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The brain: networks of neurons

3D, Harvard

1 mm3

~1.5 year, 1 𝑝𝑒𝑡𝑎𝑏𝑦𝑡𝑒 (1015 )

Mouse brain:  

~2000 years, 1 𝑒𝑥𝑎𝑏𝑦𝑡𝑒 (1018)

Human cortex:

~107 years, 10 𝑧𝑒𝑡𝑡𝑎𝑏𝑦𝑡𝑒𝑠 (1021)

World storage: 300 e𝑥𝑎𝑏𝑦𝑡𝑒𝑠

Mouse cerebellum        Lichtman et al. 2008 ~ on January 2015
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Outline

 Neural mapping via multineuron excitation

– Background: Neuroscience

– Optogenetic stimulation

– Estimation via graphical models 

 Network connectivity via Ca2+ imaging

– Large scale but indirect and smoothed

– Network model captures dynamics

– Scalable accurate algorithm

 Receptive Field of Retinal Ganglion Cells

– Spatio-temporal filtering

– Improved identification with limited data



Neuroscience: Estimation Challenges

Stimulus

Visual 

system F(u(t))

 Large-scale

- ~86 billion neurons

- V1 alone 140 million

 Sparse:  ~1000 connections

 Complex:

Nonlinear dynamics

Feedback

 Indirect measurements

 Incomplete data

 Limited in vivo collection



I. Connectivity Detection to a Single Neuron

Problem: 

Detect connections to one neuron

Goal:

Reduce trials and computation

How:

Optogenetics

Improved “decoding” via subset stimulation



Neuron: Basic Anatomy

 Components

– Dendrites:
Filaments receive signals 

– Soma: cell body

– Axon:
Outputs electrical signals to 

neurons or motor functions

– Synapses:
Junctions of axons and dendrites

Neuron:  Basic cell for information processing



Neuron: Linear-Nonlinear Poisson Model

 Functional Model: simple input-output 

– Effectively captures average rates

– Windows:  10 to 200 spikes/s

 Three-stage LNP:  Linear + Nonlinearity + Poisson process

 Connectivity: Identify weights 𝒙

 Biological models with feedback for precise timing later…

𝑧[𝑡] =  
𝑗
𝑥𝑗𝑎𝑗[𝑡]

df

𝜆 𝑡 = 𝑓 𝑧 𝑡 + 𝑑 𝑡
df

𝑦[𝑡] ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛( 𝜆[𝑡])

Spike

count

𝑦[𝑡]

Poisson
spike process

Gaussian

noise 𝑑[𝑡]

Nonlinearity

Inputs:
Spike Rate

⋮

𝑧 𝑡 = 𝒂𝑇[𝑡]𝒙

𝑎1 𝑡

𝑎𝑛 𝑡

Weights 𝒙

𝑎2 𝑡



Classic Connectivity Detection

Stimulate potential pre-synaptic neurons: one at a time

Measure at post-synaptic neuron of interest

 Problems: many measurements per test neuron

– Most neurons are not connected

– Noisy system with many exogenous inputs

– Test neurons die

 Can we do better?



Connectivity Detection:

– Genetically modified neuron

• Photosensitive protein

– Optically activate test neurons

– Greater spatial precision

• Pinpoint individual neurons

• Multiple neurons at once

New Technologies:  Optical Stimulation

Wang, Hasan & Seung 2009



Connectivity via Multineuron Excitation

Spike recording

Average over time windows

Potential presynaptic neurons

Synapses or connections



Strong:

Connections 

Detection via Multineuron Excitation

Spike recording

 Stimulate subsets of neurons at a time

– Increase probability of response

– Fewer wasted trials

Low response

No connection



Connections: 

strong or multiple

Missed connection

Sub-threshold

Detection via Multi-Neuron Stimulation

Low response

No connection?

Spike recording

 Stimulate subsets of neurons at a time

– Increase probability of a response

– Less measurements wholly wasted

 Benefits

– Weak sub-threshold connection

– More reliable with less data Hu & Chklovskii NIPS 2010,

Fletcher et al NIPS 2011



Multi-neuron Excitation: Model

Excited: {2, 7, 9, 13}

“1” entries: {2, 7, 9, 13}

Potential neurons: 1:N

Measurement neuron

Connection 

weights

= 𝑓
𝑁𝑜𝑛𝐿𝑃

+ 

d

Excited

Not excited

jth neuron

1

0

jth element

m



Multi-neuron Excitation: Model

Potential neurons: 1:N

Measurement neuron

Connection 

weights

+ 

d

“1” entries: {3, 6,14,16}

Second trial

Different random subset

Excited

Not excited

jth neuron

= 𝑓
𝑁𝑜𝑛𝐿𝑃 1

0

jth element

Excited: {3, 6, 14, 16}



Multi-neuron Excitation: Model

Potential neurons: 1:N

Measurement neuron

Connection 

weights

𝑓
𝑁𝑜𝑛𝐿𝑃

+ 

d

mth excitation

mth row of A matrix

=

m
m

Excited

Not excited

jth neuron

1

0

jth element

m trials or 

“measurements”



Bayesian Nonlinear Generalized Linear Models

 Problem: Estimate 𝒙 and 𝒛 given 𝒚 and 𝑨

 Bayesian formulation: general system class

– Prior 𝑃𝑋(𝒙) incorporates constraints, like sparsity

– 𝑃𝑌|𝑍(𝒚|𝒛) models output: nonlinearities, randomness

 Challenge: optimal estimation is hard

– Components of vector x are coupled in z

Separable nonlinearity & noise 

Known linear

transform

𝑖𝑖𝑑
𝑝 𝒙

A
Measurement

𝒚

𝑝 𝒚 𝒛 = ∏𝑝(𝑦𝑖|𝑧𝑖)

𝒙 𝒛



Example:  Sparse recovery

 Problem:  Given A and y, recover sparse x

 Many applications

– Communication channels, linear inverse problems

– Wavelet image reconstruction

– Regularized linear regression, classification

– Compressed sensing…

 Now many algorithms, theoretical analyses, …

= +

𝑝 𝒙 = Sparse prior

𝑝(𝒚|𝒛) = Gaussian



Divide & Conquer with Graphical Models

 Subdivide & conquer

 Few “smaller” components

– Few variables

– Limited connections

 Message passing:

– Iteratively update marginals

– Global estimation local

 But random A is dense! ⋯

⋯

𝑝(𝑦1|𝑥1, . . 𝑥𝑟) 𝑝(𝑦𝑚|𝒙)

𝑝(𝑥1) 𝑝(𝑥𝑛)⋯

𝑥1 𝑥𝑛

 𝑝 (𝑥𝑗|𝒚)

𝑝𝑋|𝑌 𝒙 𝒚 =  
𝑗=1

𝑛

𝑝 𝑥𝑗  
𝑖=1

𝑚

𝑝 𝑦𝑖 𝒙



"Graphical Model" for GLM

 Assume separable priors & likelihoods

 The posterior density 𝑝(𝑥|𝑦) factors into:

– 𝑚 + 𝑛 scalar terms; and

– Linear constraint 𝑧 = 𝐴𝑥

A

z=Ax
Separable “output” 

channel e.g. y = z + w

𝑝 𝑦1|𝑧1

𝑝 𝑦2|𝑧2

𝑝 𝑦𝑚|𝑧𝑚

𝑧1

𝑧2

𝑧𝑚

𝑥1

𝑥2

𝑥𝑛

x with indep

components

𝑝 𝑥1

𝑝 𝑥2

𝑝 𝑥𝑛



Generalized Approximate Message Passing (GAMP)

 Gaussian & quadratic approximations

 Asymptotic guarantees 

 Low complexity: 𝑂 𝑚𝑛 each iteration

 Classic AMP*: separable distributions & AWGN

 GAMP: KNOWN nonlinearities 

𝑃𝑋(𝑥)

𝒙
𝑨

𝒛
𝑃𝑌|𝑍(𝑦|𝑧)

𝒚

Scalar (separable)

estimation of z

Multiplication by 𝑨

Multiplication by 𝑨∗

Scalar (separable)

estimation of x

AMP Donoho, Maleki, Montanari 09, Bayati & Montanari 10, 

GAMP Rangan et al 10, HyGAMP Fletcher et al 11, …



Theorem: Joint Estimation & Learning with Adaptive GAMP

 GLM with unknown parameters 𝜃𝑥 and 𝜃𝑧
– Unknown prior, nonlinearities, noise…

 Joint estimation learning problem:  Given 𝑦 and 𝐴:

– Estimate input 𝑥 and 𝑧,

– Learn parameters 𝜃𝑥 and 𝜃𝑧 in distribution

– Consistent estimator

i.i.d. prior

𝑃𝑋(𝑥|𝜃𝑥)

𝜃𝑥

𝒙 ∈ ℝ𝑛

Input

𝑚 𝑥 𝑛

𝑨
𝒛 ∈ ℝ𝑚

Measurement 

channel

𝑃𝑌|𝑍(𝑦|𝑧, 𝜃𝑧)

𝜃𝑧

𝒚 ∈ ℝ𝑚

Observations

Kamilov, Fletcher, Rangan, Unser  NIPS 2012, Trans IT 2014



Neural Mapping via Adaptive-GAMP: NeuRAMP

 Problem:  For neural LNP model:

– Incorporates sparsity on prior 𝑃𝑋(𝒙)

– 𝑃𝑌|𝑍(𝒚|𝒛, 𝜃𝑧 ) models unknown output nonlinearities

A
Unknown input

p(𝑥)

p(𝑦|𝑧, 𝜃𝑧) 

Unknown random nonlinearity

y
z

Spikes

Noise

 Jointly: Estimate weight vector x

Learn the nonlinearity

 Computationally fast

 Improved estimates with fewer measurements
Fletcher et al. NIPS (2011)



Simulation:  MSE of Synaptic Weight Estimates

 RC: Reverse Correlation

– Linear estimation

– No sparsity

 *CoSaMP: Greedy CS

– Ignores nonlinearities

 **Adaptive GAMP:

– Lower MSE

– Fewer measurements

Number of measurements (m)

R
e

la
ti

v
e

 s
q

u
a
re

d
 e

rr
o

r

10%

1%

100%
RC

CoSAMP

Adapt GAMP

m = number of trials, random excitation ~40 

n =  500,   

k =30 or 6%              Bernoulli-Gayssuab weights

100 spike windows: 10.4s

Spike rate: 10 spikes/s  with.4 second reset

300 trials: ~1 hour
*Hu & Chlovskii NIPS 2010 

**Fletcher et al, NIPS 2011

40%



Simulation:  NeuRAMP Connectivity Detection

50% reduction

False alarm rate

M
is

s
e

d
 d

e
te

c
ti
o

n
 r

a
te

 Factors:

– Models nonlinearities

– Optimal learning

– Incorporates sparsity

– Similar complexity

 GAMP outperforms RC & CoSaMP

– 75% and 50% lower missed detects 

“Simultaneous all optical manipulation and recording…”, AM Packer, Dec 2014 Nature

**“Block sparse” filters:    Salamander visual receptive field



Moving forward: Scalable adaptive block

 Generalized Approximate Message Passing (GAMP)

 Improved neural connectivity detection

– Data limited

– Unknown nonlinearities, sparsity levels

 Scalable adaptive GAMP block

– Linear mixing blocks

– Low complexity: scalable

– Extensible

– Rich input output models

– Adaptive



Outline

 Connectivity via multineuronal stimulation

– Iterative fast adaptive GAMP framework

 Network connectivity via Ca2+ imaging

– Large scale in vivo layers

– Remarkable spatial resolution

– Indirect, temporally smoothed

– Network model - captures dynamics

– Scalable accurate EM algorithm

 Receptive field of retinal ganglion cells

– Space-time salamander response to stimuli

– Improved identification with limited data



Inference of Network Connectivity

Network of neurons: 

unknown synaptic connectivity

𝑊𝑖𝑗
Neuron 𝑗

Neuron 𝑖

Estimated connectivity map 

with synaptic weights 𝑊𝑖𝑗



New Technologies: Calcium Imaging

 Fluorescent Ca2+ indicators

– Genetically encoded

– Chemical dyes

 Spiking: Ca2+ influx

 Large populations in parallel

Mei Zhang 2009



Two photon Ca2+ imaging: depth acquisition

Short pulses

Fluoresce:

Neuron is firing

and two photons 

 Fluorescence & spiking:

– Ca2+ influx

 Two-photon imaging

– Raster scan

– Depth acquisition

 Spatial resolution

– Image into the cortex



Two photon Ca2+ imaging: depth acquisition

Refocus depth

 Fluorescence & spiking:

– Ca2+ influx

 Two-photon imaging

– Raster scan

– Depth acquisition

 Spatial resolution

– Image into the cortex

Cortical layers

Cortex ~ 2-4 mm



Calcium Imaging: Connectivity Detection Problem

Network of neurons: 

unknown synaptic connectivity Ca2+ fluorescence movie

𝑊𝑖𝑗
Neuron 𝑗

Neuron 𝑖

Estimated connectivity map 

with synaptic weights 𝑊𝑖𝑗
Ca2+ fluorescence image                  

MPI 2012



Ca2+ Imaging:  Strengths

 Parallel measurements

(~103 neurons)

 In vivo or in vitro

 High spatial resolution 

(neuronal level, sub-𝜇𝑚)

 Image below surface
M. Kuykendal and G. Guvanasen, Georgia Tech



Challenges with Ca2+ Imaging

 Indirect fluorescence traces

 Nonlinear dynamics

 Large data sets

 Exogenous inputs

 Heavy temporal blurring

- Ca2+ long decay: 𝜏𝑐~0.5 s **

 Low frame rate

- Frames: 10-100 ms*

- Interneuron dynamics: 1-3 ms

 Need super-resolution[Stociek et al. (2003)]

Glutamate induced spiking

Calcium Fluorescence

**GCaMP5, newer indicators faster

NIPS 2013 & NIPS 2015 workshops:

"Statistical Methods For Understanding Neural Systems"



Network Inference:  Causality Crucial

Network of neurons: 

unknown synaptic connectivity

𝑊𝑖𝑗
Neuron 𝑗

Neuron 𝑖

Estimated connectivity map 

with synaptic weights 𝑊𝑖𝑗

Elements of the network : time-varying electrochemical devices



Neuronal Model:  Integrate and Fire

 Electrochemical dynamic model:

 Vi(𝑡) = neuron 𝑖 potential Iij(𝑡) = current  𝑗𝑡ℎ to  𝑖th neuron

 Integrate phase:  Potential builds:        𝑉𝑖 𝑡 ≤ 𝑉𝑡ℎ

𝑅𝐶𝑚
𝑑𝑉𝑖(𝑡)

𝑑𝑡
= −𝑉 𝑡 +  

𝑗=1

𝑁

𝑅𝑖𝑗𝐼𝑖𝑗 𝑡

 Fire: discharges spike, reset:     𝑉𝑖 𝑡 = 𝑉𝑡ℎ ⇒ 𝑉𝑖 𝑡
+ = 𝑉𝑟𝑒𝑠𝑒𝑡

Input spike 

currents

Membrane 

voltage

Reset

Synaptic 

weight

Spike emission

Threshold

[Lapicque (1907)]

Charge increase leakage Incoming current



Calcium Imaging: Connectivity Detection Problem

Network of neurons: 

unknown synaptic connectivity Ca2+ fluorescence movie

𝑊𝑖𝑗
Neuron 𝑗

Neuron 𝑖

Estimated connectivity map 

with synaptic weights 𝑊𝑖𝑗
Ca2+ fluorescence image                  

MPI 2012



Each Neuron: Discrete-Time Neural Model

 Voltage: integrate and fire:

𝑣𝑖
𝑘+1 = 1 − 𝛼 𝑣𝑖

𝑘 + 𝑗=1
𝑛 𝑊𝑖𝑗 𝑠𝑗

𝑘 + 𝑑𝑣,𝑖
𝑘 [Integrate]

if 𝑣𝑖
𝑘+1 ≥ 𝜇 ⇒ 𝑠𝑖

𝑘 = 1, 𝑣𝑖
𝑘+1 = 0, [spike & reset]

else 𝑣𝑖
𝑘+1 < 𝜇 ⇒ 𝑠𝑖

𝑘 = 0 [no spike] 

Calcium fluorescence 

𝑧𝑖
𝑘+1 = 1 − 𝛽 𝑧𝑖

𝑘 + 𝑠𝑖
𝑘 + 𝑑𝑧,𝑖

𝑘
[z: Ca2+]

𝑦𝑖
𝑘 = 𝑎 𝑧𝑖

𝑘 + 𝑑𝑦,𝑖
𝑘

[y: fluorescence]

𝑊𝑖𝑗 = "weight" = integrated voltage change from spike current

 Ca2+ fluorescence: dynamical system also

 Nonlinear state space

 Need: connectivity, spike times, voltages, calcium…
Mischenko, Vogelstein, Paninski (2010), Yasuda(2004), Vogelstein et al (2010), 

Fletcher et al, COSYNE 2014, NIPS 2014



Summary: System

𝒗𝑘+1 = 1 − 𝛼 𝒗𝑘 +𝑾𝒔𝑘 + 𝒅𝑥
𝑘

𝒔𝑘 = 1, 𝒗𝑘 = 0 when 𝒗𝑘 > 𝜇

𝒛𝑘+1 = 1 − 𝛽 𝒛𝑘 + 𝒅𝑧
𝑘 + 𝒔𝑘

𝒚𝑘 = 𝑎 𝒛𝑘 + 𝒅𝑦
𝑘

Membrane voltage integration

Spike and reset

Bound Ca2+ concentration

Fluorescence 

Input: 

stimuli & neurons



 ML estimate:  
 𝑊 = argmax

𝑊
log 𝑝 𝑦 𝑊

– Can add regularization term to impose sparsity

 But….there are hidden states 𝑥 = 𝑠𝑘 , 𝑣𝑘 , 𝑧𝑘

 𝑊 = argmax
𝑊

log 𝐸𝑥 𝑝 𝑦, 𝑥 𝑊

 Computationally complex: high-dimensional integral

Maximum Likelihood Estimation of Connectivity

Observations Desired parameters

e.g. connectivity matrix

−𝜆 𝑊 1

Fletcher et al COSYNE ’14



Expectation Maximization Algorithm

𝒗𝑘+1 = 1 − 𝛼 𝒗𝑘 +𝑾𝒔𝑘 + 𝒅𝑥
𝑘

𝒔𝑘 = 1, 𝒗𝑘 = 0 when 𝒗𝑘 > 𝜇

𝒛𝑘+1 = 1 − 𝛽 𝒛𝑘 + 𝒅𝑧
𝑘 + 𝒔𝑘

𝒚𝑘 = 𝑎𝒛𝑘 + 𝒅𝑦
𝑘

 Want regularized ML:  
 𝑊 = argmax

𝑊
log 𝑝 𝑦 𝑊 − 𝜆 𝑊 1

 Problem:  Hidden states (𝑣𝑘 , 𝑧𝑘 , 𝑠𝑘)

 Use EM iterations

E step

Estimate distribution of 

hidden states given 

parameters

M step

Update parameter estimate 

given density on hidden states:

Parameter 

estimate 𝑊

𝒗𝑘+1 = 1 − 𝛼 𝒗𝑘 +𝑾𝒔𝑘 + 𝒅𝑥
𝑘

𝒔𝑘 = 1, 𝒗𝑘 = 0 when 𝒗𝑘 > 𝜇

𝒛𝑘+1 = 1 − 𝛽 𝒛𝑘 + 𝒅𝑧
𝑘 + 𝒔𝑘

𝒚𝑘 = 𝑎𝒛𝑘 + 𝒅𝑦
𝑘

Distribution of hidden 

states (𝑣𝑘 , 𝑧𝑘, 𝑠𝑘)

Easy for Ca2+ Imaging problem

𝑊 is linear in likelihood

LASSO problem

Exact computation hard

High-dim integral or Gibbs sampling
[Mischenko et al., 2010]

𝒗𝑘+1 = 1 − 𝛼 𝒗𝑘 +𝑾𝒔𝑘 + 𝒅𝑥
𝑘

𝒔𝑘 = 1, 𝒗𝑘 = 0 when 𝒗𝑘 > 𝜇

𝒛𝑘+1 = 1 − 𝛽 𝒛𝑘 + 𝒅𝑧
𝑘 + 𝒔𝑘

𝒚𝑘 = 𝑎𝒛𝑘 + 𝒅𝑦
𝑘



Decoupling for the E-Step

 Want:  State estimates for nonlinear system

– High dimensional : N Neurons, 3N states

 Key insight:  System decouples: scalar iterations

Fluorescence 

𝑦𝑖
𝑘

𝒒𝑘 = 𝑾𝒔𝑘

Integrate and fire

Ca2+

concentration

W

Connectivity matrix

Summed

currents

𝑞𝑖
𝑘

𝒒𝑘 = 𝑾𝒔𝑘

spikes 𝑠𝑖
𝑘

𝑧𝑖
𝑘



Decoupling for the E-Step

Fluorescence 

levels 𝑦𝑖
𝑘

Integrate and fire

Ca2+

concentration

W

Connectivity matrix

Summed

currents

𝑞𝑖
𝑘

N scalar 1-dim systems N scalar 1-dim systems

Memoryless linear constraints

Approximate Message Passing

𝑣𝑖
𝑘+1 =  

(1 − 𝛼)𝑣𝑖
𝑘 + 𝑞𝑖

𝑘 𝑣𝑖
𝑘 ≤ 𝜇

0 𝑣𝑖
𝑘 > 𝜇

𝑠𝑖
𝑘 = 1 when 𝑣𝑖

𝑘 ≥ 𝜇

𝑧𝑖
𝑘+1 = 1 − 𝛽 𝑧𝑖

𝑘 + 𝑠𝑖
𝑘

𝑦𝑖
𝑘 = 𝑎𝑧𝑖

𝑘 + 𝑑𝑖
𝑘

𝒒𝑘 = 𝑾𝒔𝑘

spikes 𝑠𝑖
𝑘

𝑧𝑖
𝑘



Decoupling for the E-Step

Fluorescence 

levels 𝑦𝑖
𝑘

Integrate and fire

Ca2+

concentration

W

Connectivity matrix

Summed

currents

𝑞𝑖
𝑘

Memoryless linear constraints

Approximate Message Passing

𝑣𝑖
𝑘+1 =  

(1 − 𝛼)𝑣𝑖
𝑘 + 𝑞𝑖

𝑘 𝑣𝑖
𝑘 ≤ 𝜇

0 𝑣𝑖
𝑘 > 𝜇

𝑠𝑖
𝑘 = 1 when 𝑣𝑖

𝑘 ≥ 𝜇

𝑧𝑖
𝑘+1 = 1 − 𝛽 𝑧𝑖

𝑘 + 𝑠𝑖
𝑘

𝑦𝑖
𝑘 = 𝑎𝑧𝑖

𝑘 + 𝑑𝑖
𝑘

𝒒𝑘 = 𝑾𝒔𝑘

spikes 𝑠𝑖
𝑘

𝑧𝑖
𝑘

N scalar Forward Backward N scalar Forward Backward



EM Overview

 Fluorescence movie: estimate

– Connectivity matrix 𝑊, spike times, voltages

 Scalable block 

– High-dimensional, nonlinear dynamical system

𝑊𝑖𝑗

𝑗
Neuron 𝑖

voltages spikes

E step

Connectivity matrix M step

Ca level

E step: Linear Mixing AMP block



Simulation Results:  Accuracy of the Weights

True weight

E
s
ti
m

a
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d
 w

e
ig

h
t

 Neuron model                      [Sayer (1990)]

– 100 guinea pig cortical neurons

– Synchronized bursting: 10 spikes/s 

– 10% sparse random connectivity 

– 20 ms integrate-fire 𝜏𝑐
– 2 ms inter-neuron conduction time

– 1 ms time step

 Ca2+ imaging model

– 100 frames/s, 100 s trials

– 10000 Fl values per neuron

– 500 ms Ca2+ 𝜏𝑐
– Fluorescence SNR = 20 dB

Accurate estimation

Fletcher et al NIPS ‘14



 Neuron model               [Sayer (1990)]

– Guinea pig cortical column

– 100 neurons  

– 10% sparse random connectivity

– Synchronized bursting: 10 spikes/s 

– 20 ms integrate-fire 𝜏𝑐
– 2 ms inter-neuron conduction 

– 1 ms time step

 Data Collection

– 100 frames/s, 100 s trials

– 10000 Fl samples per neuron

– Ca2+ 𝜏𝑐 = 500 ms, Fl SNR = 20 dB

Accuracy of the Weights

Iteration number

M
e
a
n
 r

e
la

ti
v
e
 e

rr
o
r

 Previous work MSE=0.28, same parameters               Mischenko et al. (2010) 

 Accurate, low complexity 𝑂(𝑁) per iteration, instead of 𝑂(∗𝑁)

Fast convergence 

previous method

Fletcher et al NIPS ‘14

•Relative MSE = 
𝐸 𝑊𝑖𝑗−  𝑊𝑖𝑗

2

𝐸 𝑊𝑖𝑗
2 = 0.12



Network Connectivity Summary

 Network analysis from Ca2+ imaging

– Attack temporal resolution issues for neural dynamics

– Scalable EM algorithm

 Rich, flexible modeling framework

– Incorporates nonlinearities, indirect measurements, dynamics

 Computationally scalable solution

– Linear in number of measurements

 Demonstrated performance

– Outperforms existing techniques 

– Allows more biologically plausible model with feedback

http://gampmatlab.sourceforge.net/ Phil Schniter!!! 

http://gampmatlab.sourceforge.net/


Outline

 Connectivity via multineuronal stimulation

– Iterative fast adaptive GAMP framework

 Network connectivity via Ca2+ imaging

– Network model - captures dynamics

– Graphical models

– Scalable accurate based algorithm

 Receptive field of retinal ganglion cells

– Space-time salamander response to stimuli

– Improved identification with limited data



Receptive Field Identification 

 Retinal ganglion cell (RGC)

Sensitive to light in its field of view,

or receptive field

 Tuned to some local features

in time and space  (curve, edge, etc)

 Response estimation of RGCs:

– Expose retina to image

– Measure response via electrode

– Fit model

 Challenge:  Model is often nonlinear 

Spikes

Electrode

RGC cell



Salamander Receptive Field Identification 

Spikes

Electrode

RGC cell

Visual stimuli



Retinal Ganglion Cell LNP Model

 Linear-Nonlinear Poisson model.  Given stimuli 𝑢𝑖[𝑘]

– Filtering over time and space:  𝑧 𝑘 =  𝑖=1
𝑛 𝛼𝑖(ℎ𝑖 𝑘 ∗ 𝑢𝑖[𝑘])

– Nonlinear phase:  𝑦 𝑘 = 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝑓 𝑧 𝑘 + 𝑑 𝑘

 Identification problem:  Given stimuli  𝑢𝑖[𝑘] and spike counts 𝑦 𝑘

– Estimate weighted filters 𝑤𝑖 𝑘 = 𝛼𝑖ℎ𝑖 𝑘 ,
Describes space-time response of neuron to pixel 𝑖

– Each ℎ𝑖[𝑘] is an 𝐿 tap filter

– Estimate nonlinearity 𝑓(⋅) Fletcher et al. NIPS 2012

ℎ1[𝑘]

Stimuli

( 𝑛 pixel movie)

Time 𝑘

𝛼1(ℎ1 𝑘 ∗ 𝑢1[𝑘])

ℎ𝑛[𝑘]

𝑧 𝑘
+

𝜆 𝑘

𝑦 𝑘

Temporal 

filtering

Weighted sum 

over pixels

Nonlinearity

+ noise

Poisson spike 

process

Spike count

𝑢1[𝑘]

𝑢𝑛[𝑘]

𝛼𝑛(ℎ𝑛 𝑘 ∗ 𝑢𝑛[𝑘])



Structured Matrix View of Dynamic LNP

 LNP model: cascade of linear and nonlinear system

– A rows: 𝑛 pixel values at 𝐿 delays (𝐿 = filter taps)

 Weights have a group sparse constraint:

– RGC sensitive to small image region (spatial sparsity)

– Coefficients of filter of one stimuli are on or off together

⋮

𝒛

𝑇
time 

bins

𝐿 taps / pixel

𝑨

Stimulation matrix

𝒘

⋮

𝒚

Nonlinearity 

& Poisson

Spike 

counts

Poisson( 𝑓 z )

⋮



Classical Methods and their Limitations

 Linear methods:

– Matched filter:   𝒘 =
1

𝑛
𝑨𝑻𝒚 (also called STA)

– Linear MMSE:   𝒘 = 𝑨𝑻𝑨 + 𝜎2𝑰
−1
𝑨𝑻𝒚 (also called RC)

– Also, linear least squares / zero forcing 

– Simple but does not exploit sparsity

 Compressed sensing methods

 𝒘 = argmin
𝑤

𝒚 − 𝑨𝒘 2
2 + 𝜆 𝒘 1

– Exploit sparsity of w

– Many methods: LASSO, OMP, CoSAMP,…

– Could also incorporate group sparsity via group Lasso

– But, does not account for output nonlinearities



Hybrid Algorithm for Structured Input: GAMP

 Introduce binary variables xj to correlate sparsity over time

 Apply GAMP in a  “turbo” manner with loopy BP

 Low complexity:  each xj is binary

 More general than group OMP and group lasso;

– Similar complexity, 

– Better performance  [Rangan, Fletcher, Goyal & Schniter ‘12]

Use GAMP messagesStandard loopy 

BP messages

𝑤𝑖ℓ𝑝(𝑤𝑖ℓ|𝜉𝑖)

𝑧 = 𝐴𝑤



Receptive Field Computation Considerations

 Problem size:  3630 variables

– 11 x 11 pixels, 30 taps per pixel  

– 190,000 measurements (~30 min at 10 ms sampling)

– Structured A matrix is 190,000 by 3630

 AGAMP iteration cost: multiplying by A & A*

– Exploit block Toeplitz structure and entries are 0-1

 For larger problems, algorithm is parallelizable

– Graphical methods: inherent decomposable

– Parallelize multiplications across rows/columns of A

 Cannot theoretically guarantee convergence

– Demonstrate performance experimentally



Experimental Results:  Cross-Validation

 Validated on data used in training (190000 total samples)

 Cross-validation score = Geometric mean of  likelihood of spike rate 

 GAMP: same error, 25000 samples versus 100,000

Data: Anthony Leonardo

Janelia Farm

Num 

training 

samples 

Cross-validation 

score

STA G-AMP

25000 0.906 0.917

50000 0.914 0.921

100000 0.918 0.923

GAMPSTA



Salamander Retinal Response (Spatial)

 Spatial receptive field:  

Plot estimated 11x11 response magnitudes.

Color = 30-tap filter magnitude for each pixel

 Standard STA estimate shows noisy 

(spurious) responses outside

 GAMP method removes noise

Shows only a response in a small area    

Spatial receptive field 

estimates for 11x11 pixel area 

0 1

(normalized)

Filter response 11 x 11 pixels for salamander RGCs

Data from Anthony Leonardo, Janelia Farm



AMP++ methods: Applications in Imaging

 Hybrid-AMP can incorporate complex structure

– Incorporate dependencies between wavelet coefficients

– Hierarchical models, etc

[Som, Schniter, 2011]

Lowest MSE and almost 

fastest computation

Algorithm NMSE (dB) Comp time (secs)

MHT+IRWL1 -14.37 363

CoSAMP -16.90 25

SPLG1 -18.06 536

MCMC -20.10 742

Turbo-GM -20.74 51

http://gampmatlab.sourceforge.net/

http://gampmatlab.sourceforge.net/
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Moving forward

 Better account for exogenous effects

– Correlations across neurons of interest**

– Larger areas via “shotgun” techniques  [Pnevmatikakis et al. 2013]

 Data sets in collaboration

– Paninski Lab, Columbia; Tolias Lab, Baylor, Allen Institute

– Validate methods: first cultured without exogenous

 Model new Ca2+ indicators:

– GCaMP6f (2013): faster decay, rise time = 50-75 ms, ….

– Nonlinear fluorescence model

 Theory 

– Convergence issues of GAMP via new ADMM GAMP

– Networks of low-dimensional, nonlinear dynamical blocks

– Provable results for structured non-iid, structured A



High dimensional inference for dynamical systems

 Generalized linear dynamical networks:

– Underlying low-dimensional, nonlinear dynamical blocks

– Linear memoryless constraints, graphical models

 Many phenomena

– Neural systems, communication networks, particles, media, …

– Extends GLM to include networked dynamics

 Can we extend methods for:

– Scalable estimation algorithms?

– Learning connectivity?

– Provable guarantees?

𝑊𝑖𝑗

𝑥𝑖
𝑘+1 = 𝑓𝑖(𝑥𝑖

𝑘, 𝑢𝑖
𝑘)

Future work : dynamical networks



Joint Estimation and Learning for GLMS

 GLM with unknown parameters 𝜃𝑥 and 𝜃𝑧
– Unknown prior, nonlinearities, noise…

 Joint estimation learning problem:  Given 𝑦 and 𝐴:

– Estimate input 𝑥 and 𝑧,

– Learn parameters 𝜃𝑥 and 𝜃𝑧 in distribution

– Consistent

i.i.d. prior

𝑃𝑋(𝑥|𝜃𝑥)

𝜃𝑥

𝒙 ∈ ℝ𝑛

Input

𝑚 𝑥 𝑛

𝑨
𝒛 ∈ ℝ𝑚

Measurement 

channel

𝑃𝑌|𝑍(𝑦|𝑧, 𝜃𝑧)

𝜃𝑧

𝒚 ∈ ℝ𝑚

Observations

Kamilov, Fletcher, et al NIPS 2012, Trans IT 2014

Fletcher, Rangan NeuRAMP NIPS 2011



High dimensional inference for dynamical systems

 Generalized linear dynamical detworks:

– Underlying low-dimensional, nonlinear dynamical blocks

– Linear memoryless constraints, graphical models

 Many phenomena

– Neural systems, communication networks, particles, media, …

– Extends GLM to include networked dynamics

 Can we extend methods for:

– Scalable estimation algorithms?

– Learning connectivity?

– Provable guarantees?

𝑊𝑖𝑗

𝑥𝑖
𝑘+1 = 𝑓𝑖(𝑥𝑖

𝑘, 𝑢𝑖
𝑘)

Future work : broader


