NEW IMMERSIVE AND OBJECT-BASED MULTI-CHANNEL AUDIO FORMATS FOR CINEMA, ENTERTAINMENT AND CINEMATIC VR

Jean-Marc Jot Xperi Corp. / DTS

April 2017

Signal Processing Society

IN THIS HOUR...

Commercial entertainment experiences can now include high-resolution video presentation covering the full visual field (angular + depth).

Recent developments in cinema and Blu-Ray: audio with height.

What are suitable formats and workflows for immersive audio? ... and what about audio-only immersive experiences?

A turning point – immersive *media*

Audio and video scenes no longer spatially "disjoint", but "congruent" Movies, live performance, user-generated content, VR...

... a new era in media experience expectation.

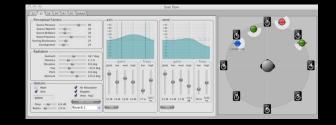
IN THIS HOUR...

Early developments

Immersive audio creation, encoding and rendering Approaches to format-agnostic audio

New formats for immersive linear audio

Creation, workflow, cinema Distribution, broadcast, streaming


Cinematic VR

Binaural 3D audio and Ambisonic techniques – the return!

Pending issues, perspectives

Q&A

XPERI @dts

IMMERSIVE AUDIO

Non-linear – *interactive* | *computer generated*

Video games | simulation | interactive VR

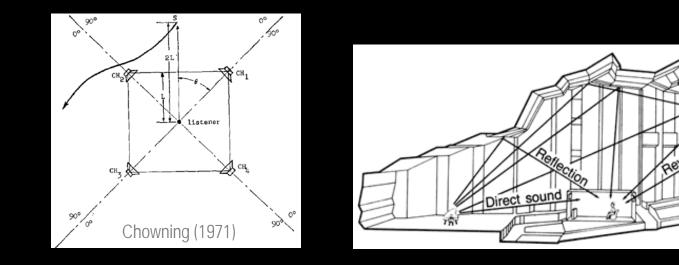
Live performance: music | multimedia | dance | theater | DJ

Also... creation (mixing) of *linear* content...

Linear – scripted | recorded

Recording: music | radio drama | movie soundtrack | cinematic VR Content creation: computer-assisted mixing + automation

Also... live recording of non-linear content production or performance

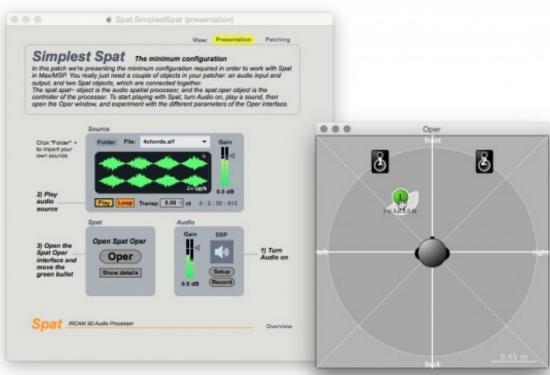


NON-LINEAR OBJECT-BASED IMMERSIVE AUDIO

Workflow based on game authoring/rendering technology (late 90's – now)

Origins: computer music, concert hall acoustics research (since 70's)

Recent progress accelerated by rebirth of VR technology supported by progress in computing hardware performance.


scoringfilm n

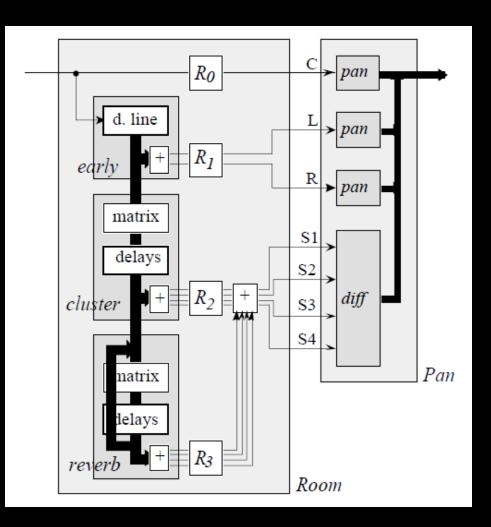
Beginnings...

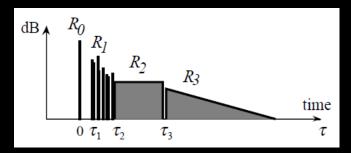
Telecom ParisFDN (Feedback Delay Network) artificial1989-1992reverberation.

IRCAMSpat – room acoustics and1993-1998spatial audio for computer music.

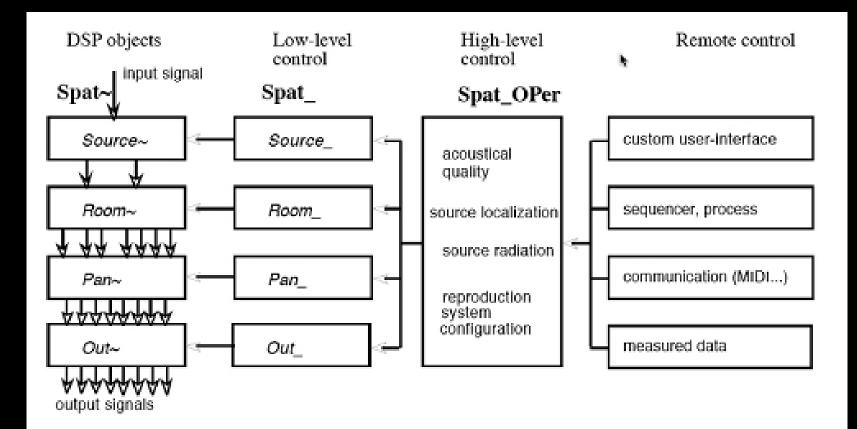
FLUX:: IRCAM Spat (2010)

www.fluxhome.com/products/plug_ins/ircam_spat-v3 | forumnet.ircam.fr/product/spat/


FLUX:: IRCAM Spat v3 – demo


www.youtube.com/watch?v=XPLSrY4xLRw

... controlling reverberation & source parameters: Distance / proximity, Yaw (orientation), Aperture (directivity)


Spat – generic per-source processing architecture

Directional early reflections Diffuse reverberation Per-source perceptual controls Format agnostic representation Library of "Pan" modules Extensible: immersion with height.

Spat – generic per-source processing architecture

FLUX:: IRCAM Spat Revolution (2017)

http://www.spatrevolution.com/

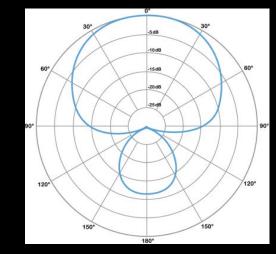
DIRECTIONAL AUDIO ENCODING AND RENDERING

Designing the elementary "pan" module

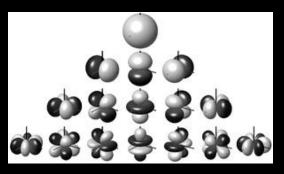
Recording vs. "panning"

Common framework: pan law ⇔ microphone directivity Criteria. Re-recording principle. Psychoacoustics.

Binaural reproduction – microphones = ears


Dummy head. BRIR, HRTF measurements. Head-tracking. Cross-talk cancellation. Performance limitations, challenges (more later re. VR audio). Cognitive factors!

Ambisonics – microphones = spherical harmonics (or linear combinations thereof)


First-order Ambisonics (FOA) - 4 channels

- LF and HF decoder solutions
- Gerzon localization vectors
- Global interpolation over all speakers.
- High-order Ambisonics (HOA) more channels: 9, 16...

Linearly extend sweet spot size vs. order/frequency ratio.

DIRECTIONAL AUDIO ENCODING AND RENDERING

Designing the elementary "pan" module

Amplitude panning – optimizing localization "discreteness"

Local interpolation: panning weights given by centroid of nearest speaker localization vectors. Egocentric: e.g. "vector based" (VBAP, VBIP)

Allocentric: e.g. "distance based" (DBAP)

Holography – pressure field reconstruction over extended area Wave-field synthesis (WFS), delay-based panning Direction vs. localization, audio vs. visual Theoretical equivalence with HOA for increasing order.

Challenges (for "surround" or "immersive" audio)...

No "one-size-fits-all" solution for consistent experience in all listening conditions => select the most effective rendering technique for given conditions Rendering near-field or spatially extended sounds (incl. reverb) Listening system calibration, device or room effect compensation.

channel 3 virtual source channel 1 channel 1 channel 1

EEE Signal Processing Society

Off to the US...

Creative Ltd. 1998-2008

MPEG-4, EAX, OpenAL environmental audio for games. Spatial audio "post-processing".

DTS Inc.

DTS:X, Headphone:X consumer audio technology. Immersive multi-channel audio

Signal Processing Society

TWENTY YEARS OF IMMERSIVE AUDIO PROCESSING FOR GAMES/VR

	Panning HRTF	Occlusion Obstruction Air absorption						
	Directivity Distance Doppler	Reverb "zones"		Multiple	_ Own-voice		Physics-based rendering	
		Dynamic reflections	Reverb "morphing"	reverbs, aux. FX	s, reverb		Increasing	
1995		2000		2005		2010	com	olexity!
P	C "HW accelera	tion"	Game Cons	sole	Mobi	le		VR
	VRML2	MPEG-4						NVidia
	I3DL1	I3DL2	OpenAL		OpenAL EFX	VisiSa	AMD VisiSonics Two Big Ears → Faceb Impulsonic → Valve	
	DirectX	Unreal	XAudio		Wwise			
	A3D1	A3D2 (Aureal,) FMOE)	Unity			
	EAX1 (Creative	e) EAX2	EAX3	EAX4	EAX5			

APPROACHES TO FORMAT-AGNOSTIC AUDIO

Interactive object-based audio

MPEG-4 AABIFS, WFS. EU LISTEN project...

IRCAM, Iosono, Sonic Emotion, Astro Spatial Audio...

Game audio – EAX, OpenAL EFX (similar to Spat except in room effect control model) Approach ok for non-linear, but not best for ubiquitous linear media content

Frequency-domain format conversion, parametric approaches

Examples: DirAC (Directional Audio Coding), SASC (Spatial Audio Scene Coding) General approach: direct-diffuse decomposition, localization vectors Why frequency domain: sparsity of representation, analogy with human hearing model

Metadata-assisted unmixing / informed source separation

MPEG SAOC (Spatial Audio Object Coding) Informed Source Separation.

LINEAR IMMERSIVE AUDIO

Real-time rendering implies trade-off on fidelity.

Linear content production allows offline rendering => more MIPS per frame ... for both image and sound (e.g. computer generated animation or video).

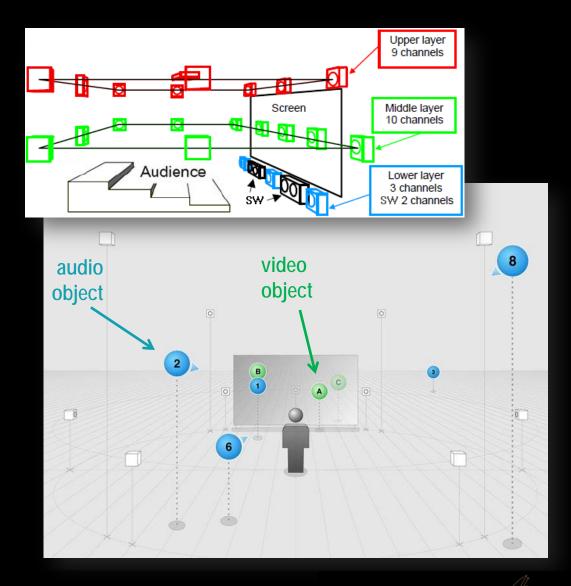
For linear immersive audio content archiving and presentation, we need...

Multi-channel recording format that faithfully encodes spatial audio cues ... but agnostic to loudspeaker configuration in the theater;

Efficient delivery + faithful rendering in consumer environments ... flexible for playback in home, mobile, headphone, automotive scenarios.

Create Once, Play Everywhere.

FROM SURROUND TO IMMERSIVE AUDIO FORMATS

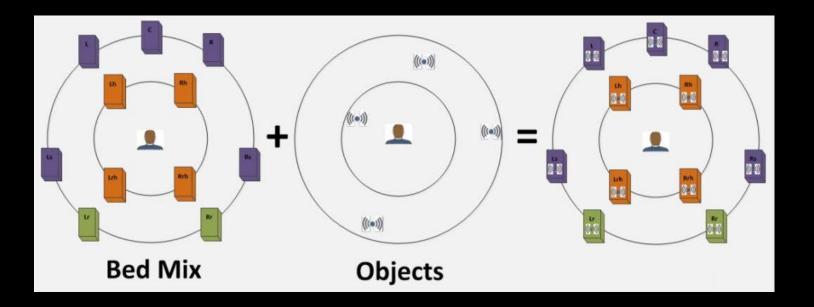

Channel-based / scene-based *fixed* audio formats

Add discrete "height" channels High-order Ambisonics (HOA) ... "Baked" audio mix.

Object-Based Audio – the return!

Audio essence tracks "rendered" into mix at playback time

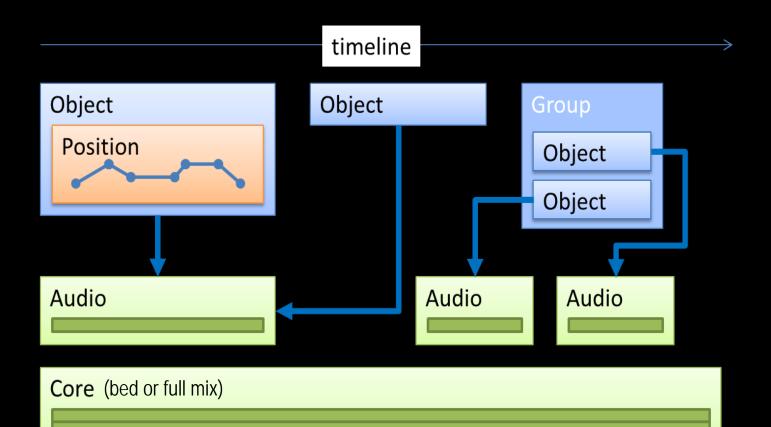
Scene description metadata agnostic to playback configuration Compromise-free object rendering Audio/video spatial congruence.



Signal Processing Society

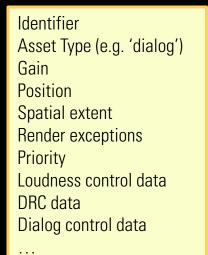
OBJECT-BASED SCENE DESCRIPTION

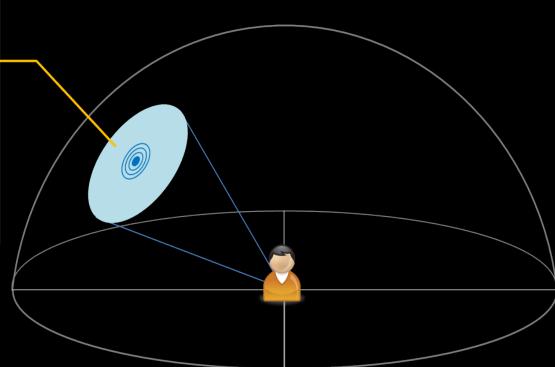
Production / theatrical: Auro, Atmos, MDA



OBJECT-BASED SCENE DESCRIPTION

Delivery / disks, downloads, broadcast, streaming: DTS:X/MDA, Dolby AC4/Atmos, MPEG-H/ADM





AUDIO OBJECT PROPERTIES – "moving virtual loudspeaker"

Note: reverberation is encoded in the bed mix

MDA CREATOR IN PRO TOOLS

MDA TOOLS FOR OBJECT-BASED, IMMERSIVE AUDIO CONTENT CREATION

Suite of software tools for object based, immersive content production

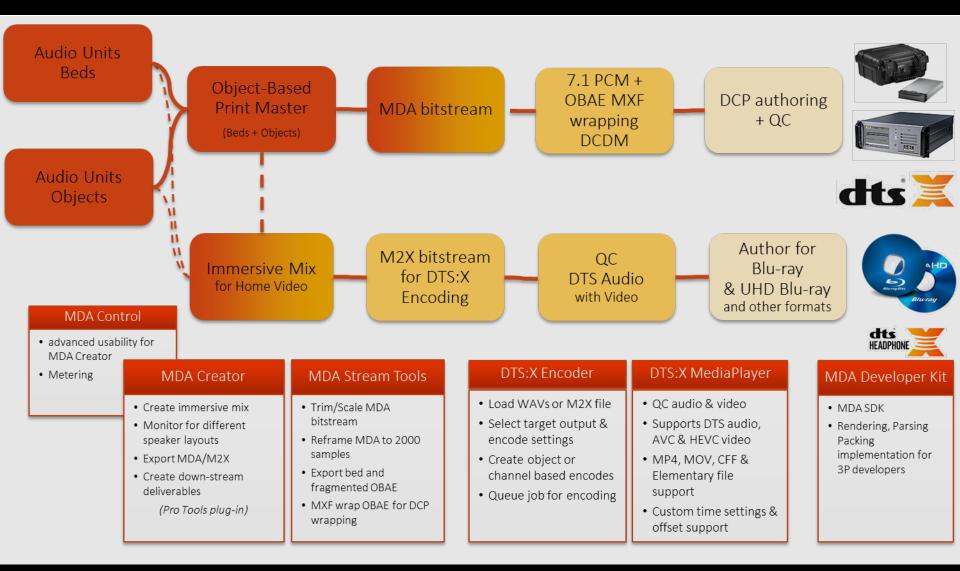
Easy integration into existing production workflows and professional environments

Efficient and flexible solution for today's professional content production needs

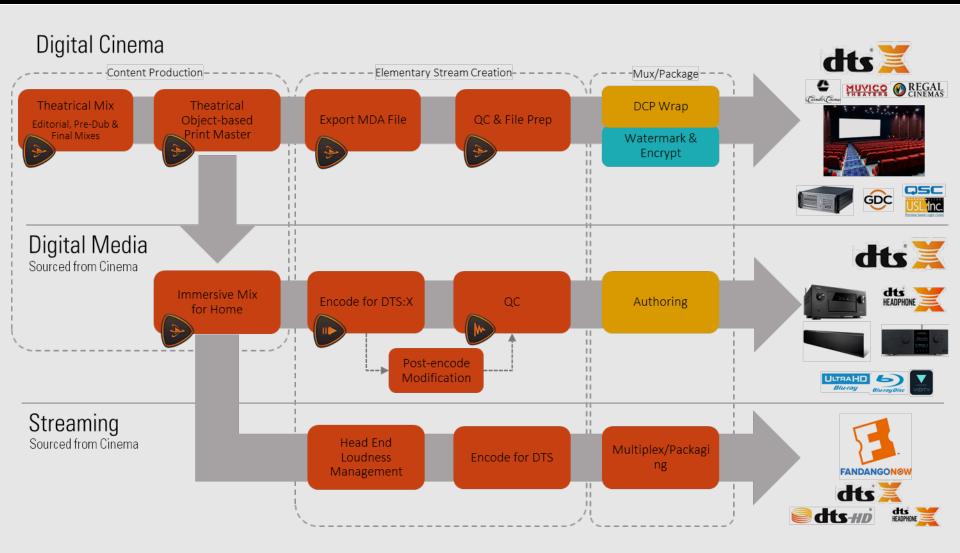
Support for a vast variety of immersive speaker layouts

No dedicated rendering hardware required

Full DTS:X ecosystem feature support (Object preservation, Interactive Dialog Control)


DTS HEADPHONE:X MONITOR FOR MDA CREATION

0.0		0.0	
Track Preset Auto 7.1 Out Saturation DTSHeadphone:XHomVd + COMPARE SAFE Native	(Track Preset Auto Height Quad Out DTSHeadphone:XHomVd - + To COMPARE SAFE	Ð
ROOM PROFILE	SURROUND CONFIG	ROOM PROFILE	SURROUND CONFIG
7.1 Standard - NEAR	7.1	4.0 Height Standard - NEAR	4.0 High
	READPHONE TO A	Lhr Rhr Lh Rh	HELAPHONE MONITOR HOME VIDED
Lss C R Rss LFE O	CALL OUT		CALL OUT
SPEAKER CHANNELS		SPEAKER CHANNELS	
OUTPUT		OUTPUT	
Active Output Hoadphone EQ Surround Headphone:X Sennheiser HD650	Cantar Direct To L / A	Active Output Headphone EQ Surround Headphone:X Sennheiser HD650 \$	
Input Format: 7.1	Ē	Input Format: Quad	


DTS:X CONTENT CREATION SOLUTIONS

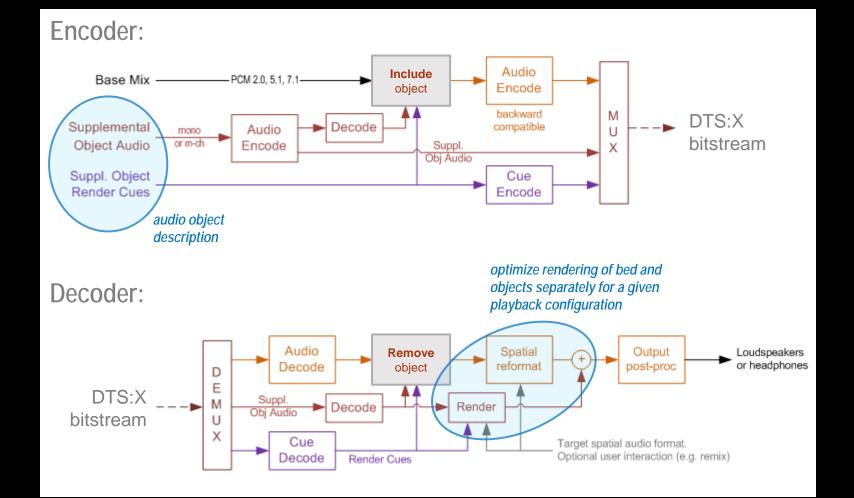
DTS:X CONTENT CREATION SOLUTIONS

WORLDWIDE ADOPTION - DTS:X & MDA TECHNOLOGY

Future-proof content mezzanine / archiving format Published standard specs: ETSI TS 103 223, ... Royalty-free in professional content industry

ignal Processing Society

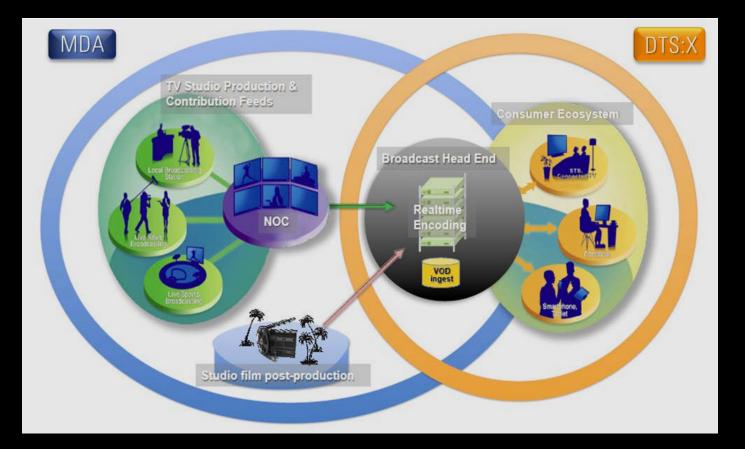
Worldwide deployment in authoring facilities, theaters and homes (as of Nov 2016)



More than 50 international titles released

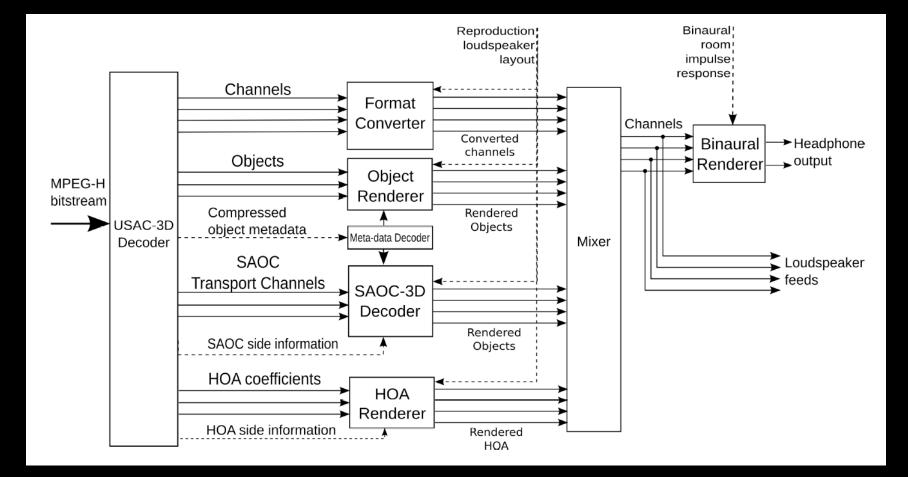
XPERI @dts

LEGACY DECODER COMPATIBILITY

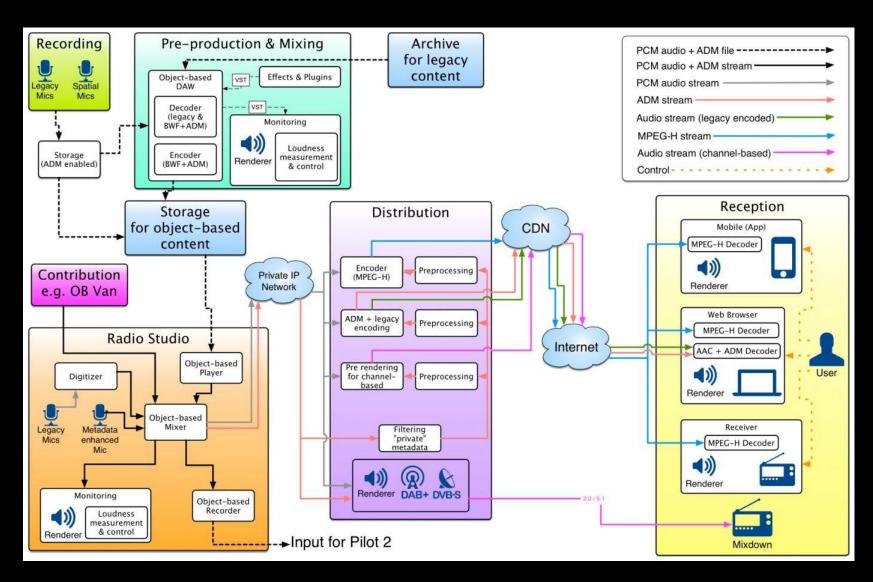


NEXT...

More theaters, homes, film & Blu-ray releases... Broadcast, streaming. Mobile devices. Virtual reality.


SCALABILITY FROM LOW BIT RATE TO LOSSLESS

Channel	Bitrates [kbps]	Bitrates [kbps]		
Channels	(Operational Range)	(Nominal range for broadcast quality)		
Mono	24 - Lossless	48 - 64		
Stereo	32 - Lossless	80 - 128		
5.1	80 - Lossless	224 - 300		
7.1	128 - Lossless	256 - 340		
11.1	192 - Lossless	288 - 384		
22.2	320 - Lossless	512 - 640		



MPEG-H DECODER

ORPHEUS – OBJECT-BASED AUDIO EXPERIENCE

https://orpheus-audio.eu/

CONSUMER EXPERIENCE

... as enabled by object-based audio

Immersion

Elevation effects, realistic diffuse sounds/ambiences Enable optimal spatial audio fidelity

Flexibility

Mobile, Home, Car... Non-standard loudspeaker layouts Ease of setup

Personalization

Dialog intelligibility enhancement Dynamics Control Ability to "change the mix"

... to the extent permitted by author

DTS:X PRACTICAL REPRODUCTION AT HOME

DTS:X PRACTICAL REPRODUCTION AT HOME

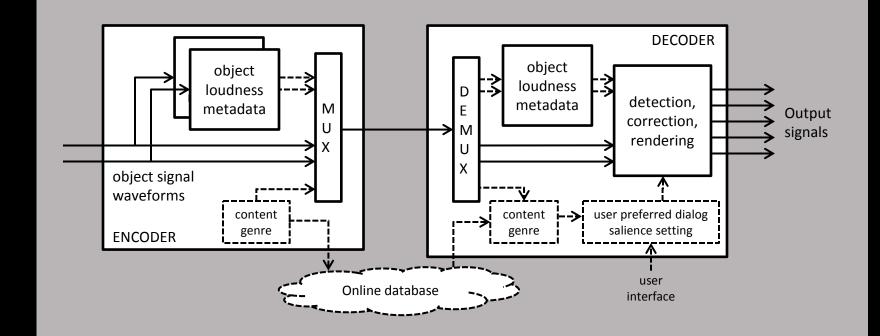
DTS:X PRACTICAL REPRODUCTION AT HOME

DTS:X PRACTICAL REPRODUCTION AT HOME - DTS VIRTUAL:X

How can virtual elevation cues work although they are (primarily) monaural? ... suggesting research on dynamic and differential elevation cues.

DTS:X PRACTICAL REPRODUCTION AT HOME - DTS VIRTUAL:X

How can virtual elevation cues work although they are (primarily) monaural? ... suggesting research on dynamic and differential elevation cues.



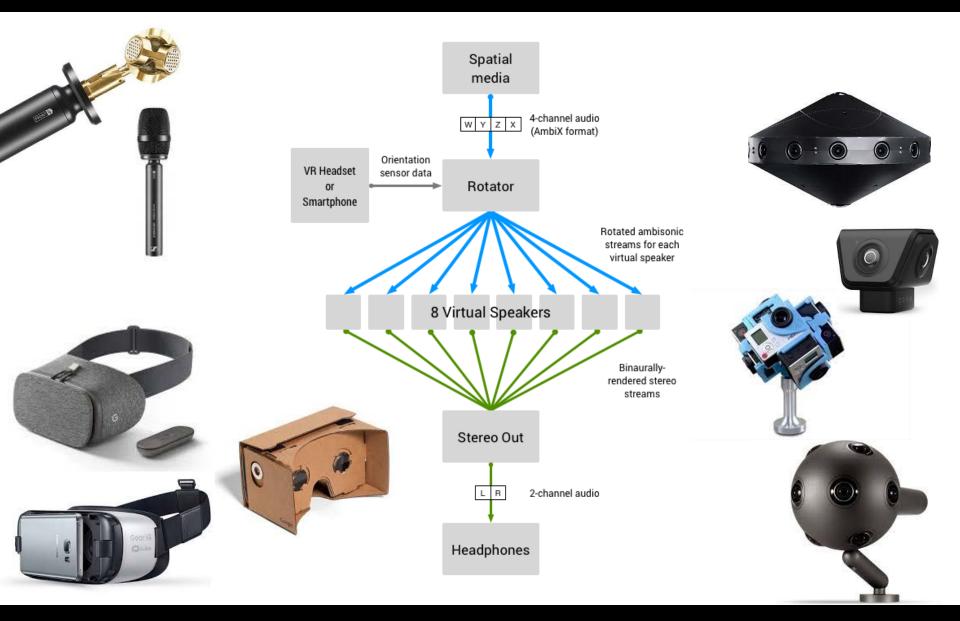
OBJECT-BASED DIALOG CONTROL

Encode: include loudness metadata

Global programme loudness, global dialog loudness/salience measures

Optionally, short-term dialog loudness/salience measure sequence.

CINEMATIC VR AUDIO — demo


vvvvv.youtube.com/watch?v=9RamLHvdfms

Amp Fiddler - "Fiddler on tha Roof" - Output, Brooklyn - 6/24/16 - 360° video with spatial audio

Amp Fiddler - "Fiddler on tha Roof" - Output, Brooklyn - 6/24/16 - 360° video with spatial audio

CINEMATIC VR AUDIO — Ambisonics and HRTF-based virtualization

CINEMATIC VR AUDIO — Ambisonics and HRTF-based virtualization

Principles

Chris Travis 1996 AES paper "Virtual Reality Perspective on Headphone Audio" Head-tracking at decode (for *diegetic* sounds) Any source format compatible in principle by dynamic speaker virtualization

Current prevalent internet streaming formats

Google: Opus low-bit-rate codec + Ambisonics (1st order, 3rd order) Facebook

Perspectives

Limitation of Ambisonic rendering: frequency vs. order for size of head (ear positions) Extension to 6D0F: Ambisonic bed + separate objects...

MORE PERSPECTIVES ...

Natural-sounding audio scenes accompanying our experience of the environment

Teleporting into another (virtual) world – "you are there" experience.

With or without image. Linear or non-linear.

Success: effortless to tune into virtual scene + tune out real world (by occluding it, for instance)

What next? - Extending our physical world!

AR (non-diegetic sounds). MR (diegetic sounds).

MR in a dark/silent room is equivalent to interactive VR.

Success: minimize "cognitive effort": listening/visual fatigue, attention conflict

Examples: telepresence, situational awareness (navigation, alerts...)

MORE PERSPECTIVES ...

Technological implications

Blurring distinctions between currently disparate media applications/industries Music, movies, games, communication, performance, collaboration, travel...

Critical role of immersive audio technology: spatial congruence, naturalness Minimize cognitive effort

Evolve the notion of audio object in immersive audio formats

Today: producer/broadcaster engineering perspective

- Future: neuroscientist/composer perspective
- Psychoacoustic notion of "sound event," "audio stream," "audio emitter"

Some previous attempts: IRCAM Spat. EAX, OpenAL...

