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(“Those who do not know geometry are not welcome here”)

Plato’s Academy of Philosophy
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Outine

@ The fundamental tool of metric projections in Hilbert spaces.

@ The Set Theoretic Estimation approach and multiple intersecting
closed convex sets.

@ Online classification and regression in Reproducing Kernel Hilbert
Spaces (RKHS).

@ Incorporating a-priori constraints in the design.
@ An algorithmic solution to constrained online learning in RKHS.
@ A nonlinear adaptive beamforming application.
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Problem Definition

Given
@ A set of measurements (z,, y»)>_,, Which are jointly distributed,
and

@ A parametric set of functions
F ={fo(x):a € ACRF}.
Compute an f(-) that best approximates y, given the value of x:

y = f(z).
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Problem Definition
Given

@ A set of measurements (z,, y»)>_,, Which are jointly distributed,
and

@ A parametric set of functions
F ={fo(x):a € ACRF}.
Compute an f(-) that best approximates y, given the value of x:

y = f(z).

Special Cases

Smoothing, prediction, filtering, system identification, beamforming,
curve-fitting, regression, and classification.

v
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The More Classical Approach
Select a loss function ¢(-, -) and estimate f(-) so that

N
f(-) € {fa() € argming D £(yn, fa(xn))}-

n=1
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The More Classical Approach
Select a loss function ¢(-, -) and estimate f(-) so that

N
f(-) € {fa() € argming Y &(yn, fa(en))}.

n=1

Drawbacks

@ Most often, in practice, the choice of the cost is dictated not by
physical reasoning but by the computational tractability.

@ The existence of a-priori information in the form of constraints
makes the task even more difficult.

@ The optimization task is solved iteratively, and iterations freeze
after a finite number of steps. Thus, the obtained solution lies in a
neighborhood of the optimal one.

@ The stochastic nature of the data and the existence of noise add
another uncertainty on the optimality of the obtained solution.

v
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@ In this talk we are concerned in finding a set of solutions that are
in agreement with all the available information.

@ This will be achieved in the general context of fixed point theory,
using convex analysis and the powerful tool of projections.
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Theorem

Given a Euclidean RY or a Hilbert space H, the projection of a point f
onto a closed subspace M is the point Py, (f) € M that lies closest to
f (Pythagoras Theorem).

RY(H)

L]
o

Y, Py(f)
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Theorem

Let C be a closed convex set in a Hilbert space H. Then, for each
f € H there exists a unique f, € C such that

|f = fell = Iglgg If—gll.
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Proje

Theorem

Let C be a closed convex set in a Hilbert space H. Then, for each
f € H there exists a unique f, € C such that

|f = fell = grgg If—gll.

Definition (Metric Projection Mapping)
Projection is the mapping Po : H — C : f — f..

v
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Example (Hyperplane H := {g € H : (g,a) = c})
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Example (Hyperplane H := {g € H : (g,a) = c})
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Example (Hyperplane H := {g € H : (g,a) = c})
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Example (Hyperplane H := {g € H : (g,a) = c})
A

{9eH:{g,a)=c}

A )

€ e,
/,’ Tl
2
PH(f)zf—<f’“—>_ca, Vf € H.
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Example (Halfspace H~ :={g € H : (9,a) < c})
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Example (Halfspace H~ :={g € H : (9,a) < c})

~ max{0, (f,a) —c}
lall®

a, VfeH.
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Example (Closed Ball B[0,6] :={g € H : ||g]| < })

f
[PB[O,é](f )
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Example (Closed Ball B[0,6] :={g € H : ||g]| < })

[f

Pgio.6)(f)

, if <4,

. , VfeH.
b, Hfl > 6
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Example (Icecream Cone K := {(f,7) e H xR : ||f|| > 7})
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Example (Icecream Cone K := {(f,7) e H xR : || f]| > 7})
R
K Pi((f,7))
(f:7)
H
(f,7), it fll <7,
Pr((f,7)) = ( , 0), iffll <=7 V(f,7) e HxR.
(tilems (ﬁ 1), otherwise,
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Definition
Given a closed convex set C' and its associated projection mapping
Pg, the relaxed projection mapping is defined as

Te(f) = f+u(Po(f) = f),ne(0,2), VfeH.
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Rel

Definition
Given a closed convex set C' and its associated projection mapping
Pg, the relaxed projection mapping is defined as

Te(f) = f+u(Po(f) = f),ne(0,2), VfeH.

Remark: The use of the relaxed projection operator with ;. > 1 can,
potentially, speed up the convergence rate of the algorithms to be

presented.
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Composition of Projection Mappings: Let M; and M be closed
subspaces in the Hilbert space H. For any f € H, define the sequence
of projections:

M,

M,
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Composition of Projection Mappings: Let M; and M be closed
subspaces in the Hilbert space H. For any f € H, define the sequence
of projections:
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Composition of Projection Mappings: Let M; and M be closed
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Composition of Projection Mappings: Let M; and M be closed
subspaces in the Hilbert space H. For any f € H, define the sequence
of projections:

- Ppry Pory Pory Por, ().

/ M,
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Composition of Projection Mappings: Let M; and M be closed
of projections:

subspaces in the Hilbert space H. For any f € H, define the sequence

<+ Pagy Pary Paay Pary (f)-

M,
Theorem (Von Neumann ’'33)
Forany f € H,

Sergios Theodoridis (Uni of Athens)
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Given a finite number of closed convex sets C1, ..., Cq, with N{_, C; # 0, let their
associated relaxed projection mappings be Tc,, ..., Tc,. For any fo € 'H, this defines
the sequence of points

Jnt1:=To, -+ Toy (fa), vn.
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associated relaxed projection mappings be Tc,, ..., Tc,. For any fo € 'H, this defines
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frot1 = ch "'Tcl(f‘ﬂ)7 vn.
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Given a finite number of closed convex sets C1, ..., Cq, with N{_, C; # 0, let their
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Given a finite number of closed convex sets C1, ..., Cq, with N{_, C; # 0, let their
associated relaxed projection mappings be Tc,, ..., Tc,. For any fo € 'H, this defines
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Given a finite number of closed convex sets C1, ..., Cq, with N{_, C; # 0, let their
associated relaxed projection mappings be Tc,, ..., Tc,. For any fo € 'H, this defines
the sequence of points

frot1 = TCq "'Tcl(f‘n)7 vn.

I

Cy Pe,Pe,(f2)

“(PoPo(f)

anc A TeTo P
870,76, (fn)

Theorem ([Bregman '65], [Gubin, Polyak, Raik '67])
Forany f € H, (ch--~T01)"(f)#>3f* €N, Ci.
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Recall
To(f) := f+ w(Pe(f) — f), with € (0,2), and foi1 := To, - Toy (fn), Y.
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Recall
To(f) := f+ w(Pe(f) — f), with € (0,2), and foi1 := To, - Toy (fn), Y.

Convex Combination of Projection Mappings [Pierra '84]

Given a finite number of closed convex sets C, . .., Cy, with N!_, C; # 0, let their
associated projection mappings be Pc,, ..., Pc,. Let also a set of positive constants
wi,...,wq suchthat >>7_ w; = 1. Then for any fo, the sequence

fn+1 :fn+Nn( Z'uhPCz(fn) _fn)a an
i=1

Convex combination of projections
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converges weakly to a point f. in (\7_, C;,
where pu, € (¢, My), for e € (0, 1), and

YL willPo, (fn) = full?
Ma = 17—, wiPo, (fn)—fnll?"

Cy

Sergios Theodoridis (Uni of Athens) Adaptive Processing and Projections January 16, 2009 16 /56



 Infinite Number of Closed G o —

Adaptive Projected Subgradient Method (APSM) [Yamada '03],
[Yamada, Ogura '04]

Given an infinite number of closed convex sets (C,)»>0, let their associated projection
mappings be (Pc,, ). For any starting point fo, let the sequence

fn+1 :fn+ﬂn( Z ijC’j(fn)_fn)v vn,
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Adaptive Projected Subgradient Method (APSM) [Yamada '03],
[Yamada, Ogura '04]

Given an infinite number of closed convex sets (C,)»>0, let their associated projection
mappings be (Pc,, ). For any starting point fo, let the sequence

fn+1 :fn+un( Z ijCj(fn)_fn)7 an

where ., € [0,2M,], and M,, :=
Eje{nfqi»l ,,,,, n} wj”PC‘j(fn)_fnu2

”Eje{n—q-{-l ..... n} ijCj (Fr)—Fnll®"

Under certain mild constraints the

above sequence converges

strongly to a point Cn1

fr € clos(U,50 Npsm Cn)-

I T N

==
\

~ < -
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The Task

Given a set of training samples x, ...,y C R™ and a set of
corresponding desired responses yj, . . ., yn, €Stimate a function
f(-) : R™ — R that fits the data.

o
Sergios Theodoridis (Uni of Athens)

Adaptive Processing and Projections



The Task

Given a set of training samples x, ..., zx C R™ and a set of
corresponding desired responses yj, . . ., yn, €Stimate a function
f(-) : R™ — R that fits the data.

The Expected / Empirical Risk Function approach

Estimate f so that the expected risk based on a loss function ¢(-, -) is
minimized:

m}n E{¢(f(z),v)},

or, in practice, the empirical risk is minimized:

N
min >~ ((f (). 1)
n=0
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Example (Classification)

For a given margin p > 0, and y,, € {+1, —1}, Vn, define the soft
margin loss functions:

e(f(mn)v yn) = max{O, P — ynf(wn)}a

Vn.
¢
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Example (Regression)
The square loss functions:

0(f(n), yn)

(Yn — f(wn))2a

Vn.
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Main Idea

The goal here is to have a solution that is in agreement with all the

available information, that resides in the data as well as in the available
a-priori information.

[m] = =
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Main ldea

The goal here is to have a solution that is in agreement with all the
available information, that resides in the data as well as in the available
a-priori information. |

The Means
@ Each piece of information, associated with the training pair
(zn,yn), IS represented in the solution space by a set.
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_ The Set Theoretic Estima o

Main ldea

The goal here is to have a solution that is in agreement with all the
available information, that resides in the data as well as in the available
a-priori information.

v

The Means

@ Each piece of information, associated with the training pair
(zn,yn), IS represented in the solution space by a set.

@ Each piece of a-priori information, i.e., each constraint, is also
represented by a set.

@ The intersection of all these sets constitutes the family of
solutions.

@ The family of solutions is known as the feasibility set.
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That is, represent each cost and constraint by

an equivalent set (', and find the solution

fe(CncH.
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The Setting

Let the training data set (x,,,y,) C R"™ x {+1,—1},n=0,1,....
Assume the two class task,

Yn = +]-7 Tn € W17
Yn _]-7 Tn € W2'

Assume linear separable classes.
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The Setting

Let the training data set (x,,,y,) C R"™ x {+1,—1},n=0,1,....
Assume the two class task,

Yn = +1a Tn € W17
Yn = _]-7 Tn € W2'

Assume linear separable classes.

The Goal (for p = 0)

Find f(x)=w'z +b, so that
{wtmn 1b>0, ify,=+1,

wlz, +b<0, ify,=—1.
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Class

The Setting

Let the training data set (x,,,y,) C R"™ x {+1,—1},n=0,1,....
Assume the two class task,

Yn = +1a Tn € W17
Yn = _]-7 Tn € W2'

Assume linear separable classes.

The Goal (for p = 0)

Find f(x)=w'z +b, so that
v%ﬁwzuwwzﬂ,

w]?

Hereafter, (w « [% xn — [T]).

wlz, +b<0, ify,=—1.

v
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The Piece of Information J

Find all those w so that y,w'z, >0, n=0,1,...
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S

The Piece of Information

Find all those w so that y,w'z, >0, n=0,1,...

The Equivalent Set
Hf ={weR":y,xzlw>0},n=0,1,...

YnZn

{w: y,zlw >0}

~{w : yalw = 0)
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The feasibility set
For each pair (x,,y,), form the equivalent halfspace H;', and

find w. € () H,.

If linearly separable, the problem is feasible.
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The feasibility set
For each pair (x,,y,), form the equivalent halfspace H;', and

find w. € () H,.

If linearly separable, the problem is feasible.

The Algorithm

Each H," is a convex set.
@ Start from an arbitrary initial wo.

v
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The feasibility set

For each pair (x,,y,), form the equivalent halfspace H;', and

find w. € () H,.

If linearly separable, the problem is feasible.

The Algorithm

Each H," is a convex set.
@ Start from an arbitrary initial wo.

@ Keep projecting as each H,! is
formed.
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The Algorithm
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The feasibility set
For each pair (x,,y,), form the equivalent halfspace H;', and

find w. € () H,.

If linearly separable, the problem is feasible.

The Algorithm

Each H," is a convex set.
@ Start from an arbitrary initial wo.
@ Keep projecting as each H,' is

formed.

0P+(w):w_wyw X
Hr, o 12 nTn,
Yw € H.
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Wpt1 1= Wy + Mn( Z w](n)
je{n—q+1,...,n}
pn € [0,2M,,],and

P+ (wn) — wy),

Zjetngrt,my @ [Py (wn) —wn 2
M, = ||Zje{n—q+1,...,n}wa(‘n)
L,

)
PH;{ (wn)—wn||?

if Wn, ¢ nje{n—q—i-l,...,n} HT_:_
otherwise.
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Wp41 1= Wy + Mn( Z w](n)PHTf (wn) - wn)?
je{n—q+1,...,n}

pn € [0,2M,,],and

S jetnart, oy @5 [Pyt (wn)—wn 2

o

M, = 1> jetn—gr1,..n} @5 PH;{(wn)—wnllz’
1, otherwise.

if w, ¢ mje{n—q-i—l,...

H+

n}tno
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Wp41 1= Wy + Mn( Z w](n)PHTf (wn) - wn)?
je{n—q+1,...,n}

tn € 10,2M,,],and
S jetnart, oy @5 [Pyt (wn)—wn 2
Ma = {1 etnmgit,m @5 Pyt (wn)—wal 2’

1, otherwise.

if Wn, ¢ mje{n—q—i-l,...,n} Hr_:7
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Wp41 1= Wy + Mn( Z w](n)PHTf (wn) - wn)?
je{n—q+1,...,n}

tn € 10,2M,,],and
S jetnart, oy @5 [Pyt (wn)—wn 2
Ma = {1 etnmgit,m @5 Pyt (wn)—wal 2’

1, otherwise.
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Theorem (Cover '65)

The probability of linearly separating any two
subgroups of a given finite number of data
approaches unity as the dimension of the space,
where classification is carried out, increases.
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Definition
Consider a Hilbert space H of functions f : R™ — R.

Sergios Theodoridis (Uni of Athens) Adaptive Processing and Projections January 16, 2009 28/56



Definition
Consider a Hilbert space H of functions f : R™ — R.
Assume there exists a kernel function (-, -) : R™ x R™ — R such that
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Definition
Consider a Hilbert space H of functions f : R™ — R.
Assume there exists a kernel function (-, -) : R™ x R™ — R such that

9 k(x,) € H,Vx € R™,
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~ Reproducing Kernel Hilbert SR ae e

Definition
Consider a Hilbert space H of functions f : R™ — R.
Assume there exists a kernel function (-, -) : R™ x R™ — R such that

9 k(x,) € H,Vx € R™,
@ (f,k(zx,")) = f(x), V& € R™, Vf € H, (reproducing property).
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Repr

Definition
Consider a Hilbert space H of functions f : R™ — R.
Assume there exists a kernel function (-, -) : R™ x R™ — R such that

9 x(x,-) € H,Vx € R™,
@ (f,k(zx,")) = f(x), V& € R™, Vf € H, (reproducing property).

Then H is called a Reproducing Kernel Hilbert Space (RKHS).

Rm
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Definition
Consider a Hilbert space H of functions f : R™ — R.
Assume there exists a kernel function (-, -) : R™ x R™ — R such that

9 x(x,-) € H,Vx € R™,
@ (f,k(zx,")) = f(x), V& € R™, Vf € H, (reproducing property).

Then H is called a Reproducing Kernel Hilbert Space (RKHS).

Rm

Properties
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9 x(x,-) € H,Vx € R™,
@ (f,k(zx,")) = f(x), V& € R™, Vf € H, (reproducing property).

Then H is called a Reproducing Kernel Hilbert Space (RKHS).

R’/TL

Properties
@ Kernel Trick: (k(x, ), k(y,")) = k(x,y).
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Reprod

Definition
Consider a Hilbert space H of functions f : R™ — R.
Assume there exists a kernel function (-, -) : R™ x R™ — R such that
9 x(x,-) € H,Vx € R™,
@ (f,k(zx,")) = f(x), V& € R™, Vf € H, (reproducing property).
Then H is called a Reproducing Kernel Hilbert Space (RKHS).

Rm
Properties
@ Kernel Trick: (k(x, ), k(y,")) = k(x,y).
o H= clos{zgzo nk(Zp, ) : Ve, € R™ Vv, VN}.
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The Goal

Let the training data set (x,,,y,) C R™ x {+1,-1},n=0,1,....
Q x,— ’i(wna '),
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The Goal

Q x,— ’i(wn; '),

Let the training data set (x,,,y,) C R™ x {+1,-1},n=0,1,....

@ Find f € H and b € R so that

Yn(f(@n) +0) = yn((f, K(xpn,-)) +b) >0,  Vn.

Sergios Theodoridis (Uni of Athens)
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The Piece of Information

Find all those f sothat (f,y,k(xn,:)) >0, n=0,1,...
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The Piece of Information

Find all those f sothat (f,y,k(xn,:)) >0, n=0,1,...

The Equivalence Set
H} = {f € H: {f, ynki(xn, ")) 20}, n=0,1,....

{f = (f, yuril@n, ) = 0}

S {F  (f, guri(@n, ) = 0}
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Let the index set 7, := {n — ¢+ 1,...,n}. Also the weights w](-n) >0
such that 3°,c /. wj(.”) = 1. For fy € H,

Jnt1 = fo + Nn( Z wg('n)PHj*(fn) — fn)y Vn >0,
JE€EIn

where the extrapolation coefficient u,, € [0,2M,,] with

S iegn @ NP1 (F)=fnl®
J

,if o H
M, = A TS e T # e,
J

1, otherwise.
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Theorem

By mathematical induction on the previous algorithmic procedure, for
each index n, there exist (+\™) such that
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Recall that as time goes by:

fn ~—Z% fczv
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Recall that as time goes by:

fn ~—Z% wzv

Memory and computational load grows unbounded as n — oc!
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Recall that as time goes by:

fn ~—Z% wza

Memory and computational load grows unbounded as n — oc!

To cope with the problem, we additionally constrain the norm of f,, by a
predefined § > 0 [Slavakis, Theodoridis, Yamada '08]:

(Vn>0) fnpeB:={feH:|f| <o}: Closed Ball.
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Recall that as time goes by:

fn -—Z% :1}1,

Memory and computational load grows unbounded as n — oo!

To cope with the problem, we additionally constrain the norm of f,, by a
predefined § > 0 [Slavakis, Theodoridis, Yamada '08]:

(Vn>0) fneB:={feH:|f]| <d}: Closed Ball.

Goal
Thus, we are looking for a classifier f € H such that

feBn((H).
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frat1 =P | fa + pn( Z w
Jejn
L,

H"' fn) - fn)
€ [0,2M,,]

9

Vn€Z>0
M, >1
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frat1 =P | fa + pn( Z w
Jejn
L,

H"' fn) - fn)
€ [0,2M,,]

9

Vn€Z>0
M, >1

In
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fn+1 = Pg fn“'#n Zw

+ fn) - fn) 5
JETn H Vn € Zxo
€0,2M,], M, >1

+
Hy
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frat1 =P | fa + pn( Z w
Jejn
L,

H"' fn) - fn)
€ [0,2M,,]

9

M, >1
P+ (fn)

Vn € Z>0
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frat1 =P | fa + pn( Z w
Jejn
L,

H"' fn) - fn)
€ [0,2M,,]

9

My > 1,
P+ (fn)

Vn € Z>0
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fos1: =P | fn +#n( Z w](n)PH;'(fn) - fn) s
J€In

tn € [0,2M,,],

My > 1,
P+ (fn)

Vn € ZZO
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fn+1 = Pp fn“‘#n Zw H+ fn) fn)
Jejn
€ [0,2M,],

9

Vn € ZZO'

M, > 1,

Remark: It can be shown that this scheme leads to a forgetting factor
effect, as in adaptive filtering!
Sergios Theodoridis (Uni of Athens)
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The linear e-insensitive loss function case
{(z) := max{0, |z| — €}, x € R.
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The Piece of Information
Given (z,,y,) € R™ x R, find f € H such that

|<f> H(mnv )> - yn| <, Vn.
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Set

The Piece of Information
Given (z,,y,) € R™ x R, find f € H such that

|<fa’<‘(wn?')> _yn| <e, Vn. )

The Equivalence Set (Hyperslab)

Sno=A{f e H:[{f;5(@n,)) —yal <€}, V.
¢

{f eEH: <fr H(a"m )> “Yn= E}
{f e H:{f,r(@n,")) —yn = —€} )
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Projection onto a Hyperslab

Ps,(f) = f + Bk(@n, ), Vf € H,

where
ol i {f, (@, )) — U < 6
8=, f1(F, w(@a, )} = 4l <€
— flGmllogos if (£, m(n, )) — g >
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Projection onto a Hyperslab

Ps,(f) = f + Bk(@n, ), Vf € H,

where
betbrlEndioe it (f, K(@n, ) — yn < —6,
B:=10, i 1(F, 5(n, ) = wnl <,
— flGmllogos if (£, m(n, )) — g >

The feasibility set
For each pair (z,,y,), form the equivalent hyperslab S,,, and

find f. € () Sn.
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Let the index set 7, := {n — ¢+ 1,...,n}. Also the weights w](.") >0
such that Zjejn w](.”) = 1. For fo € H,

Far = Fo (Y W Ps (fa) = fa), ¥n >0,
JE€EIn

where the extrapolation coefficient u,, € [0,2M,,] with

ZjEJ wg('n)”PSj(f‘n)_fnuz .
- , if S
Mn = ”Zjejn “‘J‘gn)PSj(f'n)_fn”2 fn ¢ njej” J

1, otherwise.
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 Constraints for Online RegreS SIS

Example (Affine Set)
An affine set V is the translation of a closed subspace M, i.e.,

Vi.i=v+ M, wherev e V.

Py(f)=v+ Py(f —v),Vf eH.

V.
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Example (Affine Set)

An affine set V is the translation of a closed subspace M, i.e.,
Vi.i=v+ M, wherev e V.

Py(f)=v+ Py(f —v),Vf eH.

M

For example, if M = span{hi, ..., h,}, then

_ ~ (f—U,ﬁ1>
Py(f) =v+ [h1,..., hy)GT : , VfEH,
<f—’l),ilp>

where the p x p matrix G, with Gy; := (h;, h;), is a Gram matrix, and
QT is the Moore-Penrose pseudoinverse of G. The notation
(A1, ... hply == 32, vihi, for any p-dimensional vector ~.

o
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Example (Icecream Cone)

Find f € H such that (f,h) > ~, Yh € B[h, ]

. . Bh, 4]
(Robustness is desired).

v
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Example (Icecream Cone)

Find f € H such that (f,h) > ~, Yh € B[h, ]

. . Bh, 4]
(Robustness is desired).

If T is the set of all such solutions, then
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Con

Example (Icecream Cone)

Find f € H such that (f,h) > ~, Yh € B[h, ]

. . Bh, 4]
(Robustness is desired).

If T is the set of all such solutions, then

Find a point in K N 1I, ot

K: an icecream cone, H/\ é .

II: a hyperplane.
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Given (x,,y,), find an f € H such that [Slavakis, Theodoridis '07 and
'08]

[(f,k(Tn,)) —yn| <€  subjectto
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Given (x,,y,), find an f € H such that [Slavakis, Theodoridis '07 and
'08]

[(f,k(Tn,)) —yn| <€  subjectto
f eV (Affine constraint), and/ or
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Given (x,,y,), find an f € H such that [Slavakis, Theodoridis '07 and
'08]
[(f,k(Tn,)) —yn| <€  subjectto
f eV (Affine constraint), and/ or
(f,h) >~, Vh e Blh,§]  (Robustness).
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Let the index set J,, := {n — g+ 1,...,n}. Also the weights w](.") >0
such that 3°,c 7. wj(.") = 1. For fy € H,

fa+1 = PnPk fn+ﬂn(z w]('n)PSj(fn)_fn) , Vn >0,
J€In

where the extrapolation coefficient u,, € [0,2M,,] with

ZJEJ w§n)||PSj(fn)_fn||2 .
- , i S,
My i= 3 15y P, gl I E (e, S5

1, otherwise.
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Theorem
By mathematical induction on the previous algorithmic procedure, for

each index n, there exist (%.(")), and (a§”>) such that [Slavakis,
Theodoridis '08]

Lc n—1
fn = Zal(n)hl—l—Z’yi(n)m(wi, ), vn.
=1 i=0

/

-

Constraints Training Data
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Recall that
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Recall that

fn = Za(n)hl + nyz wl’ ) vn.

Memory and computational load grows unbounded as n — oo!
Additionally constrain the norm of f,, by a predefined ¢ > 0:

(Vn>0)fneB:={feH:|f| <o}: Closed Ball.
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Recall that

fn = Zal hy + Z% k(xi, ), Vn.

Memory and computational load grows unbounded as n — oo!
Additionally constrain the norm of f,, by a predefined § > 0:
(Vn>0)fneB:={feH:|f| <o}: Closed Ball.

Goal
Thus, we are looking for a classifier f € H such that

feBNKNIN([)Sh)
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The quadratic e-insensitive loss function case

On(f) 1= max{0, ((f, K(Tn, ")) — yn)* — €},

Vf e H,Vn.
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The quadratic e-insensitive loss function case
On(f) = max{0, ((f,k(zn,")) —yn)* —€},  VfEH,Vn.

Piece of Information: C,, := {f € H : ©,(f) < 0}.
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Vf e H,Vn.
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The quadratic e-insensitive loss function case
On(f) = max{0, ((f,k(zn,")) —yn)* —€},  VfEH,Vn.

Piece of Information: C,, := {f € H : ©,(f) < 0}.

H

Gradient
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The quadratic e-insensitive loss function case
On(f) = max{0, ((f,k(zn,")) —yn)* —€},  VfEH,Vn.

Piece of Information: C,, := {f € H : ©,(f) < 0}.

Py (f) = f = AnTaib=04(f).

H

O >
Gmw
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The Recursion
For an arbitrary fy € H, and Vn,

f+1={ (Fn = Ao @0(£2)) 1€ (f) 0,
(fn), if @;z(fn) =0,

where
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@ T comprises the projections associated with the constraints.
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The Recursion
For an arbitrary f, € H, and Vn,

f+1:{ (Fn = Ao @0(£2)) 1€ (f) 0,
T(fn), if ©,(fn) =0,

where
@ T comprises the projections associated with the constraints.

@ In case O,, is non-differentiable the subgradient ©/, is used in the
place of the gradient.
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The Recursion
For an arbitrary f, € H, and Vn,

f+1:{ (Fn = Ao @0(£2)) 1€ (f) 0,
T(fn), if ©,(fn) =0,

where
@ T comprises the projections associated with the constraints.

@ In case O,, is non-differentiable the subgradient ©/, is used in the
place of the gradient.

@ Note that the above recursion holds true for any strongly attracting
nonexpansive mapping 7' [Slavakis, Yamada, Ogura '06].

Sergios Theodoridis (Uni of Athens) Adaptive Processing and Projections January 16, 2009 48 /56



Definition (Nonexpansive Mapping)
A mapping T is called nonexpansive if

IT(f) =T < - fll,  VYfi,faeH.

Example (Projection Mapping)

£ = £
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Definition (Subgradient)

Given a convex continuous function ©,,, the subgradient ©/,(f) is an
element of H such that
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Definition (Subgradient)

Given a convex continuous function ©,,, the subgradient ©/,(f) is an
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(9= £,0L(f)) + On(f) < Onlg),Vg € M.
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Definition (Fixed Point Set)
Givenamapping T : H — H, Fix(T) :={f e H: T(f) = f}. J

Define atn > 0, Qn. = Fix(T) N (arg min ¢4, 97?(f)). LetQ:=(,5,, Qn # 0, for
some nonnegative integer no. Set the extrapolation parameter

tn € [Mner, My (2 — €2)], Yn > ng for some sufficiently small €1, 2 > 0. Then, the
following statements hold.

@ Monotone approximation. For any f' € €, we have
[ frtr = FIN< Mfn = fll, VR 2> mo.

@ Asymptotic minimization. lim, . O (fr) = 0.

@ Strong convergence. Assume that there exists a hyperplane IT C ‘H such that
i (2) # 0. Then, there exists a f. € Fix(T) such that lim,—co fr =: fe.

@ Characterization of the limit point. Assume that int(2) # 0. Then, the limit point

f« € clos(liminf Qy,),

n— o0

where lim infr oo Qn = Urr_g Nyom On-
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@ Training Data: The received signals and the sequence of symbols
sent by the Signal Of Interest (SOI).
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@ Training Data: The received signals and the sequence of symbols
sent by the Signal Of Interest (SOI).

@ Constraints: Given erroneous information sy on the actual SOI
steering vector sq (e.g. imperfect array calibration), find a solution
that gives uniform output for all the steering vectors in an area
around S; use a closed ball B[s, J].

4

Robustness is desired!
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 Problem Formulation,

@ Training Data: The received signals and the sequence of symbols
sent by the Signal Of Interest (SOI).

@ Constraints: Given erroneous information sy on the actual SOI
steering vector sq (e.g. imperfect array calibration), find a solution
that gives uniform output for all the steering vectors in an area
around 5p; use a closed ball B[sy, J].

4
Robustness is desired!

@ Antenna Geometry: Only 3 array elements, but with 5 jammers
with SNRs 10, 30, 20, 10, and 30 dB. The SOI's SNR is set equal to
10 dB.
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Concl

A geometric framework for learning in Reproducing Kernel Hilbert
Spaces (RKHS) was presented.
The key ingredients of the framework are

» the basic tool of metric projections,

» the Set Theoretic Estimation approach, where each property of the

system is described by a closed convex set.

Both the online classification and regression tasks were
considered.

The way to encapsulate a-priori constraints as well as
sparsification, in the framework was also depicted.

The framework can be easily extended to any continuous, not
necessarily differentiable, convex cost function, and to any closed
convex a-priori constraint.

A nonlinear online beamforming task was presented in order to
validate the proposed approach.
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