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The brain: networks of neurons

3D, Harvard

1 mm3

~1.5 year, 1 𝑝𝑒𝑡𝑎𝑏𝑦𝑡𝑒 (1015 )

Mouse brain:  

~2000 years, 1 𝑒𝑥𝑎𝑏𝑦𝑡𝑒 (1018)

Human cortex:

~107 years, 10 𝑧𝑒𝑡𝑡𝑎𝑏𝑦𝑡𝑒𝑠 (1021)

World storage: 300 e𝑥𝑎𝑏𝑦𝑡𝑒𝑠

Mouse cerebellum        Lichtman et al. 2008 ~ on January 2015
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Outline

 Neural mapping via multineuron excitation

– Background: Neuroscience

– Optogenetic stimulation

– Estimation via graphical models 

 Network connectivity via Ca2+ imaging

– Large scale but indirect and smoothed

– Network model captures dynamics

– Scalable accurate algorithm

 Receptive Field of Retinal Ganglion Cells

– Spatio-temporal filtering

– Improved identification with limited data



Neuroscience: Estimation Challenges

Stimulus

Visual 

system F(u(t))

 Large-scale

- ~86 billion neurons

- V1 alone 140 million

 Sparse:  ~1000 connections

 Complex:

Nonlinear dynamics

Feedback

 Indirect measurements

 Incomplete data

 Limited in vivo collection



I. Connectivity Detection to a Single Neuron

Problem: 

Detect connections to one neuron

Goal:

Reduce trials and computation

How:

Optogenetics

Improved “decoding” via subset stimulation



Neuron: Basic Anatomy

 Components

– Dendrites:
Filaments receive signals 

– Soma: cell body

– Axon:
Outputs electrical signals to 

neurons or motor functions

– Synapses:
Junctions of axons and dendrites

Neuron:  Basic cell for information processing



Neuron: Linear-Nonlinear Poisson Model

 Functional Model: simple input-output 

– Effectively captures average rates

– Windows:  10 to 200 spikes/s

 Three-stage LNP:  Linear + Nonlinearity + Poisson process

 Connectivity: Identify weights 𝒙

 Biological models with feedback for precise timing later…

𝑧[𝑡] =  
𝑗
𝑥𝑗𝑎𝑗[𝑡]

df

𝜆 𝑡 = 𝑓 𝑧 𝑡 + 𝑑 𝑡
df

𝑦[𝑡] ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛( 𝜆[𝑡])

Spike

count

𝑦[𝑡]

Poisson
spike process

Gaussian

noise 𝑑[𝑡]

Nonlinearity

Inputs:
Spike Rate

⋮

𝑧 𝑡 = 𝒂𝑇[𝑡]𝒙

𝑎1 𝑡

𝑎𝑛 𝑡

Weights 𝒙

𝑎2 𝑡



Classic Connectivity Detection

Stimulate potential pre-synaptic neurons: one at a time

Measure at post-synaptic neuron of interest

 Problems: many measurements per test neuron

– Most neurons are not connected

– Noisy system with many exogenous inputs

– Test neurons die

 Can we do better?



Connectivity Detection:

– Genetically modified neuron

• Photosensitive protein

– Optically activate test neurons

– Greater spatial precision

• Pinpoint individual neurons

• Multiple neurons at once

New Technologies:  Optical Stimulation

Wang, Hasan & Seung 2009



Connectivity via Multineuron Excitation

Spike recording

Average over time windows

Potential presynaptic neurons

Synapses or connections



Strong:

Connections 

Detection via Multineuron Excitation

Spike recording

 Stimulate subsets of neurons at a time

– Increase probability of response

– Fewer wasted trials

Low response

No connection



Connections: 

strong or multiple

Missed connection

Sub-threshold

Detection via Multi-Neuron Stimulation

Low response

No connection?

Spike recording

 Stimulate subsets of neurons at a time

– Increase probability of a response

– Less measurements wholly wasted

 Benefits

– Weak sub-threshold connection

– More reliable with less data Hu & Chklovskii NIPS 2010,

Fletcher et al NIPS 2011



Multi-neuron Excitation: Model

Excited: {2, 7, 9, 13}

“1” entries: {2, 7, 9, 13}

Potential neurons: 1:N

Measurement neuron

Connection 

weights

= 𝑓
𝑁𝑜𝑛𝐿𝑃

+ 

d

Excited

Not excited

jth neuron

1

0

jth element

m



Multi-neuron Excitation: Model

Potential neurons: 1:N

Measurement neuron

Connection 

weights

+ 

d

“1” entries: {3, 6,14,16}

Second trial

Different random subset

Excited

Not excited

jth neuron

= 𝑓
𝑁𝑜𝑛𝐿𝑃 1

0

jth element

Excited: {3, 6, 14, 16}



Multi-neuron Excitation: Model

Potential neurons: 1:N

Measurement neuron

Connection 

weights

𝑓
𝑁𝑜𝑛𝐿𝑃

+ 

d

mth excitation

mth row of A matrix

=

m
m

Excited

Not excited

jth neuron

1

0

jth element

m trials or 

“measurements”



Bayesian Nonlinear Generalized Linear Models

 Problem: Estimate 𝒙 and 𝒛 given 𝒚 and 𝑨

 Bayesian formulation: general system class

– Prior 𝑃𝑋(𝒙) incorporates constraints, like sparsity

– 𝑃𝑌|𝑍(𝒚|𝒛) models output: nonlinearities, randomness

 Challenge: optimal estimation is hard

– Components of vector x are coupled in z

Separable nonlinearity & noise 

Known linear

transform

𝑖𝑖𝑑
𝑝 𝒙

A
Measurement

𝒚

𝑝 𝒚 𝒛 = ∏𝑝(𝑦𝑖|𝑧𝑖)

𝒙 𝒛



Example:  Sparse recovery

 Problem:  Given A and y, recover sparse x

 Many applications

– Communication channels, linear inverse problems

– Wavelet image reconstruction

– Regularized linear regression, classification

– Compressed sensing…

 Now many algorithms, theoretical analyses, …

= +

𝑝 𝒙 = Sparse prior

𝑝(𝒚|𝒛) = Gaussian



Divide & Conquer with Graphical Models

 Subdivide & conquer

 Few “smaller” components

– Few variables

– Limited connections

 Message passing:

– Iteratively update marginals

– Global estimation local

 But random A is dense! ⋯

⋯

𝑝(𝑦1|𝑥1, . . 𝑥𝑟) 𝑝(𝑦𝑚|𝒙)

𝑝(𝑥1) 𝑝(𝑥𝑛)⋯

𝑥1 𝑥𝑛

 𝑝 (𝑥𝑗|𝒚)

𝑝𝑋|𝑌 𝒙 𝒚 =  
𝑗=1

𝑛

𝑝 𝑥𝑗  
𝑖=1

𝑚

𝑝 𝑦𝑖 𝒙



"Graphical Model" for GLM

 Assume separable priors & likelihoods

 The posterior density 𝑝(𝑥|𝑦) factors into:

– 𝑚 + 𝑛 scalar terms; and

– Linear constraint 𝑧 = 𝐴𝑥

A

z=Ax
Separable “output” 

channel e.g. y = z + w

𝑝 𝑦1|𝑧1

𝑝 𝑦2|𝑧2

𝑝 𝑦𝑚|𝑧𝑚

𝑧1

𝑧2

𝑧𝑚

𝑥1

𝑥2

𝑥𝑛

x with indep

components

𝑝 𝑥1

𝑝 𝑥2

𝑝 𝑥𝑛



Generalized Approximate Message Passing (GAMP)

 Gaussian & quadratic approximations

 Asymptotic guarantees 

 Low complexity: 𝑂 𝑚𝑛 each iteration

 Classic AMP*: separable distributions & AWGN

 GAMP: KNOWN nonlinearities 

𝑃𝑋(𝑥)

𝒙
𝑨

𝒛
𝑃𝑌|𝑍(𝑦|𝑧)

𝒚

Scalar (separable)

estimation of z

Multiplication by 𝑨

Multiplication by 𝑨∗

Scalar (separable)

estimation of x

AMP Donoho, Maleki, Montanari 09, Bayati & Montanari 10, 

GAMP Rangan et al 10, HyGAMP Fletcher et al 11, …



Theorem: Joint Estimation & Learning with Adaptive GAMP

 GLM with unknown parameters 𝜃𝑥 and 𝜃𝑧
– Unknown prior, nonlinearities, noise…

 Joint estimation learning problem:  Given 𝑦 and 𝐴:

– Estimate input 𝑥 and 𝑧,

– Learn parameters 𝜃𝑥 and 𝜃𝑧 in distribution

– Consistent estimator

i.i.d. prior

𝑃𝑋(𝑥|𝜃𝑥)

𝜃𝑥

𝒙 ∈ ℝ𝑛

Input

𝑚 𝑥 𝑛

𝑨
𝒛 ∈ ℝ𝑚

Measurement 

channel

𝑃𝑌|𝑍(𝑦|𝑧, 𝜃𝑧)

𝜃𝑧

𝒚 ∈ ℝ𝑚

Observations

Kamilov, Fletcher, Rangan, Unser  NIPS 2012, Trans IT 2014



Neural Mapping via Adaptive-GAMP: NeuRAMP

 Problem:  For neural LNP model:

– Incorporates sparsity on prior 𝑃𝑋(𝒙)

– 𝑃𝑌|𝑍(𝒚|𝒛, 𝜃𝑧 ) models unknown output nonlinearities

A
Unknown input

p(𝑥)

p(𝑦|𝑧, 𝜃𝑧) 

Unknown random nonlinearity

y
z

Spikes

Noise

 Jointly: Estimate weight vector x

Learn the nonlinearity

 Computationally fast

 Improved estimates with fewer measurements
Fletcher et al. NIPS (2011)



Simulation:  MSE of Synaptic Weight Estimates

 RC: Reverse Correlation

– Linear estimation

– No sparsity

 *CoSaMP: Greedy CS

– Ignores nonlinearities

 **Adaptive GAMP:

– Lower MSE

– Fewer measurements

Number of measurements (m)

R
e

la
ti

v
e

 s
q

u
a
re

d
 e

rr
o

r

10%

1%

100%
RC

CoSAMP

Adapt GAMP

m = number of trials, random excitation ~40 

n =  500,   

k =30 or 6%              Bernoulli-Gayssuab weights

100 spike windows: 10.4s

Spike rate: 10 spikes/s  with.4 second reset

300 trials: ~1 hour
*Hu & Chlovskii NIPS 2010 

**Fletcher et al, NIPS 2011

40%



Simulation:  NeuRAMP Connectivity Detection

50% reduction

False alarm rate

M
is

s
e

d
 d

e
te

c
ti
o

n
 r

a
te

 Factors:

– Models nonlinearities

– Optimal learning

– Incorporates sparsity

– Similar complexity

 GAMP outperforms RC & CoSaMP

– 75% and 50% lower missed detects 

“Simultaneous all optical manipulation and recording…”, AM Packer, Dec 2014 Nature

**“Block sparse” filters:    Salamander visual receptive field



Moving forward: Scalable adaptive block

 Generalized Approximate Message Passing (GAMP)

 Improved neural connectivity detection

– Data limited

– Unknown nonlinearities, sparsity levels

 Scalable adaptive GAMP block

– Linear mixing blocks

– Low complexity: scalable

– Extensible

– Rich input output models

– Adaptive



Outline

 Connectivity via multineuronal stimulation

– Iterative fast adaptive GAMP framework

 Network connectivity via Ca2+ imaging

– Large scale in vivo layers

– Remarkable spatial resolution

– Indirect, temporally smoothed

– Network model - captures dynamics

– Scalable accurate EM algorithm

 Receptive field of retinal ganglion cells

– Space-time salamander response to stimuli

– Improved identification with limited data



Inference of Network Connectivity

Network of neurons: 

unknown synaptic connectivity

𝑊𝑖𝑗
Neuron 𝑗

Neuron 𝑖

Estimated connectivity map 

with synaptic weights 𝑊𝑖𝑗



New Technologies: Calcium Imaging

 Fluorescent Ca2+ indicators

– Genetically encoded

– Chemical dyes

 Spiking: Ca2+ influx

 Large populations in parallel

Mei Zhang 2009



Two photon Ca2+ imaging: depth acquisition

Short pulses

Fluoresce:

Neuron is firing

and two photons 

 Fluorescence & spiking:

– Ca2+ influx

 Two-photon imaging

– Raster scan

– Depth acquisition

 Spatial resolution

– Image into the cortex



Two photon Ca2+ imaging: depth acquisition

Refocus depth

 Fluorescence & spiking:

– Ca2+ influx

 Two-photon imaging

– Raster scan

– Depth acquisition

 Spatial resolution

– Image into the cortex

Cortical layers

Cortex ~ 2-4 mm



Calcium Imaging: Connectivity Detection Problem

Network of neurons: 

unknown synaptic connectivity Ca2+ fluorescence movie

𝑊𝑖𝑗
Neuron 𝑗

Neuron 𝑖

Estimated connectivity map 

with synaptic weights 𝑊𝑖𝑗
Ca2+ fluorescence image                  

MPI 2012



Ca2+ Imaging:  Strengths

 Parallel measurements

(~103 neurons)

 In vivo or in vitro

 High spatial resolution 

(neuronal level, sub-𝜇𝑚)

 Image below surface
M. Kuykendal and G. Guvanasen, Georgia Tech



Challenges with Ca2+ Imaging

 Indirect fluorescence traces

 Nonlinear dynamics

 Large data sets

 Exogenous inputs

 Heavy temporal blurring

- Ca2+ long decay: 𝜏𝑐~0.5 s **

 Low frame rate

- Frames: 10-100 ms*

- Interneuron dynamics: 1-3 ms

 Need super-resolution[Stociek et al. (2003)]

Glutamate induced spiking

Calcium Fluorescence

**GCaMP5, newer indicators faster

NIPS 2013 & NIPS 2015 workshops:

"Statistical Methods For Understanding Neural Systems"



Network Inference:  Causality Crucial

Network of neurons: 

unknown synaptic connectivity

𝑊𝑖𝑗
Neuron 𝑗

Neuron 𝑖

Estimated connectivity map 

with synaptic weights 𝑊𝑖𝑗

Elements of the network : time-varying electrochemical devices



Neuronal Model:  Integrate and Fire

 Electrochemical dynamic model:

 Vi(𝑡) = neuron 𝑖 potential Iij(𝑡) = current  𝑗𝑡ℎ to  𝑖th neuron

 Integrate phase:  Potential builds:        𝑉𝑖 𝑡 ≤ 𝑉𝑡ℎ

𝑅𝐶𝑚
𝑑𝑉𝑖(𝑡)

𝑑𝑡
= −𝑉 𝑡 +  

𝑗=1

𝑁

𝑅𝑖𝑗𝐼𝑖𝑗 𝑡

 Fire: discharges spike, reset:     𝑉𝑖 𝑡 = 𝑉𝑡ℎ ⇒ 𝑉𝑖 𝑡
+ = 𝑉𝑟𝑒𝑠𝑒𝑡

Input spike 

currents

Membrane 

voltage

Reset

Synaptic 

weight

Spike emission

Threshold

[Lapicque (1907)]

Charge increase leakage Incoming current



Calcium Imaging: Connectivity Detection Problem

Network of neurons: 

unknown synaptic connectivity Ca2+ fluorescence movie

𝑊𝑖𝑗
Neuron 𝑗

Neuron 𝑖

Estimated connectivity map 

with synaptic weights 𝑊𝑖𝑗
Ca2+ fluorescence image                  

MPI 2012



Each Neuron: Discrete-Time Neural Model

 Voltage: integrate and fire:

𝑣𝑖
𝑘+1 = 1 − 𝛼 𝑣𝑖

𝑘 + 𝑗=1
𝑛 𝑊𝑖𝑗 𝑠𝑗

𝑘 + 𝑑𝑣,𝑖
𝑘 [Integrate]

if 𝑣𝑖
𝑘+1 ≥ 𝜇 ⇒ 𝑠𝑖

𝑘 = 1, 𝑣𝑖
𝑘+1 = 0, [spike & reset]

else 𝑣𝑖
𝑘+1 < 𝜇 ⇒ 𝑠𝑖

𝑘 = 0 [no spike] 

Calcium fluorescence 

𝑧𝑖
𝑘+1 = 1 − 𝛽 𝑧𝑖

𝑘 + 𝑠𝑖
𝑘 + 𝑑𝑧,𝑖

𝑘
[z: Ca2+]

𝑦𝑖
𝑘 = 𝑎 𝑧𝑖

𝑘 + 𝑑𝑦,𝑖
𝑘

[y: fluorescence]

𝑊𝑖𝑗 = "weight" = integrated voltage change from spike current

 Ca2+ fluorescence: dynamical system also

 Nonlinear state space

 Need: connectivity, spike times, voltages, calcium…
Mischenko, Vogelstein, Paninski (2010), Yasuda(2004), Vogelstein et al (2010), 

Fletcher et al, COSYNE 2014, NIPS 2014



Summary: System

𝒗𝑘+1 = 1 − 𝛼 𝒗𝑘 +𝑾𝒔𝑘 + 𝒅𝑥
𝑘

𝒔𝑘 = 1, 𝒗𝑘 = 0 when 𝒗𝑘 > 𝜇

𝒛𝑘+1 = 1 − 𝛽 𝒛𝑘 + 𝒅𝑧
𝑘 + 𝒔𝑘

𝒚𝑘 = 𝑎 𝒛𝑘 + 𝒅𝑦
𝑘

Membrane voltage integration

Spike and reset

Bound Ca2+ concentration

Fluorescence 

Input: 

stimuli & neurons



 ML estimate:  
 𝑊 = argmax

𝑊
log 𝑝 𝑦 𝑊

– Can add regularization term to impose sparsity

 But….there are hidden states 𝑥 = 𝑠𝑘 , 𝑣𝑘 , 𝑧𝑘

 𝑊 = argmax
𝑊

log 𝐸𝑥 𝑝 𝑦, 𝑥 𝑊

 Computationally complex: high-dimensional integral

Maximum Likelihood Estimation of Connectivity

Observations Desired parameters

e.g. connectivity matrix

−𝜆 𝑊 1

Fletcher et al COSYNE ’14



Expectation Maximization Algorithm

𝒗𝑘+1 = 1 − 𝛼 𝒗𝑘 +𝑾𝒔𝑘 + 𝒅𝑥
𝑘

𝒔𝑘 = 1, 𝒗𝑘 = 0 when 𝒗𝑘 > 𝜇

𝒛𝑘+1 = 1 − 𝛽 𝒛𝑘 + 𝒅𝑧
𝑘 + 𝒔𝑘

𝒚𝑘 = 𝑎𝒛𝑘 + 𝒅𝑦
𝑘

 Want regularized ML:  
 𝑊 = argmax

𝑊
log 𝑝 𝑦 𝑊 − 𝜆 𝑊 1

 Problem:  Hidden states (𝑣𝑘 , 𝑧𝑘 , 𝑠𝑘)

 Use EM iterations

E step

Estimate distribution of 

hidden states given 

parameters

M step

Update parameter estimate 

given density on hidden states:

Parameter 

estimate 𝑊

𝒗𝑘+1 = 1 − 𝛼 𝒗𝑘 +𝑾𝒔𝑘 + 𝒅𝑥
𝑘

𝒔𝑘 = 1, 𝒗𝑘 = 0 when 𝒗𝑘 > 𝜇

𝒛𝑘+1 = 1 − 𝛽 𝒛𝑘 + 𝒅𝑧
𝑘 + 𝒔𝑘

𝒚𝑘 = 𝑎𝒛𝑘 + 𝒅𝑦
𝑘

Distribution of hidden 

states (𝑣𝑘 , 𝑧𝑘, 𝑠𝑘)

Easy for Ca2+ Imaging problem

𝑊 is linear in likelihood

LASSO problem

Exact computation hard

High-dim integral or Gibbs sampling
[Mischenko et al., 2010]

𝒗𝑘+1 = 1 − 𝛼 𝒗𝑘 +𝑾𝒔𝑘 + 𝒅𝑥
𝑘

𝒔𝑘 = 1, 𝒗𝑘 = 0 when 𝒗𝑘 > 𝜇

𝒛𝑘+1 = 1 − 𝛽 𝒛𝑘 + 𝒅𝑧
𝑘 + 𝒔𝑘

𝒚𝑘 = 𝑎𝒛𝑘 + 𝒅𝑦
𝑘



Decoupling for the E-Step

 Want:  State estimates for nonlinear system

– High dimensional : N Neurons, 3N states

 Key insight:  System decouples: scalar iterations

Fluorescence 

𝑦𝑖
𝑘

𝒒𝑘 = 𝑾𝒔𝑘

Integrate and fire

Ca2+

concentration

W

Connectivity matrix

Summed

currents

𝑞𝑖
𝑘

𝒒𝑘 = 𝑾𝒔𝑘

spikes 𝑠𝑖
𝑘

𝑧𝑖
𝑘



Decoupling for the E-Step

Fluorescence 

levels 𝑦𝑖
𝑘

Integrate and fire

Ca2+

concentration

W

Connectivity matrix

Summed

currents

𝑞𝑖
𝑘

N scalar 1-dim systems N scalar 1-dim systems

Memoryless linear constraints

Approximate Message Passing

𝑣𝑖
𝑘+1 =  

(1 − 𝛼)𝑣𝑖
𝑘 + 𝑞𝑖

𝑘 𝑣𝑖
𝑘 ≤ 𝜇

0 𝑣𝑖
𝑘 > 𝜇

𝑠𝑖
𝑘 = 1 when 𝑣𝑖

𝑘 ≥ 𝜇

𝑧𝑖
𝑘+1 = 1 − 𝛽 𝑧𝑖

𝑘 + 𝑠𝑖
𝑘

𝑦𝑖
𝑘 = 𝑎𝑧𝑖

𝑘 + 𝑑𝑖
𝑘

𝒒𝑘 = 𝑾𝒔𝑘

spikes 𝑠𝑖
𝑘

𝑧𝑖
𝑘



Decoupling for the E-Step

Fluorescence 

levels 𝑦𝑖
𝑘

Integrate and fire

Ca2+

concentration

W

Connectivity matrix

Summed

currents

𝑞𝑖
𝑘

Memoryless linear constraints

Approximate Message Passing

𝑣𝑖
𝑘+1 =  

(1 − 𝛼)𝑣𝑖
𝑘 + 𝑞𝑖

𝑘 𝑣𝑖
𝑘 ≤ 𝜇

0 𝑣𝑖
𝑘 > 𝜇

𝑠𝑖
𝑘 = 1 when 𝑣𝑖

𝑘 ≥ 𝜇

𝑧𝑖
𝑘+1 = 1 − 𝛽 𝑧𝑖

𝑘 + 𝑠𝑖
𝑘

𝑦𝑖
𝑘 = 𝑎𝑧𝑖

𝑘 + 𝑑𝑖
𝑘

𝒒𝑘 = 𝑾𝒔𝑘

spikes 𝑠𝑖
𝑘

𝑧𝑖
𝑘

N scalar Forward Backward N scalar Forward Backward



EM Overview

 Fluorescence movie: estimate

– Connectivity matrix 𝑊, spike times, voltages

 Scalable block 

– High-dimensional, nonlinear dynamical system

𝑊𝑖𝑗

𝑗
Neuron 𝑖

voltages spikes

E step

Connectivity matrix M step

Ca level

E step: Linear Mixing AMP block



Simulation Results:  Accuracy of the Weights

True weight
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 Neuron model                      [Sayer (1990)]

– 100 guinea pig cortical neurons

– Synchronized bursting: 10 spikes/s 

– 10% sparse random connectivity 

– 20 ms integrate-fire 𝜏𝑐
– 2 ms inter-neuron conduction time

– 1 ms time step

 Ca2+ imaging model

– 100 frames/s, 100 s trials

– 10000 Fl values per neuron

– 500 ms Ca2+ 𝜏𝑐
– Fluorescence SNR = 20 dB

Accurate estimation

Fletcher et al NIPS ‘14



 Neuron model               [Sayer (1990)]

– Guinea pig cortical column

– 100 neurons  

– 10% sparse random connectivity

– Synchronized bursting: 10 spikes/s 

– 20 ms integrate-fire 𝜏𝑐
– 2 ms inter-neuron conduction 

– 1 ms time step

 Data Collection

– 100 frames/s, 100 s trials

– 10000 Fl samples per neuron

– Ca2+ 𝜏𝑐 = 500 ms, Fl SNR = 20 dB

Accuracy of the Weights

Iteration number
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 Previous work MSE=0.28, same parameters               Mischenko et al. (2010) 

 Accurate, low complexity 𝑂(𝑁) per iteration, instead of 𝑂(∗𝑁)

Fast convergence 

previous method

Fletcher et al NIPS ‘14

•Relative MSE = 
𝐸 𝑊𝑖𝑗−  𝑊𝑖𝑗

2

𝐸 𝑊𝑖𝑗
2 = 0.12



Network Connectivity Summary

 Network analysis from Ca2+ imaging

– Attack temporal resolution issues for neural dynamics

– Scalable EM algorithm

 Rich, flexible modeling framework

– Incorporates nonlinearities, indirect measurements, dynamics

 Computationally scalable solution

– Linear in number of measurements

 Demonstrated performance

– Outperforms existing techniques 

– Allows more biologically plausible model with feedback

http://gampmatlab.sourceforge.net/ Phil Schniter!!! 

http://gampmatlab.sourceforge.net/


Outline

 Connectivity via multineuronal stimulation

– Iterative fast adaptive GAMP framework

 Network connectivity via Ca2+ imaging

– Network model - captures dynamics

– Graphical models

– Scalable accurate based algorithm

 Receptive field of retinal ganglion cells

– Space-time salamander response to stimuli

– Improved identification with limited data



Receptive Field Identification 

 Retinal ganglion cell (RGC)

Sensitive to light in its field of view,

or receptive field

 Tuned to some local features

in time and space  (curve, edge, etc)

 Response estimation of RGCs:

– Expose retina to image

– Measure response via electrode

– Fit model

 Challenge:  Model is often nonlinear 

Spikes

Electrode

RGC cell



Salamander Receptive Field Identification 

Spikes

Electrode

RGC cell

Visual stimuli



Retinal Ganglion Cell LNP Model

 Linear-Nonlinear Poisson model.  Given stimuli 𝑢𝑖[𝑘]

– Filtering over time and space:  𝑧 𝑘 =  𝑖=1
𝑛 𝛼𝑖(ℎ𝑖 𝑘 ∗ 𝑢𝑖[𝑘])

– Nonlinear phase:  𝑦 𝑘 = 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝑓 𝑧 𝑘 + 𝑑 𝑘

 Identification problem:  Given stimuli  𝑢𝑖[𝑘] and spike counts 𝑦 𝑘

– Estimate weighted filters 𝑤𝑖 𝑘 = 𝛼𝑖ℎ𝑖 𝑘 ,
Describes space-time response of neuron to pixel 𝑖

– Each ℎ𝑖[𝑘] is an 𝐿 tap filter

– Estimate nonlinearity 𝑓(⋅) Fletcher et al. NIPS 2012

ℎ1[𝑘]

Stimuli

( 𝑛 pixel movie)

Time 𝑘

𝛼1(ℎ1 𝑘 ∗ 𝑢1[𝑘])

ℎ𝑛[𝑘]

𝑧 𝑘
+

𝜆 𝑘

𝑦 𝑘

Temporal 

filtering

Weighted sum 

over pixels

Nonlinearity

+ noise

Poisson spike 

process

Spike count

𝑢1[𝑘]

𝑢𝑛[𝑘]

𝛼𝑛(ℎ𝑛 𝑘 ∗ 𝑢𝑛[𝑘])



Structured Matrix View of Dynamic LNP

 LNP model: cascade of linear and nonlinear system

– A rows: 𝑛 pixel values at 𝐿 delays (𝐿 = filter taps)

 Weights have a group sparse constraint:

– RGC sensitive to small image region (spatial sparsity)

– Coefficients of filter of one stimuli are on or off together

⋮

𝒛

𝑇
time 

bins

𝐿 taps / pixel

𝑨

Stimulation matrix

𝒘

⋮

𝒚

Nonlinearity 

& Poisson

Spike 

counts

Poisson( 𝑓 z )

⋮



Classical Methods and their Limitations

 Linear methods:

– Matched filter:   𝒘 =
1

𝑛
𝑨𝑻𝒚 (also called STA)

– Linear MMSE:   𝒘 = 𝑨𝑻𝑨 + 𝜎2𝑰
−1
𝑨𝑻𝒚 (also called RC)

– Also, linear least squares / zero forcing 

– Simple but does not exploit sparsity

 Compressed sensing methods

 𝒘 = argmin
𝑤

𝒚 − 𝑨𝒘 2
2 + 𝜆 𝒘 1

– Exploit sparsity of w

– Many methods: LASSO, OMP, CoSAMP,…

– Could also incorporate group sparsity via group Lasso

– But, does not account for output nonlinearities



Hybrid Algorithm for Structured Input: GAMP

 Introduce binary variables xj to correlate sparsity over time

 Apply GAMP in a  “turbo” manner with loopy BP

 Low complexity:  each xj is binary

 More general than group OMP and group lasso;

– Similar complexity, 

– Better performance  [Rangan, Fletcher, Goyal & Schniter ‘12]

Use GAMP messagesStandard loopy 

BP messages

𝑤𝑖ℓ𝑝(𝑤𝑖ℓ|𝜉𝑖)

𝑧 = 𝐴𝑤



Receptive Field Computation Considerations

 Problem size:  3630 variables

– 11 x 11 pixels, 30 taps per pixel  

– 190,000 measurements (~30 min at 10 ms sampling)

– Structured A matrix is 190,000 by 3630

 AGAMP iteration cost: multiplying by A & A*

– Exploit block Toeplitz structure and entries are 0-1

 For larger problems, algorithm is parallelizable

– Graphical methods: inherent decomposable

– Parallelize multiplications across rows/columns of A

 Cannot theoretically guarantee convergence

– Demonstrate performance experimentally



Experimental Results:  Cross-Validation

 Validated on data used in training (190000 total samples)

 Cross-validation score = Geometric mean of  likelihood of spike rate 

 GAMP: same error, 25000 samples versus 100,000

Data: Anthony Leonardo

Janelia Farm

Num 

training 

samples 

Cross-validation 

score

STA G-AMP

25000 0.906 0.917

50000 0.914 0.921

100000 0.918 0.923

GAMPSTA



Salamander Retinal Response (Spatial)

 Spatial receptive field:  

Plot estimated 11x11 response magnitudes.

Color = 30-tap filter magnitude for each pixel

 Standard STA estimate shows noisy 

(spurious) responses outside

 GAMP method removes noise

Shows only a response in a small area    

Spatial receptive field 

estimates for 11x11 pixel area 

0 1

(normalized)

Filter response 11 x 11 pixels for salamander RGCs

Data from Anthony Leonardo, Janelia Farm



AMP++ methods: Applications in Imaging

 Hybrid-AMP can incorporate complex structure

– Incorporate dependencies between wavelet coefficients

– Hierarchical models, etc

[Som, Schniter, 2011]

Lowest MSE and almost 

fastest computation

Algorithm NMSE (dB) Comp time (secs)

MHT+IRWL1 -14.37 363

CoSAMP -16.90 25

SPLG1 -18.06 536

MCMC -20.10 742

Turbo-GM -20.74 51

http://gampmatlab.sourceforge.net/

http://gampmatlab.sourceforge.net/
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Moving forward

 Better account for exogenous effects

– Correlations across neurons of interest**

– Larger areas via “shotgun” techniques  [Pnevmatikakis et al. 2013]

 Data sets in collaboration

– Paninski Lab, Columbia; Tolias Lab, Baylor, Allen Institute

– Validate methods: first cultured without exogenous

 Model new Ca2+ indicators:

– GCaMP6f (2013): faster decay, rise time = 50-75 ms, ….

– Nonlinear fluorescence model

 Theory 

– Convergence issues of GAMP via new ADMM GAMP

– Networks of low-dimensional, nonlinear dynamical blocks

– Provable results for structured non-iid, structured A



High dimensional inference for dynamical systems

 Generalized linear dynamical networks:

– Underlying low-dimensional, nonlinear dynamical blocks

– Linear memoryless constraints, graphical models

 Many phenomena

– Neural systems, communication networks, particles, media, …

– Extends GLM to include networked dynamics

 Can we extend methods for:

– Scalable estimation algorithms?

– Learning connectivity?

– Provable guarantees?

𝑊𝑖𝑗

𝑥𝑖
𝑘+1 = 𝑓𝑖(𝑥𝑖

𝑘, 𝑢𝑖
𝑘)

Future work : dynamical networks



Joint Estimation and Learning for GLMS

 GLM with unknown parameters 𝜃𝑥 and 𝜃𝑧
– Unknown prior, nonlinearities, noise…

 Joint estimation learning problem:  Given 𝑦 and 𝐴:

– Estimate input 𝑥 and 𝑧,

– Learn parameters 𝜃𝑥 and 𝜃𝑧 in distribution

– Consistent

i.i.d. prior

𝑃𝑋(𝑥|𝜃𝑥)

𝜃𝑥

𝒙 ∈ ℝ𝑛

Input

𝑚 𝑥 𝑛

𝑨
𝒛 ∈ ℝ𝑚

Measurement 

channel

𝑃𝑌|𝑍(𝑦|𝑧, 𝜃𝑧)

𝜃𝑧

𝒚 ∈ ℝ𝑚

Observations

Kamilov, Fletcher, et al NIPS 2012, Trans IT 2014

Fletcher, Rangan NeuRAMP NIPS 2011



High dimensional inference for dynamical systems

 Generalized linear dynamical detworks:

– Underlying low-dimensional, nonlinear dynamical blocks

– Linear memoryless constraints, graphical models

 Many phenomena

– Neural systems, communication networks, particles, media, …

– Extends GLM to include networked dynamics

 Can we extend methods for:

– Scalable estimation algorithms?

– Learning connectivity?

– Provable guarantees?

𝑊𝑖𝑗

𝑥𝑖
𝑘+1 = 𝑓𝑖(𝑥𝑖

𝑘, 𝑢𝑖
𝑘)

Future work : broader


