of functions $f: \mathbb{R}^m \to \mathbb{R}$.

Assume there exists a kernel function $\kappa(\cdot,\cdot):\mathbb{R}^m\times\mathbb{R}^m\to\mathbb{R}$ such that

- \bullet $\kappa(x,\cdot) \in \mathcal{H}, \forall x \in \mathbb{R}^m$,
- \bullet $\langle f, \kappa(x, \cdot) \rangle = f(x), \forall x \in \mathbb{R}^m, \forall f \in \mathcal{H}, \text{ (reproducing property)}.$

Then \mathcal{H} is called a Reproducing Kernel Hilbert Space (RKHS).



Properties

• Kernel Trick: $\langle \kappa(\boldsymbol{x},\cdot), \kappa(\boldsymbol{y},\cdot) \rangle = \kappa(\boldsymbol{x},\boldsymbol{y}).$

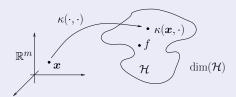
Definition

Consider a Hilbert space \mathcal{H} of functions $f: \mathbb{R}^m \to \mathbb{R}$.

Assume there exists a kernel function $\kappa(\cdot,\cdot):\mathbb{R}^m\times\mathbb{R}^m\to\mathbb{R}$ such that

- \bullet $\kappa(x,\cdot) \in \mathcal{H}, \forall x \in \mathbb{R}^m$,
- $\bullet \langle f, \kappa(x, \cdot) \rangle = f(x), \forall x \in \mathbb{R}^m, \forall f \in \mathcal{H}, \text{ (reproducing property)}.$

Then \mathcal{H} is called a Reproducing Kernel Hilbert Space (RKHS).



Properties

- Kernel Trick: $\langle \kappa(x,\cdot), \kappa(y,\cdot) \rangle = \kappa(x,y)$.
- $\mathcal{H} = \operatorname{clos}\{\sum_{n=0}^{N} \gamma_n \kappa(\boldsymbol{x}_n, \cdot) : \forall \boldsymbol{x}_n \in \mathbb{R}^m, \forall \gamma_n, \forall N\}.$

Classification in RKHS

The Goal

Let the training data set $(x_n, y_n) \subset \mathbb{R}^m \times \{+1, -1\}, n = 0, 1, \dots$

$$\bullet$$
 $x_n \mapsto \kappa(x_n, \cdot)$,

Classification in RKHS

The Goal

Let the training data set $(x_n, y_n) \subset \mathbb{R}^m \times \{+1, -1\}, n = 0, 1, \dots$

- \bullet $x_n \mapsto \kappa(x_n, \cdot),$
- Find $f \in \mathcal{H}$ and $b \in \mathbb{R}$ so that

$$y_n(f(\boldsymbol{x}_n) + b) = y_n(\langle f, \kappa(\boldsymbol{x}_n, \cdot) \rangle + b) \ge 0, \quad \forall n.$$

The Piece of Information

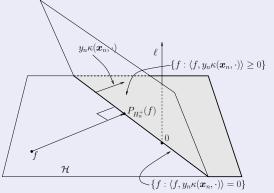
Find all those f so that $\langle f, y_n \kappa(\boldsymbol{x}_n, \cdot) \rangle \geq 0$, $n = 0, 1, \dots$

The Piece of Information

Find all those f so that $\langle f, y_n \kappa(\boldsymbol{x}_n, \cdot) \rangle \geq 0, \quad n = 0, 1, \dots$

The Equivalence Set

$$H_n^+ := \{ f \in \mathcal{H} : \langle f, y_n \kappa(\boldsymbol{x}_n, \cdot) \rangle \ge 0 \}, n = 0, 1, \dots$$



Algorithmic Solution to Online Classification in RKHS

Let the index set $\mathcal{J}_n := \{n - q + 1, \dots, n\}$. Also the weights $\omega_j^{(n)} \geq 0$ such that $\sum_{j \in \mathcal{J}_n} \omega_j^{(n)} = 1$. For $f_0 \in \mathcal{H}$,

$$f_{n+1} := f_n + \mu_n (\sum_{j \in \mathcal{J}_n} \omega_j^{(n)} P_{H_j^+}(f_n) - f_n), \quad \forall n \ge 0,$$

where the extrapolation coefficient $\mu_n \in [0, 2\mathcal{M}_n]$ with

$$\mathcal{M}_n := \begin{cases} \frac{\sum_{j \in \mathcal{J}_n} \omega_j^{(n)} \|P_{H_j^+}(f_n) - f_n\|^2}{\|\sum_{j \in \mathcal{J}_n} \omega_j^{(n)} P_{H_j^+}(f_n) - f_n\|^2}, & \text{if } f_n \notin \bigcap_{j \in \mathcal{J}_n} H_j^+, \\ 1, & \text{otherwise.} \end{cases}$$

Representer Theorem

Theorem

By mathematical induction on the previous algorithmic procedure, for each index n, there exist $(\gamma_i^{(n)})$ such that

$$f_n := \sum_{i=0}^{n-1} \gamma_i^{(n)} \kappa(\boldsymbol{x}_i, \cdot).$$

Recall that as time goes by:

$$f_n := \sum_{i=0}^{n-1} \gamma_i^{(n)} \kappa(\boldsymbol{x}_i, \cdot).$$

Recall that as time goes by:

$$f_n := \sum_{i=0}^{n-1} \gamma_i^{(n)} \kappa(\boldsymbol{x}_i, \cdot).$$

Memory and computational load grows unbounded as $n \to \infty$!

Recall that as time goes by:

$$f_n := \sum_{i=0}^{n-1} \gamma_i^{(n)} \kappa(\boldsymbol{x}_i, \cdot).$$

Memory and computational load grows unbounded as $n \to \infty$!

To cope with the problem, we additionally constrain the norm of f_n by a predefined $\delta>0$ [Slavakis, Theodoridis, Yamada '08]:

$$(\forall n \geq 0) \ f_n \in \mathcal{B} := \{ f \in \mathcal{H} : ||f|| \leq \delta \} : \$$
Closed Ball.

Recall that as time goes by:

$$f_n := \sum_{i=0}^{n-1} \gamma_i^{(n)} \kappa(\boldsymbol{x}_i, \cdot).$$

Memory and computational load grows unbounded as $n \to \infty$!

To cope with the problem, we additionally constrain the norm of f_n by a predefined $\delta>0$ [Slavakis, Theodoridis, Yamada '08]:

$$(\forall n \geq 0) \ f_n \in \mathcal{B} := \{ f \in \mathcal{H} : ||f|| \leq \delta \} : \ \text{Closed Ball}.$$

Goal

Thus, we are looking for a classifier $f \in \mathcal{H}$ such that

$$f \in \mathcal{B} \cap (\bigcap_n H_n^+).$$

$$f_{n+1} := P_{\mathcal{B}} \left(f_n + \mu_n \left(\sum_{j \in \mathcal{J}_n} \omega_j^{(n)} P_{H_j^+}(f_n) - f_n \right) \right), \quad \forall n \in \mathbb{Z}_{\geq 0}.$$

$$\mu_n \in [0, 2\mathcal{M}_n], \quad \mathcal{M}_n \geq 1,$$

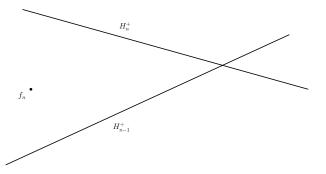
$$f_{n+1} := P_{\mathcal{B}} \left(f_n + \mu_n \left(\sum_{j \in \mathcal{J}_n} \omega_j^{(n)} P_{H_j^+}(f_n) - f_n \right) \right), \quad \forall n \in \mathbb{Z}_{\geq 0}.$$

$$\mu_n \in [0, 2\mathcal{M}_n], \quad \mathcal{M}_n \geq 1,$$

 f_n

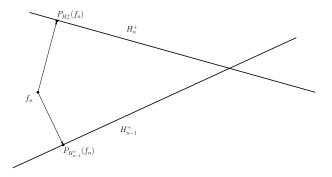
$$f_{n+1} := P_{\mathcal{B}} \left(f_n + \mu_n \left(\sum_{j \in \mathcal{J}_n} \omega_j^{(n)} P_{H_j^+}(f_n) - f_n \right) \right), \quad \forall n \in \mathbb{Z}_{\geq 0}.$$

$$\mu_n \in [0, 2\mathcal{M}_n], \quad \mathcal{M}_n \geq 1,$$



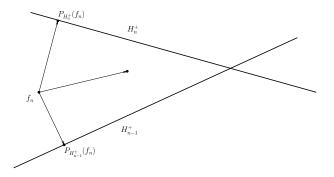
$$f_{n+1} := P_{\mathcal{B}} \left(f_n + \mu_n \left(\sum_{j \in \mathcal{J}_n} \omega_j^{(n)} P_{H_j^+}(f_n) - f_n \right) \right), \quad \forall n \in \mathbb{Z}_{\geq 0}.$$

$$\mu_n \in [0, 2\mathcal{M}_n], \quad \mathcal{M}_n \geq 1,$$



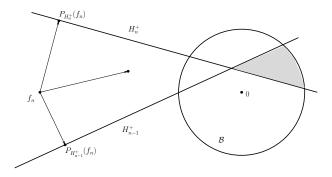
$$f_{n+1} := P_{\mathcal{B}} \left(f_n + \mu_n \left(\sum_{j \in \mathcal{J}_n} \omega_j^{(n)} P_{H_j^+}(f_n) - f_n \right) \right), \quad \forall n \in \mathbb{Z}_{\geq 0}.$$

$$\mu_n \in [0, 2\mathcal{M}_n], \quad \mathcal{M}_n \geq 1,$$



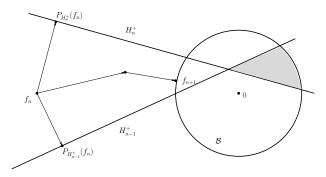
$$f_{n+1} := P_{\mathcal{B}} \left(f_n + \mu_n \left(\sum_{j \in \mathcal{J}_n} \omega_j^{(n)} P_{H_j^+}(f_n) - f_n \right) \right), \quad \forall n \in \mathbb{Z}_{\geq 0}.$$

$$\mu_n \in [0, 2\mathcal{M}_n], \quad \mathcal{M}_n \geq 1,$$



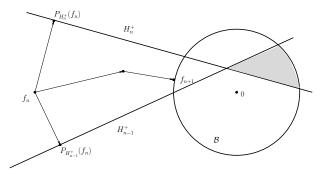
$$f_{n+1} := P_{\mathcal{B}} \left(f_n + \mu_n \left(\sum_{j \in \mathcal{J}_n} \omega_j^{(n)} P_{H_j^+}(f_n) - f_n \right) \right), \quad \forall n \in \mathbb{Z}_{\geq 0}.$$

$$\mu_n \in [0, 2\mathcal{M}_n], \quad \mathcal{M}_n \geq 1,$$



$$f_{n+1} := P_{\mathcal{B}} \left(f_n + \mu_n \left(\sum_{j \in \mathcal{J}_n} \omega_j^{(n)} P_{H_j^+}(f_n) - f_n \right) \right), \quad \forall n \in \mathbb{Z}_{\geq 0}.$$

$$\mu_n \in [0, 2\mathcal{M}_n], \quad \mathcal{M}_n \geq 1,$$

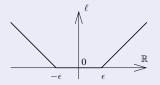


Remark: It can be shown that this scheme leads to a forgetting factor effect, as in adaptive filtering!

Regression in RKHS

The linear ϵ -insensitive loss function case

$$\ell(x) := \max\{0, |x| - \epsilon\}, x \in \mathbb{R}.$$



Set Theoretic Estimation Approach to Regression

The Piece of Information

Given $(\boldsymbol{x}_n,y_n)\in\mathbb{R}^m\times\mathbb{R}$, find $f\in\mathcal{H}$ such that

$$|\langle f, \kappa(\boldsymbol{x}_n, \cdot) \rangle - y_n| \le \epsilon, \quad \forall n.$$

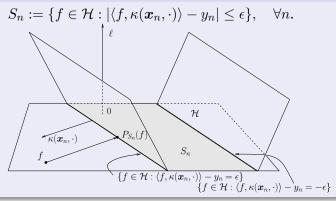
Set Theoretic Estimation Approach to Regression

The Piece of Information

Given $(\boldsymbol{x}_n,y_n)\in\mathbb{R}^m\times\mathbb{R}$, find $f\in\mathcal{H}$ such that

$$|\langle f, \kappa(\boldsymbol{x}_n, \cdot) \rangle - y_n| \le \epsilon, \quad \forall n.$$

The Equivalence Set (Hyperslab)



Projection onto a Hyperslab

$$P_{S_n}(f) = f + \beta \kappa(\boldsymbol{x}_n, \cdot), \forall f \in \mathcal{H},$$

where

$$\beta := \begin{cases} \frac{y_n - \langle f, \kappa(\boldsymbol{x}_n, \cdot) \rangle - \epsilon}{\kappa(\boldsymbol{x}_n, \boldsymbol{x}_n)}, & \text{if } \langle f, \kappa(\boldsymbol{x}_n, \cdot) \rangle - y_n < -\epsilon, \\ 0, & \text{if } |\langle f, \kappa(\boldsymbol{x}_n, \cdot) \rangle - y_n| \le \epsilon, \\ -\frac{\langle f, \kappa(\boldsymbol{x}_n, \cdot) \rangle - y_n - \epsilon}{\kappa(\boldsymbol{x}_n, \boldsymbol{x}_n)}, & \text{if } \langle f, \kappa(\boldsymbol{x}_n, \cdot) \rangle - y_n > \epsilon. \end{cases}$$

Projection onto a Hyperslab

$$P_{S_n}(f) = f + \beta \kappa(\boldsymbol{x}_n, \cdot), \forall f \in \mathcal{H},$$

where

$$\beta := \begin{cases} \frac{y_n - \langle f, \kappa(\boldsymbol{x}_n, \cdot) \rangle - \epsilon}{\kappa(\boldsymbol{x}_n, \boldsymbol{x}_n)}, & \text{if } \langle f, \kappa(\boldsymbol{x}_n, \cdot) \rangle - y_n < -\epsilon, \\ 0, & \text{if } |\langle f, \kappa(\boldsymbol{x}_n, \cdot) \rangle - y_n| \le \epsilon, \\ -\frac{\langle f, \kappa(\boldsymbol{x}_n, \cdot) \rangle - y_n - \epsilon}{\kappa(\boldsymbol{x}_n, \boldsymbol{x}_n)}, & \text{if } \langle f, \kappa(\boldsymbol{x}_n, \cdot) \rangle - y_n > \epsilon. \end{cases}$$

The feasibility set

For each pair (x_n, y_n) , form the equivalent hyperslab S_n , and

find
$$f_* \in \bigcap_n S_n$$
.

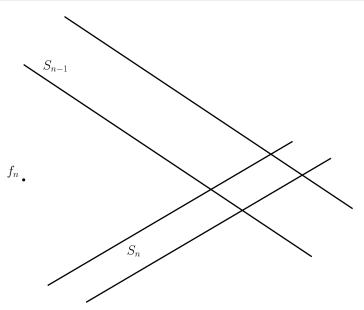
Algorithm for the Online Regression in RKHS

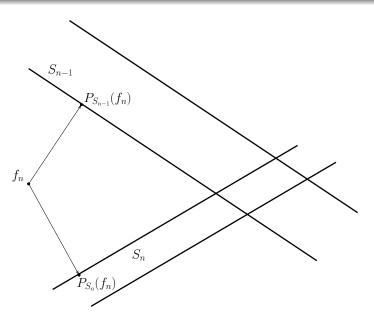
Let the index set $\mathcal{J}_n := \{n-q+1,\ldots,n\}$. Also the weights $\omega_j^{(n)} \geq 0$ such that $\sum_{j\in\mathcal{J}_n}\omega_j^{(n)} = 1$. For $f_0\in\mathcal{H}$,

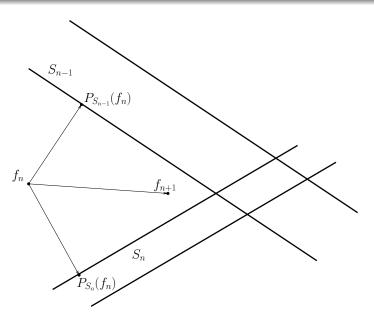
$$f_{n+1} := f_n + \mu_n (\sum_{j \in \mathcal{J}_n} \omega_j^{(n)} P_{S_j}(f_n) - f_n), \quad \forall n \ge 0,$$

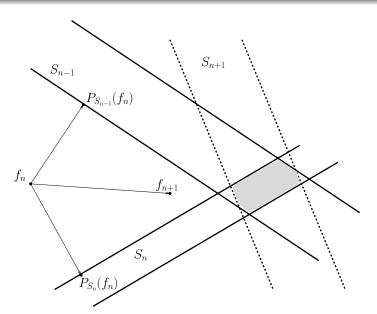
where the extrapolation coefficient $\mu_n \in [0, 2\mathcal{M}_n]$ with

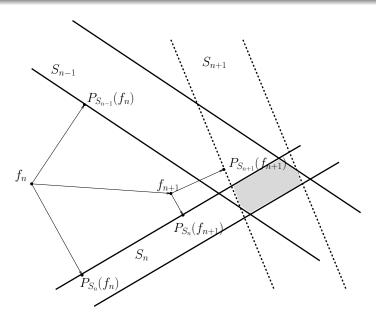
$$\mathcal{M}_n := \begin{cases} \frac{\sum_{j \in \mathcal{J}_n} \omega_j^{(n)} \|P_{S_j}(f_n) - f_n\|^2}{\|\sum_{j \in \mathcal{J}_n} \omega_j^{(n)} P_{S_j}(f_n) - f_n\|^2}, & \text{if } f_n \notin \bigcap_{j \in \mathcal{J}_n} S_j, \\ 1, & \text{otherwise}. \end{cases}$$

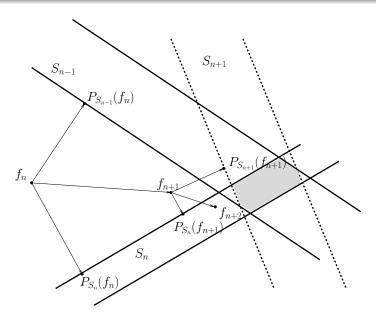






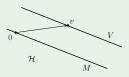






Example (Affine Set)

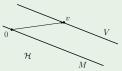
An affine set V is the translation of a closed subspace M, i.e., V:=v+M, where $v\in V$.



$$P_V(f) = v + P_M(f - v), \forall f \in \mathcal{H}.$$

Example (Affine Set)

An affine set V is the translation of a closed subspace M, i.e., V:=v+M, where $v\in V$.



$$P_V(f) = v + P_M(f - v), \forall f \in \mathcal{H}.$$

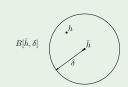
For example, if $M = \operatorname{span}\{\tilde{h}_1, \dots, \tilde{h}_p\}$, then

$$P_V(f) = v + [\tilde{h}_1, \dots, \tilde{h}_p] \boldsymbol{G}^{\dagger} \begin{bmatrix} \langle f - v, \tilde{h}_1 \rangle \\ \vdots \\ \langle f - v, \tilde{h}_p \rangle \end{bmatrix}, \quad \forall f \in \mathcal{H},$$

where the $p \times p$ matrix G, with $G_{ij} := \langle \tilde{h}_i, \tilde{h}_j \rangle$, is a Gram matrix, and G^{\dagger} is the Moore-Penrose pseudoinverse of G. The notation $[\tilde{h}_1, \dots, \tilde{h}_p] \gamma := \sum_{i=1}^p \gamma_i \tilde{h}_i$, for any p-dimensional vector γ .

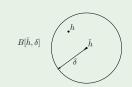
Example (Icecream Cone)

Find $f \in \mathcal{H}$ such that $\langle f, h \rangle \geq \gamma$, $\forall h \in B[\tilde{h}, \delta]$: (Robustness is desired).



Example (Icecream Cone)

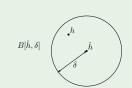
Find $f \in \mathcal{H}$ such that $\langle f, h \rangle \geq \gamma, \ \forall h \in B[\tilde{h}, \delta]$: (Robustness is desired).



If Γ is the set of all such solutions, then

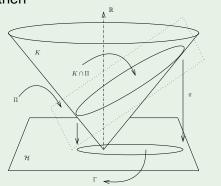
Example (Icecream Cone)

Find $f \in \mathcal{H}$ such that $\langle f, h \rangle \geq \gamma, \ \forall h \in B[\tilde{h}, \delta]$: (Robustness is desired).



If Γ is the set of all such solutions, then

Find a point in $K \cap \Pi$, K: an icecream cone, Π : a hyperplane.



The Complete Picture

Given (x_n, y_n) , find an $f \in \mathcal{H}$ such that [Slavakis, Theodoridis '07 and '08]

$$|\langle f, \kappa(\boldsymbol{x}_n, \cdot) \rangle - y_n| \le \epsilon$$
 subject to

The Complete Picture

Given (x_n, y_n) , find an $f \in \mathcal{H}$ such that [Slavakis, Theodoridis '07 and '08]

$$|\langle f, \kappa(\boldsymbol{x}_n, \cdot) \rangle - y_n| \le \epsilon$$
 subject to $f \in V$ (Affine constraint), and / or

The Complete Picture

Given (x_n, y_n) , find an $f \in \mathcal{H}$ such that [Slavakis, Theodoridis '07 and '08]

$$|\langle f, \kappa(\boldsymbol{x}_n, \cdot) \rangle - y_n| \le \epsilon$$
 subject to $f \in V$ (Affine constraint), and / or $\langle f, h \rangle \ge \gamma, \ \forall h \in B[\tilde{h}, \delta]$ (Robustness).

Algorithm for Robust Regression in RKHS

Let the index set $\mathcal{J}_n:=\{n-q+1,\ldots,n\}$. Also the weights $\omega_j^{(n)}\geq 0$ such that $\sum_{j\in\mathcal{J}_n}\omega_j^{(n)}=1$. For $f_0\in\mathcal{H}$,

$$f_{n+1} := P_{\Pi} P_K \left(f_n + \mu_n \left(\sum_{j \in \mathcal{J}_n} \omega_j^{(n)} P_{S_j}(f_n) - f_n \right) \right), \quad \forall n \ge 0,$$

where the extrapolation coefficient $\mu_n \in [0, 2\mathcal{M}_n]$ with

$$\mathcal{M}_n := \begin{cases} \frac{\sum_{j \in \mathcal{J}_n} \omega_j^{(n)} \|P_{S_j}(f_n) - f_n\|^2}{\|\sum_{j \in \mathcal{J}_n} \omega_j^{(n)} P_{S_j}(f_n) - f_n\|^2}, & \text{if } f_n \notin \bigcap_{j \in \mathcal{J}_n} S_j, \\ 1, & \text{otherwise}. \end{cases}$$

Representer Theorem

Theorem

By mathematical induction on the previous algorithmic procedure, for each index n, there exist $(\gamma_i^{(n)})$, and $(\alpha_i^{(n)})$ such that [Slavakis, Theodoridis '08]

$$f_n := \sum_{l=1}^{L_c} \alpha_l^{(n)} \tilde{h}_l + \sum_{i=0}^{n-1} \gamma_i^{(n)} \kappa(\boldsymbol{x}_i, \cdot), \qquad orall n.$$

Recall that

$$f_n := \sum_{l=1}^{L_c} \alpha_l^{(n)} \tilde{h}_l + \sum_{i=0}^{n-1} \gamma_i^{(n)} \kappa(\boldsymbol{x}_i, \cdot), \quad \forall n.$$

Recall that

$$f_n := \sum_{l=1}^{L_c} \alpha_l^{(n)} \tilde{h}_l + \sum_{i=0}^{n-1} \gamma_i^{(n)} \kappa(\boldsymbol{x}_i, \cdot), \quad \forall n.$$

Memory and computational load grows unbounded as $n \to \infty$!

Recall that

$$f_n := \sum_{l=1}^{L_c} \alpha_l^{(n)} \tilde{h}_l + \sum_{i=0}^{n-1} \gamma_i^{(n)} \kappa(\boldsymbol{x}_i, \cdot), \quad \forall n.$$

Memory and computational load grows unbounded as $n \to \infty$!

Additionally constrain the norm of f_n by a predefined $\delta > 0$:

$$(\forall n \geq 0) \ f_n \in \mathcal{B} := \{ f \in \mathcal{H} : ||f|| \leq \delta \} : \ \text{Closed Ball}.$$

Recall that

$$f_n := \sum_{l=1}^{L_c} \alpha_l^{(n)} \tilde{h}_l + \sum_{i=0}^{n-1} \gamma_i^{(n)} \kappa(\boldsymbol{x}_i, \cdot), \quad \forall n.$$

Memory and computational load grows unbounded as $n \to \infty$!

Additionally constrain the norm of f_n by a predefined $\delta > 0$:

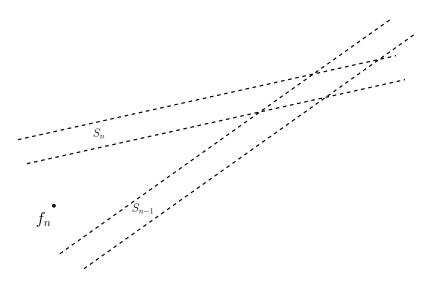
$$(\forall n \ge 0) \ f_n \in \mathcal{B} := \{ f \in \mathcal{H} : ||f|| \le \delta \} :$$
 Closed Ball.

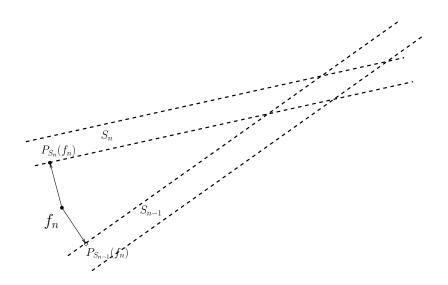
Goal

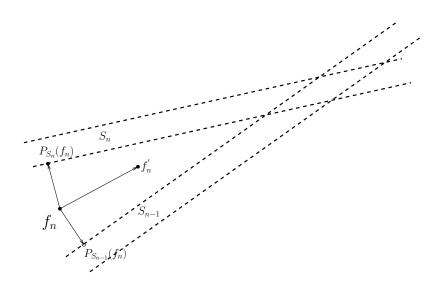
Thus, we are looking for a classifier $f \in \mathcal{H}$ such that

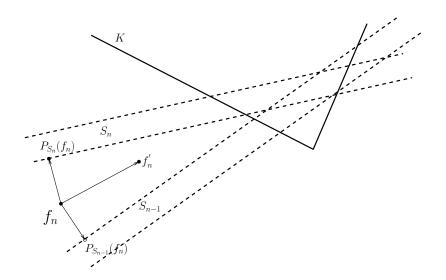
$$f \in \mathcal{B} \cap K \cap \Pi \cap (\bigcap_{n} S_n).$$

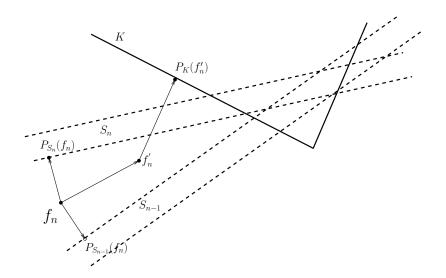
 f_n

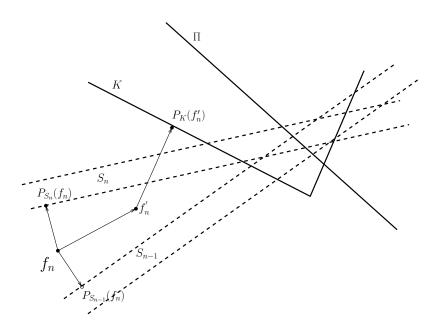


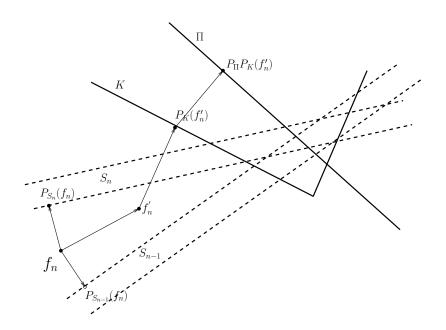


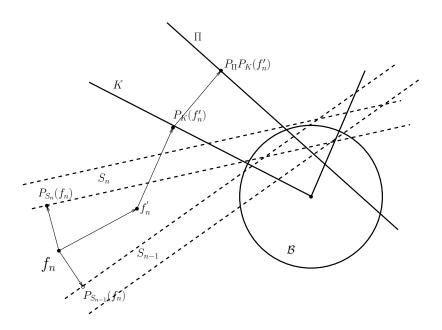


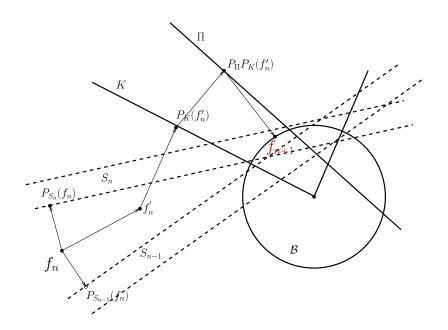










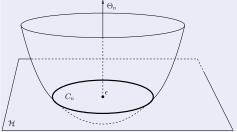


$$\Theta_n(f) := \max\{0, (\langle f, \kappa(\boldsymbol{x}_n, \cdot) \rangle - y_n)^2 - \epsilon\}, \quad \forall f \in \mathcal{H}, \forall n.$$

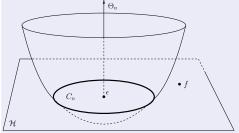
$$\Theta_n(f) := \max\{0, (\langle f, \kappa(\boldsymbol{x}_n, \cdot) \rangle - y_n)^2 - \epsilon\}, \quad \forall f \in \mathcal{H}, \forall n.$$

$$\Theta_n(f) := \max\{0, (\langle f, \kappa(\boldsymbol{x}_n, \cdot) \rangle - y_n)^2 - \epsilon\}, \quad \forall f \in \mathcal{H}, \forall n.$$

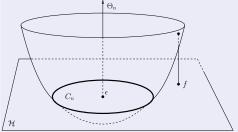
$$\Theta_n(f) := \max\{0, (\langle f, \kappa(\boldsymbol{x}_n, \cdot) \rangle - y_n)^2 - \epsilon\}, \quad \forall f \in \mathcal{H}, \forall n.$$



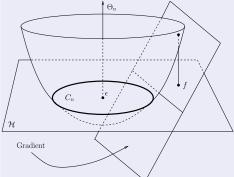
$$\Theta_n(f) := \max\{0, (\langle f, \kappa(\boldsymbol{x}_n, \cdot) \rangle - y_n)^2 - \epsilon\}, \quad \forall f \in \mathcal{H}, \forall n.$$



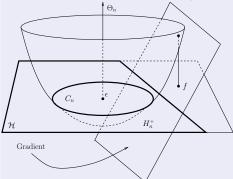
$$\Theta_n(f) := \max\{0, (\langle f, \kappa(\boldsymbol{x}_n, \cdot) \rangle - y_n)^2 - \epsilon\}, \quad \forall f \in \mathcal{H}, \forall n.$$



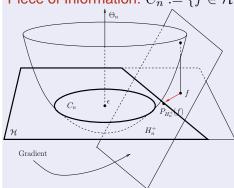
$$\Theta_n(f) := \max\{0, (\langle f, \kappa(\boldsymbol{x}_n, \cdot) \rangle - y_n)^2 - \epsilon\}, \quad \forall f \in \mathcal{H}, \forall n.$$



$$\Theta_n(f) := \max\{0, (\langle f, \kappa(\boldsymbol{x}_n, \cdot) \rangle - y_n)^2 - \epsilon\}, \quad \forall f \in \mathcal{H}, \forall n.$$



$$\Theta_n(f) := \max\{0, (\langle f, \kappa(\boldsymbol{x}_n, \cdot) \rangle - y_n)^2 - \epsilon\}, \quad \forall f \in \mathcal{H}, \forall n.$$



$$P_{H_n^+}(f) = f - \lambda_n \frac{\Theta_n(f)}{\|\Theta'_n(f)\|^2} \Theta'_n(f).$$

For an arbitrary $f_0 \in \mathcal{H}$, and $\forall n$,

$$f_{n+1} = \begin{cases} T\left(f_n - \lambda_n \frac{\Theta_n(f_n)}{\|\Theta'_n(f_n)\|^2} \Theta'_n(f_n)\right), & \text{if } \Theta'_n(f_n) \neq 0, \\ T(f_n), & \text{if } \Theta'_n(f_n) = 0, \end{cases}$$

where

For an arbitrary $f_0 \in \mathcal{H}$, and $\forall n$,

$$f_{n+1} = \begin{cases} T\left(f_n - \lambda_n \frac{\Theta_n(f_n)}{\|\Theta'_n(f_n)\|^2} \Theta'_n(f_n)\right), & \text{if } \Theta'_n(f_n) \neq 0, \\ T(f_n), & \text{if } \Theta'_n(f_n) = 0, \end{cases}$$

where

T comprises the projections associated with the constraints.

For an arbitrary $f_0 \in \mathcal{H}$, and $\forall n$,

$$f_{n+1} = \begin{cases} T\left(f_n - \lambda_n \frac{\Theta_n(f_n)}{\|\Theta'_n(f_n)\|^2} \Theta'_n(f_n)\right), & \text{if } \Theta'_n(f_n) \neq 0, \\ T(f_n), & \text{if } \Theta'_n(f_n) = 0, \end{cases}$$

where

- T comprises the projections associated with the constraints.
- In case Θ_n is non-differentiable the subgradient Θ'_n is used in the place of the gradient.

For an arbitrary $f_0 \in \mathcal{H}$, and $\forall n$,

$$f_{n+1} = \begin{cases} T\left(f_n - \lambda_n \frac{\Theta_n(f_n)}{\|\Theta'_n(f_n)\|^2} \Theta'_n(f_n)\right), & \text{if } \Theta'_n(f_n) \neq 0, \\ T(f_n), & \text{if } \Theta'_n(f_n) = 0, \end{cases}$$

where

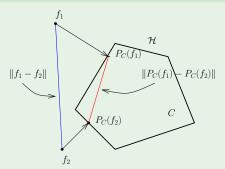
- T comprises the projections associated with the constraints.
- In case Θ_n is non-differentiable the subgradient Θ'_n is used in the place of the gradient.
- Note that the above recursion holds true for any strongly attracting nonexpansive mapping T [Slavakis, Yamada, Ogura '06].

Definition (Nonexpansive Mapping)

A mapping T is called nonexpansive if

$$||T(f_1) - T(f_2)|| \le ||f_1 - f_2||, \quad \forall f_1, f_2 \in \mathcal{H}.$$

Example (Projection Mapping)

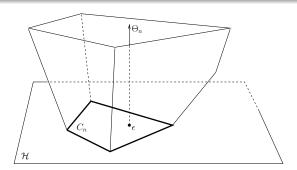


Definition (Subgradient)

$$\langle g - f, \Theta'_n(f) \rangle + \Theta_n(f) \le \Theta_n(g), \forall g \in \mathcal{H}.$$

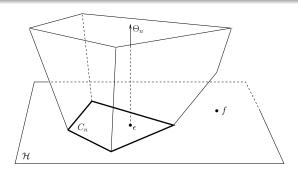
Definition (Subgradient)

$$\langle g - f, \Theta'_n(f) \rangle + \Theta_n(f) \le \Theta_n(g), \forall g \in \mathcal{H}.$$



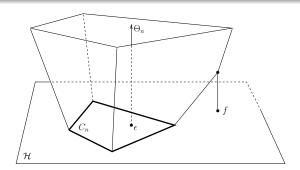
Definition (Subgradient)

$$\langle g - f, \Theta'_n(f) \rangle + \Theta_n(f) \le \Theta_n(g), \forall g \in \mathcal{H}.$$



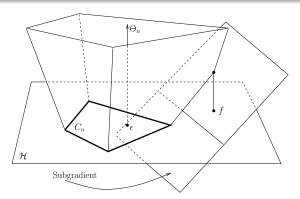
Definition (Subgradient)

$$\langle g - f, \Theta'_n(f) \rangle + \Theta_n(f) \le \Theta_n(g), \forall g \in \mathcal{H}.$$



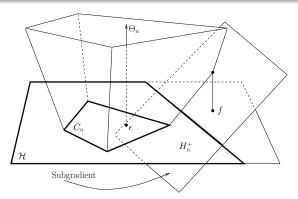
Definition (Subgradient)

$$\langle g - f, \Theta'_n(f) \rangle + \Theta_n(f) \le \Theta_n(g), \forall g \in \mathcal{H}.$$



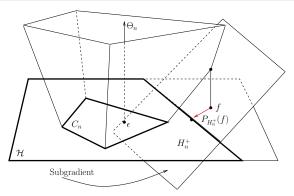
Definition (Subgradient)

$$\langle g - f, \Theta'_n(f) \rangle + \Theta_n(f) \le \Theta_n(g), \forall g \in \mathcal{H}.$$



Definition (Subgradient)

$$\langle g - f, \Theta'_n(f) \rangle + \Theta_n(f) \le \Theta_n(g), \forall g \in \mathcal{H}.$$



Theoretical Properties

Definition (Fixed Point Set)

Given a mapping $T: \mathcal{H} \to \mathcal{H}$, $Fix(T) := \{f \in \mathcal{H}: T(f) = f\}$.

Define at $n \geq 0$, $\Omega_n := \operatorname{Fix}(T) \cap (\arg \min_{f \in \mathcal{H}} \Theta_n(f))$. Let $\Omega := \bigcap_{n \geq n_0} \Omega_n \neq \emptyset$, for some nonnegative integer n_0 . Set the extrapolation parameter $\mu_n \in [\mathcal{M}_n \epsilon_1, \mathcal{M}_n(2 - \epsilon_2)]$, $\forall n \geq n_0$ for some sufficiently small $\epsilon_1, \epsilon_2 > 0$. Then, the following statements hold.

• Monotone approximation. For any $f' \in \Omega$, we have

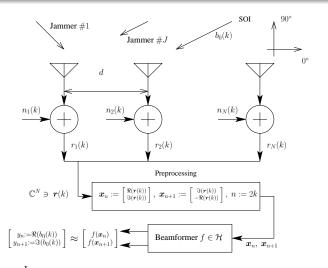
$$||f_{n+1} - f'|| \le ||f_n - f'||, \quad \forall n \ge n_0.$$

- Asymptotic minimization. $\lim_{n\to\infty} \Theta_n(f_n) = 0$.
- Strong convergence. Assume that there exists a hyperplane $\Pi \subset \mathcal{H}$ such that $\mathrm{ri}_\Pi(\Omega) \neq \emptyset$. Then, there exists a $f_* \in \mathrm{Fix}(T)$ such that $\lim_{n \to \infty} f_n =: f_*$.
- Characterization of the limit point. Assume that $\operatorname{int}(\Omega) \neq \emptyset$. Then, the limit point

$$f_* \in \operatorname{clos}(\liminf_{n \to \infty} \Omega_n),$$

where $\liminf_{n\to\infty}\Omega_n:=\bigcup_{m=0}^{\infty}\bigcap_{n\geq m}\Omega_n$.

Adaptive Beamforming in RKHS



$$m{r}(k) := \sum_{l=0}^{J} lpha_l b_l(k) m{s}_l + m{n}(k), \; orall k \geq 0, \qquad m{s}_l : ext{Steering vectors}.$$

Problem Formulation

 Training Data: The received signals and the sequence of symbols sent by the Signal Of Interest (SOI).

Problem Formulation

- Training Data: The received signals and the sequence of symbols sent by the Signal Of Interest (SOI).
- Constraints: Given erroneous information \tilde{s}_0 on the actual SOI steering vector s_0 (e.g. imperfect array calibration), find a solution that gives uniform output for all the steering vectors in an area around \tilde{s}_0 ; use a closed ball $B[\tilde{s}_0, \delta]$.

Robustness is desired!

Problem Formulation

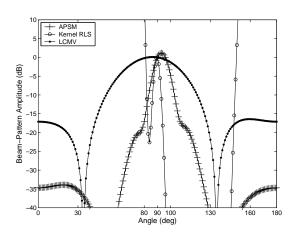
- Training Data: The received signals and the sequence of symbols sent by the Signal Of Interest (SOI).
- Constraints: Given erroneous information \tilde{s}_0 on the actual SOI steering vector s_0 (e.g. imperfect array calibration), find a solution that gives uniform output for all the steering vectors in an area around \tilde{s}_0 ; use a closed ball $B[\tilde{s}_0, \delta]$.

Robustness is desired!

• Antenna Geometry: Only 3 array elements, but with 5 jammers with SNRs 10,30,20,10, and 30 dB. The SOI's SNR is set equal to 10 dB.

Numerical Results

Beam-Patterns



	Input	LCMV	KRLS	APSM
SINR (dB)	-23.26	-20.21	Very low	18.65

Numerical Results

Convergence Results



Conclusions

- A geometric framework for learning in Reproducing Kernel Hilbert Spaces (RKHS) was presented.
- The key ingredients of the framework are
 - the basic tool of metric projections,
 - the Set Theoretic Estimation approach, where each property of the system is described by a closed convex set.
- Both the online classification and regression tasks were considered.
- The way to encapsulate a-priori constraints as well as sparsification, in the framework was also depicted.
- The framework can be easily extended to any continuous, not necessarily differentiable, convex cost function, and to any closed convex a-priori constraint.
- A nonlinear online beamforming task was presented in order to validate the proposed approach.

