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“OΥ∆EIΣ AΓEΩMETPHTOΣ EIΣI”

(“Those who do not know geometry are not welcome here”)

Plato’s Academy of Philosophy
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Outline

The fundamental tool of metric projections in Hilbert spaces.

The Set Theoretic Estimation approach and multiple intersecting
closed convex sets.

Online classification and regression in Reproducing Kernel Hilbert
Spaces (RKHS).

Incorporating a-priori constraints in the design.

An algorithmic solution to constrained online learning in RKHS.

A nonlinear adaptive beamforming application.
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Machine Learning

Problem Definition
Given

A set of measurements (xn, yn)N
n=1, which are jointly distributed,

and

A parametric set of functions

F = {fα(x) : α ∈ A ⊂ R
k}.

Compute an f(·) that best approximates y, given the value of x:

y ≈ f(x).
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n=1, which are jointly distributed,

and

A parametric set of functions

F = {fα(x) : α ∈ A ⊂ R
k}.

Compute an f(·) that best approximates y, given the value of x:

y ≈ f(x).

Special Cases
Smoothing, prediction, filtering, system identification, beamforming,
curve-fitting, regression, and classification.
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The More Classical Approach
Select a loss function ℓ(·, ·) and estimate f(·) so that

f(·) ∈ {fα(·) ∈ arg minα

N∑

n=1

ℓ(yn, fα(xn))}.
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The More Classical Approach
Select a loss function ℓ(·, ·) and estimate f(·) so that

f(·) ∈ {fα(·) ∈ arg minα

N∑

n=1

ℓ(yn, fα(xn))}.

Drawbacks
Most often, in practice, the choice of the cost is dictated not by
physical reasoning but by the computational tractability.

The existence of a-priori information in the form of constraints
makes the task even more difficult.

The optimization task is solved iteratively, and iterations freeze
after a finite number of steps. Thus, the obtained solution lies in a
neighborhood of the optimal one.

The stochastic nature of the data and the existence of noise add
another uncertainty on the optimality of the obtained solution.
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In this talk we are concerned in finding a set of solutions that are
in agreement with all the available information.

This will be achieved in the general context of fixed point theory,
using convex analysis and the powerful tool of projections.
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Projection onto a Closed Subspace

Theorem

Given a Euclidean R
N or a Hilbert space H, the projection of a point f

onto a closed subspace M is the point PM (f) ∈M that lies closest to
f (Pythagoras Theorem).

f

0

PM(f )
M

R
N(H)
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Projection onto a Closed Convex Set

Theorem
Let C be a closed convex set in a Hilbert space H. Then, for each
f ∈ H there exists a unique f∗ ∈ C such that

‖f − f∗‖ = min
g∈C
‖f − g‖.

Sergios Theodoridis (Uni of Athens) Adaptive Processing and Projections January 16, 2009 8 / 56



Projection onto a Closed Convex Set

Theorem
Let C be a closed convex set in a Hilbert space H. Then, for each
f ∈ H there exists a unique f∗ ∈ C such that

‖f − f∗‖ = min
g∈C
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Definition (Metric Projection Mapping)
Projection is the mapping PC : H → C : f 7→ f∗.
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Theorem
Let C be a closed convex set in a Hilbert space H. Then, for each
f ∈ H there exists a unique f∗ ∈ C such that

‖f − f∗‖ = min
g∈C
‖f − g‖.

Definition (Metric Projection Mapping)
Projection is the mapping PC : H → C : f 7→ f∗.

H
PC(f )

f

C

f ′ = PC(f ′)
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Projectors

Example (Hyperplane H := {g ∈ H : 〈g, a〉 = c})

0

f

H
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Projectors

Example (Hyperplane H := {g ∈ H : 〈g, a〉 = c})

0

f

H

{g ∈ H : 〈g, a〉 = c}

H

a
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Projectors

Example (Hyperplane H := {g ∈ H : 〈g, a〉 = c})

0

f

H

{g ∈ H : 〈g, a〉 = c}

H

a

−〈f,a〉−c

‖a‖2 a

PH(f )
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Projectors

Example (Hyperplane H := {g ∈ H : 〈g, a〉 = c})

0

f

H

{g ∈ H : 〈g, a〉 = c}

H

a

−〈f,a〉−c

‖a‖2 a

PH(f )

PH(f) = f −
〈f, a〉 − c

‖a‖2
a, ∀f ∈ H.
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Projectors

Example (Halfspace H− := {g ∈ H : 〈g, a〉 ≤ c})

a

PH−(f )

H−

f

H
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Projectors

Example (Halfspace H− := {g ∈ H : 〈g, a〉 ≤ c})

a

PH−(f )

H−

f

H

PH−(f) = f −
max{0, 〈f, a〉 − c}

‖a‖2
a, ∀f ∈ H.

Sergios Theodoridis (Uni of Athens) Adaptive Processing and Projections January 16, 2009 10 / 56



Projectors

Example (Closed Ball B[0, δ] := {g ∈ H : ‖g‖ ≤ δ})

δ

PB[0,δ](f )

f

B[0, δ]
0
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Projectors

Example (Closed Ball B[0, δ] := {g ∈ H : ‖g‖ ≤ δ})

δ

PB[0,δ](f )

f

B[0, δ]
0

PB[0,δ](f) :=

{

f, if ‖f‖ ≤ δ,
δ

‖f‖f, if ‖f‖ > δ.
, ∀f ∈ H.
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Projectors

Example (Icecream Cone K := {(f, τ) ∈ H × R : ‖f‖ ≥ τ})

K
PK((f, τ ))

(f, τ )

H

R
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Projectors

Example (Icecream Cone K := {(f, τ) ∈ H × R : ‖f‖ ≥ τ})

K
PK((f, τ ))

(f, τ )

H

R

PK((f, τ)) =







(f, τ), if ‖f‖ ≤ τ,

(0, 0), if ‖f‖ ≤ −τ,
‖f‖+τ

2 ( f
‖f‖ , 1), otherwise,

∀(f, τ) ∈ H × R.
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Relaxed Projection

Definition
Given a closed convex set C and its associated projection mapping
PC , the relaxed projection mapping is defined as

TC(f) := f + µ(PC(f)− f), µ ∈ (0, 2), ∀f ∈ H.
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Relaxed Projection

Definition
Given a closed convex set C and its associated projection mapping
PC , the relaxed projection mapping is defined as

TC(f) := f + µ(PC(f)− f), µ ∈ (0, 2), ∀f ∈ H.

PC(f )

µ < 1

H

C

f

µ > 1

TC(f ) = f + µ(PC(f )− f )

f + 2(PC(f )− f )

Remark: The use of the relaxed projection operator with µ > 1 can,
potentially, speed up the convergence rate of the algorithms to be
presented.
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Alternating Projections

Composition of Projection Mappings: Let M1 and M2 be closed
subspaces in the Hilbert space H. For any f ∈ H, define the sequence
of projections:

M2

M1

f
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Alternating Projections

Composition of Projection Mappings: Let M1 and M2 be closed
subspaces in the Hilbert space H. For any f ∈ H, define the sequence
of projections:

PM1(f).

M2

M1

f
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Alternating Projections

Composition of Projection Mappings: Let M1 and M2 be closed
subspaces in the Hilbert space H. For any f ∈ H, define the sequence
of projections:

· · ·PM2PM1PM2PM1(f).
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Alternating Projections

Composition of Projection Mappings: Let M1 and M2 be closed
subspaces in the Hilbert space H. For any f ∈ H, define the sequence
of projections:

· · ·PM2PM1PM2PM1(f).

M2

M1

f

Theorem (Von Neumann ’33)
For any f ∈ H, limn→∞(PM2PM1)

n(f) = PM1∩M2(f).
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Projections Onto Convex Sets (POCS)

Given a finite number of closed convex sets C1, . . . , Cq, with
⋂q

i=1 Ci 6= ∅, let their
associated relaxed projection mappings be TC1

, . . . , TCq . For any f0 ∈ H, this defines
the sequence of points

fn+1 := TCq · · ·TC1
(fn), ∀n.
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Projections Onto Convex Sets (POCS)

Given a finite number of closed convex sets C1, . . . , Cq, with
⋂q

i=1 Ci 6= ∅, let their
associated relaxed projection mappings be TC1

, . . . , TCq . For any f0 ∈ H, this defines
the sequence of points

fn+1 := TCq · · ·TC1
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C1 ∩ C2

PC2PC1(fn)

(PC2PC1)
2(fn)

TC2TC1(fn)
(TC2TC1)
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Theorem ([Bregman ’65], [Gubin, Polyak, Raik ’67])

For any f ∈ H, (TCq · · ·TC1
)n(f)

w
−−−−→
n→∞

∃f∗ ∈
⋂q

i=1 Ci.
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Extrapolated Parallel Projection Method (EPPM)

Recall
TC(f) := f + µ(PC(f) − f), with µ ∈ (0, 2), and fn+1 := TCq · · ·TC1

(fn), ∀n.
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Convex Combination of Projection Mappings [Pierra ’84]
Given a finite number of closed convex sets C1, . . . , Cq, with

⋂q

i=1 Ci 6= ∅, let their
associated projection mappings be PC1

, . . . , PCq . Let also a set of positive constants
w1, . . . , wq such that

∑q

i=1 wi = 1. Then for any f0, the sequence

fn+1 = fn + µn(

q
∑

i=1

wiPCi(fn)

︸ ︷︷ ︸

Convex combination of projections

−fn), ∀n,
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converges weakly to a point f∗ in
⋂q

i=1 Ci,
where µn ∈ (ǫ,Mn), for ǫ ∈ (0, 1), and

Mn :=
∑q

i=1
wi‖PCi

(fn)−fn‖2

‖
∑q

i=1
wiPCi

(fn)−fn‖2 .

C1

C2

fn

fn+1

fn+2
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Infinite Number of Closed Convex Sets

Adaptive Projected Subgradient Method (APSM) [Yamada ’03],
[Yamada, Ogura ’04]
Given an infinite number of closed convex sets (Cn)n≥0, let their associated projection
mappings be (PCn). For any starting point f0, let the sequence

fn+1 = fn + µn(
∑

j∈{n−q+1,...,n}

wjPCj (fn) − fn), ∀n,
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Adaptive Projected Subgradient Method (APSM) [Yamada ’03],
[Yamada, Ogura ’04]
Given an infinite number of closed convex sets (Cn)n≥0, let their associated projection
mappings be (PCn). For any starting point f0, let the sequence

fn+1 = fn + µn(
∑

j∈{n−q+1,...,n}

wjPCj (fn) − fn), ∀n,

where µn ∈ [0, 2Mn], and Mn :=
∑

j∈{n−q+1,...,n} wj‖PCj
(fn)−fn‖2

‖
∑

j∈{n−q+1,...,n} wjPCj
(fn)−fn‖2 .

Under certain mild constraints the
above sequence converges
strongly to a point
f∗ ∈ clos(

⋃

m≥0

⋂

n≥m
Cn).
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Application to Machine Learning

The Task
Given a set of training samples x0, . . . ,xN ⊂ R

m and a set of
corresponding desired responses y0, . . . , yN , estimate a function
f(·) : R

m → R that fits the data.
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The Task
Given a set of training samples x0, . . . ,xN ⊂ R

m and a set of
corresponding desired responses y0, . . . , yN , estimate a function
f(·) : R

m → R that fits the data.

The Expected / Empirical Risk Function approach
Estimate f so that the expected risk based on a loss function ℓ(·, ·) is
minimized:

min
f

E{ℓ(f(x), y)},

or, in practice, the empirical risk is minimized:

min
f

N∑

n=0

ℓ(f(xn), yn).
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Loss Functions

Example (Classification)
For a given margin ρ ≥ 0, and yn ∈ {+1,−1}, ∀n, define the soft
margin loss functions:

ℓ(f(xn), yn) := max{0, ρ− ynf(xn)}, ∀n.

ℓ

ρ0
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Loss Functions

Example (Regression)
The square loss functions:

ℓ(f(xn), yn) := (yn − f(xn))2, ∀n.

ℓ

0
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The Set Theoretic Estimation Approach

Main Idea
The goal here is to have a solution that is in agreement with all the
available information, that resides in the data as well as in the available
a-priori information.
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The Set Theoretic Estimation Approach

Main Idea
The goal here is to have a solution that is in agreement with all the
available information, that resides in the data as well as in the available
a-priori information.

The Means
Each piece of information, associated with the training pair
(xn, yn), is represented in the solution space by a set.

Each piece of a-priori information, i.e., each constraint, is also
represented by a set.

The intersection of all these sets constitutes the family of
solutions.

The family of solutions is known as the feasibility set.
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That is, represent each cost and constraint by
an equivalent set Cn and find the solution

f ∈
⋂

n

Cn ⊂ H.
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Classification: The Soft Margin Loss

The Setting

Let the training data set (xn, yn) ⊂ R
m × {+1,−1}, n = 0, 1, . . ..

Assume the two class task,
{

yn = +1, xn ∈W1,

yn = −1, xn ∈W2.

Assume linear separable classes.
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m × {+1,−1}, n = 0, 1, . . ..

Assume the two class task,
{

yn = +1, xn ∈W1,

yn = −1, xn ∈W2.

Assume linear separable classes.

The Goal (for ρ = 0)

Find f(x) = wtx + b, so that
{

wtxn + b ≥ 0, if yn = +1,

wtxn + b ≤ 0, if yn = −1.
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The Setting

Let the training data set (xn, yn) ⊂ R
m × {+1,−1}, n = 0, 1, . . ..

Assume the two class task,
{

yn = +1, xn ∈W1,

yn = −1, xn ∈W2.

Assume linear separable classes.

The Goal (for ρ = 0)

Find f(x) = wtx + b, so that
{

wtxn + b ≥ 0, if yn = +1,

wtxn + b ≤ 0, if yn = −1.
Hereafter, (w ← [ w

b ] , xn ← [ xn
1 ]) .
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Set Theoretic Estimation Approach to Classification

The Piece of Information

Find all those w so that ynwtxn ≥ 0, n = 0, 1, . . .
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Set Theoretic Estimation Approach to Classification

The Piece of Information

Find all those w so that ynwtxn ≥ 0, n = 0, 1, . . .

The Equivalent Set

H+
n := {w ∈ R

m : ynxt
nw ≥ 0}, n = 0, 1, . . ..

w

R
m

{w : ynx
t
nw ≥ 0}

ℓ

{w : ynx
t
nw = 0}

PH+
n
(w)

0

ynxn
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The feasibility set

For each pair (xn, yn), form the equivalent halfspace H+
n , and

find w∗ ∈
⋂

n

H+
n .

If linearly separable, the problem is feasible.
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The Algorithm

Each H+
n is a convex set.

Start from an arbitrary initial w0.

Keep projecting as each H+
n is

formed.

P
H

+
n

(w) = w − min{0,〈w,ynxn〉}

‖xn‖2 ynxn,
∀w ∈ H.
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Algorithmic Solution to Online Classification

wn+1 := wn + µn(
∑

j∈{n−q+1,...,n}

ω
(n)
j PH+

n
(wn)−wn),

µn ∈ [0, 2Mn], and

Mn :=







∑

j∈{n−q+1,...,n} ω
(n)
j ‖P

H
+
n

(wn)−wn‖2

‖
∑

j∈{n−q+1,...,n} ω
(n)
j P

H
+
n

(wn)−wn‖2
, if wn /∈

⋂

j∈{n−q+1,...,n} H+
n ,

1, otherwise.
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Transfer the Problem into High Dimensional Spaces

Theorem (Cover ’65)
The probability of linearly separating any two
subgroups of a given finite number of data
approaches unity as the dimension of the space,
where classification is carried out, increases.
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Reproducing Kernel Hilbert Spaces (RKHS)

Definition
Consider a Hilbert space H of functions f : R

m → R.
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m, ∀f ∈ H, (reproducing property).

Then H is called a Reproducing Kernel Hilbert Space (RKHS).

f

x
R

m

H

κ(x, ·)
κ(·, ·)

dim(H)

Properties
Kernel Trick: 〈κ(x, ·), κ(y, ·)〉 = κ(x, y).

H = clos{
∑N

n=0 γnκ(xn, ·) : ∀xn ∈ R
m,∀γn,∀N}.
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Classification in RKHS

The Goal
Let the training data set (xn, yn) ⊂ R

m × {+1,−1}, n = 0, 1, . . ..

xn 7→ κ(xn, ·),
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Classification in RKHS

The Goal
Let the training data set (xn, yn) ⊂ R

m × {+1,−1}, n = 0, 1, . . ..

xn 7→ κ(xn, ·),

Find f ∈ H and b ∈ R so that

yn(f(xn) + b) = yn(〈f, κ(xn, ·)〉+ b) ≥ 0, ∀n.
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The Piece of Information

Find all those f so that 〈f, ynκ(xn, ·)〉 ≥ 0, n = 0, 1, . . .
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The Piece of Information

Find all those f so that 〈f, ynκ(xn, ·)〉 ≥ 0, n = 0, 1, . . .

The Equivalence Set

H+
n := {f ∈ H : 〈f, ynκ(xn, ·)〉 ≥ 0}, n = 0, 1, . . ..

ynκ(xn, ·)

f

H

PH+
n
(f )

0

{f : 〈f, ynκ(xn, ·)〉 ≥ 0}
ℓ

{f : 〈f, ynκ(xn, ·)〉 = 0}
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Algorithmic Solution to Online Classification in RKHS

Let the index set Jn := {n− q + 1, . . . , n}. Also the weights ω
(n)
j ≥ 0

such that
∑

j∈Jn
ω

(n)
j = 1. For f0 ∈ H,

fn+1 := fn + µn(
∑

j∈Jn

ω
(n)
j PH+

j
(fn)− fn), ∀n ≥ 0,

where the extrapolation coefficient µn ∈ [0, 2Mn] with

Mn :=







∑

j∈Jn
ω

(n)
j ‖P

H
+
j

(fn)−fn‖2

‖
∑

j∈Jn
ω

(n)
j P

H
+
j

(fn)−fn‖2
, if fn /∈

⋂

j∈Jn
H+

j ,

1, otherwise.
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Representer Theorem

Theorem
By mathematical induction on the previous algorithmic procedure, for
each index n, there exist (γ

(n)
i ) such that

fn :=
n−1∑

i=0

γ
(n)
i κ(xi, ·).
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Sparsification

Recall that as time goes by:

fn :=
n−1∑

i=0

γ
(n)
i κ(xi, ·).

Sergios Theodoridis (Uni of Athens) Adaptive Processing and Projections January 16, 2009 33 / 56



Sparsification

Recall that as time goes by:

fn :=
n−1∑

i=0

γ
(n)
i κ(xi, ·).

Memory and computational load grows unbounded as n→∞!

Sergios Theodoridis (Uni of Athens) Adaptive Processing and Projections January 16, 2009 33 / 56



Sparsification

Recall that as time goes by:

fn :=
n−1∑

i=0

γ
(n)
i κ(xi, ·).

Memory and computational load grows unbounded as n→∞!

To cope with the problem, we additionally constrain the norm of fn by a
predefined δ > 0 [Slavakis, Theodoridis, Yamada ’08]:

(∀n ≥ 0) fn ∈ B := {f ∈ H : ‖f‖ ≤ δ} : Closed Ball.
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γ
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i κ(xi, ·).

Memory and computational load grows unbounded as n→∞!

To cope with the problem, we additionally constrain the norm of fn by a
predefined δ > 0 [Slavakis, Theodoridis, Yamada ’08]:

(∀n ≥ 0) fn ∈ B := {f ∈ H : ‖f‖ ≤ δ} : Closed Ball.

Goal
Thus, we are looking for a classifier f ∈ H such that

f ∈ B ∩ (
⋂

n

H+
n ).
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Geometric Illustration of the Algorithm

fn+1 := PB



fn + µn(
∑

j∈Jn

ω
(n)
j PH+

j
(fn)− fn)



 ,

µn ∈ [0, 2Mn], Mn ≥ 1,

∀n ∈ Z≥0.
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Geometric Illustration of the Algorithm

fn+1 := PB



fn + µn(
∑

j∈Jn

ω
(n)
j PH+

j
(fn)− fn)



 ,

µn ∈ [0, 2Mn], Mn ≥ 1,

∀n ∈ Z≥0.

fn

H+
n−1

H+
n

PH+
n−1

(fn)

PH+
n
(fn)

B

0

fn+1

Remark: It can be shown that this scheme leads to a forgetting factor
effect, as in adaptive filtering!
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Regression in RKHS

The linear ǫ-insensitive loss function case
ℓ(x) := max{0, |x| − ǫ}, x ∈ R.

ǫ

0

ℓ

R

−ǫ
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Set Theoretic Estimation Approach to Regression

The Piece of Information
Given (xn, yn) ∈ R

m × R, find f ∈ H such that

|〈f, κ(xn, ·)〉 − yn| ≤ ǫ, ∀n.

Sergios Theodoridis (Uni of Athens) Adaptive Processing and Projections January 16, 2009 36 / 56



Set Theoretic Estimation Approach to Regression

The Piece of Information
Given (xn, yn) ∈ R

m × R, find f ∈ H such that

|〈f, κ(xn, ·)〉 − yn| ≤ ǫ, ∀n.

The Equivalence Set (Hyperslab)
Sn := {f ∈ H : |〈f, κ(xn, ·)〉 − yn| ≤ ǫ}, ∀n.

ℓ

0

κ(xn, ·)

Sn

{f ∈ H : 〈f, κ(xn, ·)〉 − yn = ǫ}
{f ∈ H : 〈f, κ(xn, ·)〉 − yn = −ǫ}

f

PSn(f )

H
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Projection onto a Hyperslab

PSn(f) = f + βκ(xn, ·),∀f ∈ H,

where

β :=







yn−〈f,κ(xn,·)〉−ǫ

κ(xn,xn) , if 〈f, κ(xn, ·)〉 − yn < −ǫ,

0, if |〈f, κ(xn, ·)〉 − yn| ≤ ǫ,

− 〈f,κ(xn,·)〉−yn−ǫ

κ(xn,xn) , if 〈f, κ(xn, ·)〉 − yn > ǫ.
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κ(xn,xn) , if 〈f, κ(xn, ·)〉 − yn < −ǫ,

0, if |〈f, κ(xn, ·)〉 − yn| ≤ ǫ,

− 〈f,κ(xn,·)〉−yn−ǫ

κ(xn,xn) , if 〈f, κ(xn, ·)〉 − yn > ǫ.

The feasibility set
For each pair (xn, yn), form the equivalent hyperslab Sn, and

find f∗ ∈
⋂

n

Sn.
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Algorithm for the Online Regression in RKHS

Let the index set Jn := {n− q + 1, . . . , n}. Also the weights ω
(n)
j ≥ 0

such that
∑

j∈Jn
ω

(n)
j = 1. For f0 ∈ H,

fn+1 := fn + µn(
∑

j∈Jn

ω
(n)
j PSj

(fn)− fn), ∀n ≥ 0,

where the extrapolation coefficient µn ∈ [0, 2Mn] with

Mn :=







∑

j∈Jn
ω

(n)
j ‖PSj

(fn)−fn‖2

‖
∑

j∈Jn
ω

(n)
j PSj

(fn)−fn‖2
, if fn /∈

⋂

j∈Jn
Sj ,

1, otherwise.
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Geometric Illustration of the Algorithm
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Geometric Illustration of the Algorithm
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Constraints for Online Regression in RKHS

Example (Affine Set)
An affine set V is the translation of a closed subspace M , i.e.,
V := v + M , where v ∈ V .

H

V

M

0

v PV (f) = v + PM (f − v),∀f ∈ H.
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Constraints for Online Regression in RKHS

Example (Affine Set)
An affine set V is the translation of a closed subspace M , i.e.,
V := v + M , where v ∈ V .

H

V

M

0

v PV (f) = v + PM (f − v),∀f ∈ H.

For example, if M = span{h̃1, . . . , h̃p}, then

PV (f) = v + [h̃1, . . . , h̃p]G
†





〈f−v,h̃1〉

...
〈f−v,h̃p〉



 , ∀f ∈ H,

where the p× p matrix G, with Gij := 〈h̃i, h̃j〉, is a Gram matrix, and
G† is the Moore-Penrose pseudoinverse of G. The notation
[h̃1, . . . , h̃p]γ :=

∑p
i=1 γih̃i, for any p-dimensional vector γ.
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Constraints for Online Regression in RKHS

Example (Icecream Cone)

Find f ∈ H such that 〈f, h〉 ≥ γ, ∀h ∈ B[h̃, δ]:
(Robustness is desired).

B[h̃, δ]

h

h̃

δ

Sergios Theodoridis (Uni of Athens) Adaptive Processing and Projections January 16, 2009 41 / 56



Constraints for Online Regression in RKHS

Example (Icecream Cone)

Find f ∈ H such that 〈f, h〉 ≥ γ, ∀h ∈ B[h̃, δ]:
(Robustness is desired).

B[h̃, δ]

h

h̃

δ

If Γ is the set of all such solutions, then

Sergios Theodoridis (Uni of Athens) Adaptive Processing and Projections January 16, 2009 41 / 56



Constraints for Online Regression in RKHS

Example (Icecream Cone)

Find f ∈ H such that 〈f, h〉 ≥ γ, ∀h ∈ B[h̃, δ]:
(Robustness is desired).

B[h̃, δ]

h

h̃

δ

If Γ is the set of all such solutions, then

Find a point in K ∩Π,
K: an icecream cone,
Π: a hyperplane.

H

Γ

Π

K

R

π

K ∩ Π
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The Complete Picture

Given (xn, yn), find an f ∈ H such that [Slavakis, Theodoridis ’07 and
’08]

|〈f, κ(xn, ·)〉 − yn| ≤ ǫ subject to
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Given (xn, yn), find an f ∈ H such that [Slavakis, Theodoridis ’07 and
’08]

|〈f, κ(xn, ·)〉 − yn| ≤ ǫ subject to

f ∈ V (Affine constraint), and / or

〈f, h〉 ≥ γ, ∀h ∈ B[h̃, δ] (Robustness).
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Algorithm for Robust Regression in RKHS

Let the index set Jn := {n− q + 1, . . . , n}. Also the weights ω
(n)
j ≥ 0

such that
∑

j∈Jn
ω

(n)
j = 1. For f0 ∈ H,

fn+1 := PΠPK



fn + µn(
∑

j∈Jn

ω
(n)
j PSj

(fn)− fn)



 , ∀n ≥ 0,

where the extrapolation coefficient µn ∈ [0, 2Mn] with

Mn :=







∑

j∈Jn
ω

(n)
j ‖PSj

(fn)−fn‖2

‖
∑

j∈Jn
ω

(n)
j PSj

(fn)−fn‖2
, if fn /∈

⋂

j∈Jn
Sj ,

1, otherwise.
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Representer Theorem

Theorem
By mathematical induction on the previous algorithmic procedure, for
each index n, there exist (γ

(n)
i ), and (α

(n)
i ) such that [Slavakis,

Theodoridis ’08]

fn :=

Lc∑

l=1

α
(n)
l h̃l

︸ ︷︷ ︸

Constraints

+

n−1∑

i=0

γ
(n)
i κ(xi, ·)

︸ ︷︷ ︸

Training Data

, ∀n.
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Sparsification

Recall that

fn :=

Lc∑

l=1

α
(n)
l h̃l +

n−1∑

i=0

γ
(n)
i κ(xi, ·), ∀n.
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Memory and computational load grows unbounded as n→∞!

Additionally constrain the norm of fn by a predefined δ > 0:

(∀n ≥ 0) fn ∈ B := {f ∈ H : ‖f‖ ≤ δ} : Closed Ball.

Goal
Thus, we are looking for a classifier f ∈ H such that

f ∈ B ∩K ∩Π ∩ (
⋂

n
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The quadratic ǫ-insensitive loss function case

Θn(f) := max{0, (〈f, κ(xn, ·)〉 − yn)2 − ǫ}, ∀f ∈ H,∀n.
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The Recursion
For an arbitrary f0 ∈ H, and ∀n,

fn+1 =

{

T
(

fn − λn
Θn(fn)

‖Θ′
n(fn)‖2 Θ′

n(fn)
)

, if Θ′
n(fn) 6= 0,

T (fn), if Θ′
n(fn) = 0,

where
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)

, if Θ′
n(fn) 6= 0,

T (fn), if Θ′
n(fn) = 0,

where

T comprises the projections associated with the constraints.

In case Θn is non-differentiable the subgradient Θ′
n is used in the

place of the gradient.

Note that the above recursion holds true for any strongly attracting
nonexpansive mapping T [Slavakis, Yamada, Ogura ’06].
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Definition (Nonexpansive Mapping)
A mapping T is called nonexpansive if

‖T (f1)− T (f2)‖ ≤ ‖f1 − f2‖, ∀f1, f2 ∈ H.

Example (Projection Mapping)

‖f1 − f2‖

C

H

f1

f2

PC(f2)

PC(f1)

‖PC(f1)− PC(f2)‖
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Nondifferentiable Loss Function

Definition (Subgradient)

Given a convex continuous function Θn, the subgradient Θ′
n(f) is an

element of H such that

〈g − f,Θ′
n(f)〉+ Θn(f) ≤ Θn(g),∀g ∈ H.

H
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Theoretical Properties

Definition (Fixed Point Set)
Given a mapping T : H → H, Fix(T ) := {f ∈ H : T (f) = f}.

Define at n ≥ 0, Ωn := Fix(T ) ∩ (arg minf∈H Θn(f)). Let Ω :=
⋂

n≥n0
Ωn 6= ∅, for

some nonnegative integer n0. Set the extrapolation parameter
µn ∈ [Mnǫ1,Mn(2 − ǫ2)], ∀n ≥ n0 for some sufficiently small ǫ1, ǫ2 > 0. Then, the
following statements hold.

Monotone approximation. For any f ′ ∈ Ω, we have

‖fn+1 − f
′‖ ≤ ‖fn − f

′‖, ∀n ≥ n0.

Asymptotic minimization. limn→∞ Θn(fn) = 0.

Strong convergence. Assume that there exists a hyperplane Π ⊂ H such that
riΠ(Ω) 6= ∅. Then, there exists a f∗ ∈ Fix(T ) such that limn→∞ fn =: f∗.

Characterization of the limit point. Assume that int(Ω) 6= ∅. Then, the limit point

f∗ ∈ clos(lim inf
n→∞

Ωn),

where lim infn→∞ Ωn :=
⋃∞

m=0

⋂

n≥m
Ωn.
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Adaptive Beamforming in RKHS

Preprocessing

SOI 90◦

0◦

[
yn:=ℜ(b0(k))

yn+1:=ℑ(b0(k))

]

≈
[

f(xn)
f(xn+1)

]

xn, xn+1
Beamformer f ∈ H

C
N ∋ r(k)

Jammer #J

Jammer #1

rN(k)r2(k)r1(k)

nN(k)n2(k)n1(k)

d

xn :=
[
ℜ(r(k))
ℑ(r(k))

]

, xn+1 :=
[
ℑ(r(k))
−ℜ(r(k))

]

, n := 2k

b0(k)

r(k) :=
J∑

l=0

αlbl(k)sl + n(k), ∀k ≥ 0, sl : Steering vectors.
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Problem Formulation

Training Data: The received signals and the sequence of symbols
sent by the Signal Of Interest (SOI).
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Constraints: Given erroneous information s̃0 on the actual SOI
steering vector s0 (e.g. imperfect array calibration), find a solution
that gives uniform output for all the steering vectors in an area
around s̃0; use a closed ball B[s̃0, δ].

⇓
Robustness is desired!
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Training Data: The received signals and the sequence of symbols
sent by the Signal Of Interest (SOI).

Constraints: Given erroneous information s̃0 on the actual SOI
steering vector s0 (e.g. imperfect array calibration), find a solution
that gives uniform output for all the steering vectors in an area
around s̃0; use a closed ball B[s̃0, δ].

⇓
Robustness is desired!

Antenna Geometry: Only 3 array elements, but with 5 jammers
with SNRs 10, 30, 20, 10, and 30 dB. The SOI’s SNR is set equal to
10 dB.
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Numerical Results
Beam-Patterns
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Numerical Results
Convergence Results
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Conclusions

A geometric framework for learning in Reproducing Kernel Hilbert
Spaces (RKHS) was presented.
The key ingredients of the framework are

◮ the basic tool of metric projections,
◮ the Set Theoretic Estimation approach, where each property of the

system is described by a closed convex set.

Both the online classification and regression tasks were
considered.

The way to encapsulate a-priori constraints as well as
sparsification, in the framework was also depicted.

The framework can be easily extended to any continuous, not
necessarily differentiable, convex cost function, and to any closed
convex a-priori constraint.

A nonlinear online beamforming task was presented in order to
validate the proposed approach.
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