

Computational Microscopy for 3D fluorescence imaging

Laura Waller Ted Van Duzer Associate Professor Electrical Engineering and Computer Sciences UC Berkeley

Traditional imaging systems are boring

Coincidence? bio-mimetic? lack of creativity?

Joint design of hardware and software

Computational imaging pipeline Final result Hardware design Take picture **Crunch Data**

DiffuserCam: tape a diffuser onto a sensor

Traditional cameras take direct measurements

Computational cameras can multiplex

Lenses map points to points

Point Spread Function (PSF)

Mask-based cameras multiplex

M. S. Asif, et al. *ICCVW* (2015) J. Tanida, et al. *Applied optics* (2001) K. Tajima, et al. *ICCP* (2017) D. G. Stork, et al. *Int. J. Adv. Systems and measurements* (2014)

Diffuser indirectly encodes information

Point Spread Function (PSF)

Diffuser indirectly encodes information

Point Spread Function (PSF)

Point spread function shifts with object

DiffuserCam forward model is a convolution

Point Spread Function(s)

2D Photography Forward Model

Point Spread Function

raw sensor data

recovered scene

*solver is ADMM with TV reg in Halide

raw sensor data

recovered scene

*solver is ADMM with TV reg in Halide

raw sensor data

recovered scene

*solver is ADMM with TV reg in Halide

3D is not so easy

Problems:

- Underdetermined
- Calibration 100M images?!?

The PSF changes with depth

3D Forward Model: Sum of Convolutions

Compressed sensing

solves under-determined problems via sparsity prior

Image Reconstruction with Sparsity Prior

High frequencies define resolution

High frequencies define resolution

Experimental resolution sets voxel size

USAF 1951 1X

z = 16.14 mm

EDMUND

USAF 1951 1X

Towards lensless 3D microscopy

3D imaging of brains

with Adesnik Lab

N. Pegard et al, Optica 2016

micro-controller

LEDs pattern illumination angles

Multi-contrast with an LED array microscope

brightfield

darkfield^[1]

[1] G.Zheng, C. Kolner, C. Yang, *Opt. Lett.* (2011).
[2] L. Tian, J. Wang, L. Waller, *Opt. Lett.* (2014).

Phase Computational / imaging

phase imaging *must* be computational

We can only measure intensity $\mathbf{y} = |\mathbf{A}\mathbf{x}|^2$

Differential Phase Contrast (DPC)

Kachar, Science 227, 27 (1985). Ford, Chu, Mertz, Nat. Methods 9, 1195 (2012). Mehta, Sheppard, Opt. Lett. 34, 1924 (2009). Tian, Waller, *Opt. Express* 23(9), 11394-11403 (2015).

Real-time phase in vitro

10 Hz, NA 0.8

Gigapixel imaging for disease screening

Our version of: G.Zheng, R. Horstmeyer, C. Yang, Nat. Photon. (2013). L.Tian, X.Li, K.Ramchandran, L. Waller, Biomed. Opt. Express (2014).

26k x 22k pixels

Gigapixel imaging by Fourier Ptychography

Darkfield images give super-resolution

Darkfield images give super-resolution

But we have *intensity- only* measurements?

Inverse problem uses nonlinear optimization

2nd order optimization is better

Li-Hao Yeh

L. Yeh, Dong, Zhong, Tian, Chen, Tang, Soltanolkotabi, Waller, Opt. Express (2015)

Algorithmic self-calibration

not calibrated

calibrated

 $\begin{array}{c} \text{calibration} \\ \text{parameters} \\ \downarrow \\ A \rightarrow A \left(\textbf{0} \right) \end{array}$

Algorithmic self-calibration

Redundancy is necessary, but inefficient...

requires **~10x** more data collected than reconstructed

Multiplexed measurements are faster

Multiplexing reduces time and data size

low resolution zoom-in

Original method 293 images, Time ~10min

Multiplexing 40 images, Time 0.4s

Only uses 17% of data!

Space-bandwidth-time product

Angle scanning gives 3D information

LED array

 $\begin{array}{c} \text{scan illumination} \\ \text{in } (\theta_{\text{x}}, \theta_{\text{y}}) \end{array}$

OR?AND?

vary illumination angle

Can we super-resolution and 3D?

L. Tian, L. Waller, Optica (2015).

3D phase imaging as a neural network

Nonlinear, nonconvex... so will it converge?

Van Roey, van der Donk, Lagasse, J. Opt. Soc. Am.(1981) Cowley, Moodie, Acta Crystallogr. (1957). Maiden, Humphry, Rodenburg, J. Opt. Soc. Am. A (2012). Tian, Waller, Optica (2015) Van den Broek, Koch, Phys. Rev. Lett. (2012) Van den Broek, Koch, Phys. Rev. B (2013) Kamilov, Papadopoulos..., Psaltis, Optica (2015) Waller, Tian, Nature (2015).

Analogy to Artificial Neural Networks

3D refractive index measurement

All together: phase + darkfield + fluorescence

20x / 0.5NA | Mouse Kidney Cells |Courtesy of Marine Biology Lab (Woods Hole)

Open-source hardware + software

Computational CellScope Computational CellScope Brightfield Darkfield DPC DPC Left/Right DPC Top/Bottom

Quasi-dome

ScotchTape Cam

www.laurawaller.com/opensource

Outlook

Hardware Toolbox

Computational Toolbox

Computers + Optics should talk more!

<u>Collaborators</u>: Hillel Adesnik (Neuro) Ben Recht, Ren Ng (EECS) David Schaffer, Lydia Sohn, Dan Fletcher (BioE) GigaPan: WallerLab_Berkeley Open-source : www.laurawaller.com Twitter: @optrickster Github: Waller_Lab

