
First-Photon Imaging and
Other Imaging with Few Photons

Vivek K Goyal

Boston University

Electrical and Computer Engineering

Modeling at the right scale

Inverse-problem mentality >> denoising mentality



Reflectivity and depth from 1 detected photon per pixel
Half from active source, half from background light and dark counts

Key idea:  Image formation 
that integrates physical 
modeling of acquisition and 
scene modeling can provide 
dramatic improvements

• A. Kirmani, D. Venkatraman, 
D. Shin, A. Colaço, F. N. C. Wong,
J. H. Shapiro, and V. K. Goyal, 
“First-photon imaging,” Science, 
343(6166):58-61, 2014



Photon-efficient depth+reflectivity imaging:  Variations
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In prep:  fluorescence lifetime imaging, transverse  super-resolution, unambiguous range extension



Time-of-flight depth 

imaging
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pulsed

light source

time-resolved 

sensor

Conventional active optical 

depth imaging

time of flight

Pixelwise measurement

• distance



pulsed

light source

time-resolved 

sensor

Conventional active optical 

depth imaging

time of flight

background

Pixelwise measurement

• distance

• ambient light



pulsed

light source

time-resolved 

sensor

Conventional active optical 

depth imaging

time of flight

background

reflectivity (relative)

Pixelwise measurement

• distance

• ambient light

• reflectivity
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time
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Conventional active optical depth

imaging

0

1

reflectivity 
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time-resolved 
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Photon-efficient 

implementation



Detector sensitive to individual photons

• Micro Photon Devices single-photon avalanche diode: 

35% quantum efficiency, 100 mm x 100 mm

Finite-resolution time tagging

• PicoQuant HydraHarp time-correlated single-photon 

counting module:  8 ps

Histogram as proxy for waveform

A

B counts

time

B

A

B

counts

time

A

pixel index

A

B

counts

A:  brighter, nearer

B:  darker, farther



Classical

noise models



Detector noise models for optical imaging systems
(ground truth)

no. of photons

pixel index

A

B

A

B
photon

flux
time

A
B

A

B



>≈104 detected photons/pixel               [no background]

pixel index

A

B

A

B
photon

flux

A
B
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B

no. of photons
time

error in photon count

≈ Gaussian

error in ML depth est.

≈ Gaussian



pixel index

A

B

A

B
photon

flux

A
B

A

B

no. of photons
time

<≈104 detected photons/pixel               [no background]

photon count

= Poisson r.v.

error in ML depth est.

≈ Gaussian



≈1 photon/pixel

(half signal, half noise …)



Depth imaging of

two scenes
(few photons per pixel)

1.2 ppp 2.1 ppp



Imaging from only 

first photon 

detection



Conventional image formation
(one detected photon/pixel)

pixel index

A

A

B
photon

flux

A
B

A

B

[no background]

no. of photons
time1 1

B

Featureless image var(tij) ∝ mean-square pulse width



Conventional image formation with background noise
(one detected photon/pixel)

pixel index

A

B
photon

flux

A

A

B
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time1 1
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Quantum nature of 

photon detection



raster-scanned,

pulsed light source 

illuminates patch (i,j)



raster-scanned,

pulsed light source

single-photon 

avalanche

detector 

(SPAD)



SPAD

𝑡

0

illumination 

waveform

𝜆𝑖𝑗 𝑡

time
0

𝛼𝑖𝑗

2𝑍𝑖𝑗

𝑐 scene responseBackscattered signal photons 

detections are arrivals in an 

inhomogeneous Poisson process
[Saleh et al.]

Poisson photo-detection statistics
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time
0

𝑏𝜆

𝛼𝑖𝑗

2𝑍𝑖𝑗

𝑐 scene response

background

Background and dark count 

detections are arrivals in a

homogeneous Poisson process

Poisson photo-detection statistics



SPAD

𝑡

0

illumination 

waveform

𝜆𝑖𝑗 𝑡

0

𝑏𝜆

𝛼𝑖𝑗

2𝑍𝑖𝑗

𝑐 scene response

background

total response

Photon detections are arrivals 

in a merged Poisson process

Poisson photo-detection statistics



Low-light level photo-detection

SPAD

𝑡

0

𝜆𝑖𝑗 𝑡

0

total response

Not every incident

light pulse generates

a photon detection

𝑇𝑟

𝑇𝑟
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Low-light level photo-detection
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Low-light level photo-detection
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SPAD

𝑡

0
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0
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𝑇𝑟 2𝑇𝑟
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background
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photon 

detected!

Low-light level photo-detection



Reinterpret what 

was observed



SPAD

𝑡

0

𝜆𝑖𝑗 𝑡

0

𝑇𝑟

𝑇𝑟 2𝑇𝑟

𝑛𝑖𝑗 = number of pulses transmitted  

before first photon detection

𝑡𝑖𝑗 = detection time relative to time

of last pulse emission

Two key random 

variables

Pulse until one detection

𝑛𝑖𝑗 encodes reflectivity 𝛼𝑖𝑗
via geometric distribution

𝑡𝑖𝑗 encodes depth 𝑧𝑖𝑗
via normalized pulse shape 

distribution

Roles of these variables



SPAD

𝑡

0

𝜆𝑖𝑗 𝑡

0

𝑇𝑟

𝑇𝑟 2𝑇𝑟

𝑘𝑖𝑗 = number of photon detections

𝑡𝑖𝑗1, 𝑡𝑖𝑗2, … , 𝑡𝑖𝑗𝑘
𝑖𝑗
= detection

times relative to times of last

pulse emission

Key random variables

Aside:  Fixed number of pulses

𝑘𝑖𝑗 encodes reflectivity 𝛼𝑖𝑗
via binomial distribution

𝑡𝑖𝑗𝑘’s encode depth 𝑧𝑖𝑗
via normalized pulse shape 

distribution

Roles of these variables



𝑓𝑡𝑖𝑗 𝜏 | detected signal photon ; 𝑧𝑖𝑗 ∝ 𝑠 𝜏 − 2𝑧𝑖𝑗/𝑐Pr[𝑛𝑖𝑗 = 𝑘; 𝛼𝑖𝑗] = 𝑒
−(𝛼𝑖𝑗+𝑏𝜆)𝑇(𝑘−1) 1 − 𝑒−(𝛼𝑖𝑗+𝑏𝜆)𝑇

Pr background photon detection =
𝑏𝜆
𝛼𝑖𝑗 + 𝑏𝜆

= 1 − Pr signal photon detection

In our experiment Pr background photon detection = 0.5

Pr[no photodetection in one period ] = 𝑒−(𝛼𝑖𝑗+𝑏𝜆)𝑇

Quantitative acquisition modeling

𝑓𝑡𝑖𝑗 𝜏 | detected background photon ; 𝑧𝑖𝑗 =
1

𝑇𝑟



Raster scanning is used to collect first-photon 

data for each image pixel

0 𝑇𝑟 2𝑇𝑟



< 25

> 500

Number of pulses transmitted  

before first photon detection

First-photon reflectivity data



< 25

> 500

Number of pulses transmitted  

before first photon detection

< 10 

ns

> 20 

ns

First-photon detection time 

relative to last transmitted pulse

First-photon time-of-flight dataFirst-photon reflectivity data



Pointwise

estimation





Novel image 

formation 



Combining first-photon physics 

with spatial correlations



Combining first-photon physics 

with spatial correlations

Image formation method

Step 2: Censor background noise photons using 

ROAD filtering

Step 1: Estimate reflectivity from elapsed 

pulse data 

Step 3: Estimate depth from uncensored 

time-of-arrival data 



Step 1:  Reflectivity estimation using 

regularized maximum likelihood estimation

Pr[𝑛𝑖𝑗 = 𝑘; 𝛼𝑖𝑗] = 𝑒
−(𝛼𝑖𝑗+𝑏𝜆)𝑇(𝑘−1) 1 − 𝑒−(𝛼𝑖𝑗+𝑏𝜆)𝑇

argmin
𝐴 = 𝛼11…𝛼𝑁𝑁

 

𝑖

 

𝑗

− log Pr[𝑛𝑖𝑗; 𝑎𝑖𝑗] + 𝛽 ∥ Φ𝛼 𝐴 ∥1

data likelihood

regularized ML

estimation

parameter

data fidelity term analysis with 

sparsity-promoting 

basis (wavelet)





Combining first-photon physics 

with spatial correlations

Image reconstruction method

Step 2: Censor background noise photons using 

ROAD filtering

Step 1: Estimate reflectivity from elapsed 

pulse data 

Step 3: Estimate depth from uncensored 

time-of-arrival data 



Step 2:  Background photon censoring

data likelihood

rank-ordered 

absolute 

difference 

(ROAD)-based 

test

𝑓𝑡𝑖𝑗 𝜏 | detected signal photon ; 𝑧𝑖𝑗 ∝ 𝑠 𝜏 − 2𝑧𝑖𝑗/𝑐

𝑓𝑡𝑖𝑗 𝜏 | detected ambient photon ; 𝑧𝑖𝑗 =
1

𝑇𝑟

𝒕𝒊𝒋

𝒕𝟏 𝒕𝟐 𝒕𝟑

𝒕𝟒 𝒕𝟓

𝒕𝟔 𝒕𝟕 𝒕𝟖

|𝑡𝑖𝑗 − 𝑡1|

|𝑡𝑖𝑗 − 𝑡2|

|𝑡𝑖𝑗 − 𝑡8|

|𝑡𝑖𝑗 − 𝑡3|

|𝑡𝑖𝑗 − 𝑡4|

⋮
⋮

= ROAD𝑖𝑗

Pr background photon detection =
𝑏𝜆
𝛼𝑖𝑗 + 𝑏𝜆



Step 2:  Background photon censoring

ROAD filtering

𝒕𝒊𝒋

𝒕𝟏 𝒕𝟐 𝒕𝟑

𝒕𝟒 𝒕𝟓

𝒕𝟔 𝒕𝟕 𝒕𝟖

|𝑡𝑖𝑗 − 𝑡1|

|𝑡𝑖𝑗 − 𝑡2|

|𝑡𝑖𝑗 − 𝑡8|

|𝑡𝑖𝑗 − 𝑡3|

|𝑡𝑖𝑗 − 𝑡4|

⋮
⋮

= ROAD𝑖𝑗

𝑏𝜆
𝛼𝑖𝑗 + 𝑏𝜆

RMS pulse-width

estimated reflectivity

background level





Combining first-photon physics 

with spatial correlations

Image reconstruction method

Step 2: Censor background noise photons using 

ROAD filtering

Step 1: Estimate reflectivity from elapsed 

pulse data 

Step 3: Estimate depth from uncensored 

time-of-arrival data 



Step 3:  Depth estimation using regularized 

maximum likelihood estimation

argmin
𝐷 = 𝑑𝑖𝑗

 − log 𝑓𝑡𝑖𝑗 𝜏 | signal ; 𝑑𝑖𝑗 + 𝛽 ∥ Φ𝛼 𝐷 ∥1

data likelihood

regularized ML

estimation

parameter

data fidelity term

at uncensored pixels

sparsity promoting 

bases (wavelets)

𝑓𝑡𝑖𝑗 𝜏 | detected signal photon ; 𝑧𝑖𝑗 ∝ 𝑠 𝜏 − 2𝑧𝑖𝑗/𝑐

𝑢𝑛𝑐𝑒𝑛𝑠𝑜𝑟𝑒𝑑
𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠

 





Conventional pixelwise
maximum likelihood estimates

First-photon imaging



Experiments

and 

evaluation



Experimental setup

optical filter

2 nm bw, 49%

Geiger-mode APD

(100 mm)2, 35%

scanning

galvo

pulsed light source

scene

≈ 2 m

control and 

processing

sync and timing 

correlator

PicoQuant HydraHarp

8 ps resolution

incandescent 

lamp

640 nm laser diode

226 ps RMS duration

10 MHz repetition rate

0.6 mW average power



laser

from scene

to HydraHarp

to scene

SPAD

galvo

to sync

Experimental setup



Limitations

• High error at lateral surfaces, edges, and corners

• High optical flux (almost every pulse leads to detection)
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In prep:  fluorescence lifetime imaging, transverse  super-resolution, unambiguous range extension



• Parallelizable

(detector array)

• For low photon

count on average,

many pixels have

0 detections

• Performance can

be even better

than FPI

Related work with fixed dwell time
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In prep:  fluorescence lifetime imaging, transverse  super-resolution, unambiguous range extension



• Exploit union-of-subspaces model for each pixel separately

• CoSaMP-inspired efficient algorithm

• Compared to log-matched filter, MAE reduction factor of 6
using 15 photons per pixel

Unknown background and

no transverse regularization
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In prep:  fluorescence lifetime imaging, transverse  super-resolution, unambiguous range extension



• Exploit longitudinal sparsity for each pixel separately

• ISTA-inspired efficient algorithm for convex relaxation of problem

• Compare to mixture of Gaussians fit with EM (shown at 19 ppp)

Multiple depths per pixel and

no transverse regularization
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In prep:  fluorescence lifetime imaging, transverse  super-resolution, unambiguous range extension



• Much coarser time resolution, hot pixels

• Developed improved noise censoring, longitudinal super-resolution

• RMS error at one-third RMS pulse width with 1 signal photon/pixel 

Mitigate challenges of SPAD array

Pixelwise ML Pseudo-array Proposed Truth

Frontal

view

Depth

error

maps



First-Photon Imaging and

Other Imaging with Few Photons

Image formation that 
integrates physical 
modeling of acquisition 
and scene modeling can 
provide dramatic 
improvements

Model at the right scale

Apply an inverse 
problem mentality



First-Photon Imaging and

Other Imaging with Few Photons


