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Outline

® Neural mapping via multineuron excitation
— Background: Neuroscience
— Optogenetic stimulation
— Estimation via graphical models

m Network connectivity via Ca* imaging
— Large scale but indirect and smoothed
— Network model captures dynamics
— Scalable accurate algorithm
m Receptive Field of Retinal Ganglion Cells
— Spatio-temporal filtering
— Improved identification with limited data
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Neuroscience: Estimation Challenges

Stimulus r
m Large-scale
% % - ~86 billion neurons

- V1 alone 140 million
m Sparse:. ~1000 connections
Fu(t)) . Complex:
Nonlinear dynamics
il Feedback
ndirect measurements
®m Incomplete data
m Limited in vivo collection
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|. Connectivity Detection to a Single Neuron

Detect connections to one neuron
Reduce trials and computation

Optogenetics
Improved “decoding” via subset stimulation




Neuron: Basic Anatomy

Neuron: Basic cell for information processing

B Components

— Dendrites:
Filaments receive signals

Dendrites

@,ﬂ f:)))/ Direction of message — Soma Ce” bOdy

Axon terminals synapse — AXOI’]Z
s v Outputs electrical signals to

neurons or motor functions

Axon — Synapses:
Junctions of axons and dendrites




Neuron: Linear-Nonlinear Poisson Model

Inputs: Gaussian
Spike Rate noise d[t] . .
: Poisson Spike .
Weights x _ _ spike process count Z[t] - z X [t]
Nonlinearity y[t] Py J
a[t] ——
alt] —> . _/_%. ] . Alt] = f(z[t] + d[t])
: N> D
] — y[t] ~ Poisson( A[t])

m Functional Model: simple input-output

— Effectively captures average rates
— Windows: 10 to 200 spikes/s

m Three-stage LNP: Linear + Nonlinearity + Poisson process
m Connectivity: Identify weights x
m Biological models with feedback for precise timing later...
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Classic Connectivity Detection

Measure at post-synaptic neuron of interest

Electrode

Stimulate potential pre-synaptic neurons: one at a time

m Problems: many measurements per test neuron
— Most neurons are not connected
— Noisy system with many exogenous inputs
— Test neurons die

m Can we do better?




New Technologies: Optical Stimulation

Connectivity Detection:
— Genetically modified neuron
* Photosensitive protein
— Optically activate test neurons g
— Greater spatial precision

 Pinpoint individual neurons
« Multiple neurons at once

@/' Wang, Hasan & Seung 2009




Connectivity via Multineuron Excitation

»

Spike recording
Average over time windows

O Potential presynaptic neurons

——— Synapses or connections




Detection via Multineuron Excitation

Bowrgsponse
RN, gy commestion

Spike recording

m Stimulate subsets of neurons at a time
— Increase probability of response
— Fewer wasted trials




Detection via Multi-Neuron Stimulation

m Stimulate subsets of neurons at a time
— Increase probability of a response
— Less measurements wholly wasted
m Benefits
— Weak sub-threshold connection
— More reliable with less data

Hu & Chklovskii NIPS 2010,
Fletcher et al NIPS 2011
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Multi-neuron Excitation: Model

‘:\_ . ~
' Potential neurons: 1:N J7 neuron

@ Excited
x.OC‘O0.0.fOO 000 O Not excited
Connection \ .
weights Excited: {2, 7, 9, 13}

Measurement neuron

“1” entries: {2, 7, 9, 13}
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Multi-neuron Excitation: Model

> . ~
Potential neurons: 1:N J7 neuron
. @® Excited
QOO 000067300-’)000 O Not excited
Connection \ Second trial
weights

Different random subset
Excited: {3, 6, 14, 16}

Measurement neuron

“1” entries: {3, 6,14,16}

A X
y _
. / TR \
_ f H ji" element

: m

NonLP = co?w}rfwne?:r:tnltilzﬁ‘ls (1 0
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Multi-neuron Excitation: Model

D . jth
Potential neurons: 1:N J7 neuron
@® Excited
q.(—\' \/_J(__J. L/./r/_j o]0 101010 O NOt eXC|ted
Connection \
weights mth excitation

Measurement neuron

m trials or

/ “measurements”
d

measurements

y X
_ E ji" element
o e, .
L -

v
—_—
G =
oo
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Bayesian Nonlinear Generalized Linear Models

Separable nonlinearity & noise

J p(y12) = [Ip(il2)
iid X A z | Measurement
p(x) y
Known linear
transform

m Problem: Estimate x and z given y and 4

m Bayesian formulation: general system class
— Prior Py (x) incorporates constraints, like sparsity
- Py|z(y|z) models output: nonlinearities, randomness

m Challenge: optimal estimation is hard
— Components of vector x are coupled in z
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Example: Sparse recovery

<
|
AN
s
4
S¥

p(x) = Sparse prior
p(y|z) = Gaussian

3
|

A [1]

m Problem: Given A and y, recover sparse X

m Many applications
— Communication channels, linear inverse problems
— Wavelet image reconstruction
— Regularized linear regression, classification
— Compressed sensing...

® Now many algorithms, theoretical analyses, ...

.




Divide & Conquer with Graphical Models

m Subdivide & conquer n m
: PX|Y(x|J’) = 1_[]_

m Few “smaller” components
— Few variables
— Limited connections

m Message passing:
— Iteratively update marginals
— Global estimation local

m But random A Is dense!
p(yllxl"-xr) p(ymlx)
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"Graphical Model" for GLM

ﬁ@ Zq p(¥11z1)
X O
p(x) ﬁ& Zy O p(y2|22)

p(x3) A

@Oi

p(xn) h& P(Vm|zZm)

\ } \ }
| |
X with indep B Separable “output”
Z=AX _

components channele.g.y=z+w

m Assume separable priors & likelihoods

m The posterior density p(x|y) factors into:
- m + n scalar terms:; and
— Linear constraint z = Ax

ANy 0 s



Generalized Approximate Message Passing (GAMP)

Py (%) A PY|Z(J’|Z) 5

Multiplication by A

I
Scalar (separable) Scalar (separable)
estimation of x ¢ | estimation of z

Multiplication by A*

Gaussian & quadratic approximations
Asymptotic guarantees

Low complexity: 0(mn) each iteration

Classic AMP*: separable distributions & AWGN

GAMP: KNOWN nonlinearities

AMP Donoho, Maleki, Montanari 09, Bayati & Montanari 10,
GAMP Rangan et al 10, HyGAMP Fletcher et al 11, ...

ANy 0 s



Theorem: Joint Estimation & Learning with Adaptive GAMP

o 0, Observations
I Input l
x € R" z€eR™ y € R™
Py (x|6,) 2l A Py,z(¥1z,6;) >
I.i.d. prior Measurement
mxn channel

m GLM with unknown parameters 6, and 6,
— Unknown prior, nonlinearities, noise...

m Joint estimation learning problem: Given y and A:
— Estimate input x and z,
— Learn parameters 6, and 6, in distribution
— Consistent estimator =

Kamilov, Fletcher, Rangan, Unser NIPS 2012, Trans IT 2014
Sy



Neural Mapping via Adaptive-GAMP: NeuRAMP

Noise

Spikes

Unknown input
p(x)

>y

MXN P(y|z, 6,)
Unknown random nonlinearity

COT I TTTITTTITT] >

m Problem: For neural LNP model:
— Incorporates sparsity on prior Py (x)
- Pyz(y|z,6,) models unknown output nonlinearities

m Jointly: Estimate weight vector x
Learn the nonlinearity
m Computationally fast

m Improved estimates with fewer measurements
Fletcher et al. NIPS (2011)
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Simulation: MSE of Synaptic Weight Estimates

T T T T T T T

100%  [~-rc m RC: Reverse Correlation
o e | GOSAMP - | . L
S |~ AdaptGAWP — Linear estimation
5 | - — No sparsity
©
2 N , m *CoSaMP: Greedy CS
10% : | : : : | : : ..
5-)' N SN — Ignores nonlinearities
o S .
= s/ I S m **Adaptive GAMP:
& N T
E | ; | | ' — Lower MSE
. i . j j j ‘ i — Fewer measurements
1% 00 150 200 250 300 350 400 450 500

Number of measurements (m)

m = number of trials, random excitation ~40

n = 500,

k =30 or 6% Bernoulli-Gayssuab weights

100 spike windows: 10.4s

Spike rate: 10 spikes/s with.4 second reset *Hu & Chlovskii NIPS 2010
300 trials: ~1 hour *Fletcher et al, NIPS 2011

.




Simulation: NeuRAMP Connectivity Detection

. [—rc__ | m Factors:

.| CoSaMP

T Im=CAMR | — Models nonlinearities
$f — Optimal learning

— Incorporates sparsity

— Similar complexity

0.8k I

0.6

m GAMP outperforms RC & CoSaMP
— 75% and 50% lower missed detects

Missed detection rate

False alarm rate

“Simultaneous all optical manipulation and recording...”, AM Packer, Dec 2014 Nature

**“Block sparse” filters: Salamander visual receptive field
[>]

.




Moving forward: Scalable adaptive block

m Generalized Approximate Message Passing (GAMP)

m Improved neural connectivity detection
— Data limited

— Unknown nonlinearities, sparsity levels

Qutput
jm——————_ al observations

m Scalable adaptive GAMP block ! varables
— Linear mixing blocks
— Low complexity: scalable

— Extensible
— Rich input output models Input input
. i I
_ A daptlve parar:elers vgriables Output

parameters
v




Outline

m Network connectivity via Ca* imaging
— Large scale in vivo layers
— Remarkable spatial resolution
— Indirect, temporally smoothed
— Network model - captures dynamics
— Scalable accurate EM algorithm




Inference of Network Connectivity

Neuron i o Neuron j
l

S Estimated connectivity map

-

Network of neurons: with synaptic weights W;;
unknown synaptic connectivity




New Technologies: Calcium Imaging

m Fluorescent Ca?* indicators
— Genetically encoded
— Chemical dyes

m Spiking: Ca?* influx

m Large populations in parallel

(
@ —&S Mei Zhang 2009

Transgenic mice

& |I0se



Two photon Ca%*imaging: depth acquisition

m Fluorescence & spiking:
— Ca?* influx

m Two-photon imaging
Short pulses i
— Raster scan \ i

— Depth acquisition v Fluoresce:
. : Vo Neuron is firing
| Spatlal reSOIUtlon \.\ Ij and two photons

— Image into the cortex \




m Fluorescence & spiking:

Two photon Ca%*imaging: depth acquisition
— Ca?* influx
m Two-photon imaging

— Raster scan : ‘

— Depth acquisition ;-"; Refocus depth
m Spatial resolution L
— Image into the cortex

Cortical layers

Cortex ~ 2-4 mm




Calcium Imaging: Connectivity Detection Problem

Network of neurons; ,
. . . + 1
unknown synaptic connectivity Ca** fluorescence movie

Neuron i .
W, Neuron j

Estimated connectivity map
with synaptic weights W;;

a8 |0se

Ca?* fluorescence image
MPI 2012




Ca’* Imaging: Strengths

m Parallel measurements
(~102 neurons)

m |n VvIivO Or In Vitro

m High spatial resolution
(neuronal level, sub-um)

m Image below surface

M. Kuykendal and G. Guvanasen, Georgia Tech




Challenges with Ca?* Imaging

Calcium Fluorescence e Indirect fluorescence traces
i e Nonlinear dynamics
| e Large data sets
~ - » Exogenous inputs
i1 h  Heavy temporal blurring
- Ca?* long decay: 7,~0.5 s **
e Low frame rate

@ __f.WJJJJJ,K - Frames: 10-100 ms’

] 100 ms - Interneuron dynamics: 1-3 ms
[Stociek et al. (2003)] * Need super-resolution

102 AFIF

| 20 mv

lutamate in Ikin T
Glutamate induced spiking *GCaMP5, newer indicators faster

NIPS 2013 & NIPS 2015 workshops:
"Statistical Methods For Understanding Neural Systems"

IS T e




Network Inference: Causality Crucial

Neuron i

W, Neuron j

VAR " G S kS Estimated connectivity map
Network of neurons: with synaptic weights W;;

unknown synaptic connectivity

Elements of the network : time-varying electrochemical devices




Neuronal Model: Integrate and Fire

Synaptic Membrane Spike emission
weight voltage
Input spike —. ®_. S @__, _] .

currents
i—ej ]

b Reset

m Electrochemical dynamic model:

m V;(t) = neuron i potential Ij;(t) = current j**to i*" neuron
m [ntegrate phase: Potential builds: Vi(t) < Vi
Vi(t) N
m C; _V(t) + z . l] l](t)
. j=
Charge increase  |eakage Incoming current

m Fire: discharges spike, reset:  V;(t) =V, = Vi(t1) = Vosor
[Lapicque (1907)]
ANy 0 s




Calcium Imaging: Connectivity Detection Problem

Network of neurons; ,
. . . + 1
unknown synaptic connectivity Ca** fluorescence movie

Neuron i .
W, Neuron j

Estimated connectivity map
with synaptic weights W;;

a8 |0se

Ca?* fluorescence image
MPI 2012




Each Neuron: Discrete-Time Neural Model

m Voltage: integrate and fire:

vttt = 1 —a)vf + X, Wy sf +di;  [Integrate]

it vitl>u= sf=1vk1 =0, [spike & reset]
else vftl<u= sk=0 [no spike]
Calcium fluorescence

Zlk-l_l = (1 — ,B)ZfC + Slk + d;‘,i [z: Ca2']

yE =az+ d;‘;,i [y: fluorescence]

W;; = "weight" = integrated voltage change from spike current

m Ca?" fluorescence: dynamical system also
m Nonlinear state space

m Need: connectivity, spike times, voltages, calcium...

Mischenko, Vogelstein, Paninski (2010), Yasuda(2004), Vogelstein et al (2010)
Fletcher et al, COSYNE 2014, NIPS 2014
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Summary: System

Spikes

Input: l ‘
stimuli & neurons | H ‘

Threshold & Calcium
Integrator | reset fluorescence

vt = (1 —a)v* + Wsk+dk < Membrane voltage integration
=1, v¥ = 0 when v* > i <—— Spike and reset

Zk+1 — (1 B)z* + dk + sk Bound Ca?* concentration

yk —azk + dﬁ‘, Fluorescence




Maximum Likelihood Estimation of Connectivity

m ML estimate:
W = argmaxlogP(Y|W) =AWl

[

Observations Desired parameters
e.g. connectivity matrix

— Can add regularization term to impose sparsity




Expectation Maximization Algorithm

vl = (1 — a)v* + Wsk + d¥ = Want regularized ML:
sk =1, vk = 0whenv* > W = argmaxlogp(y|W) — AWl
N . Hidden states (v*, z¥, s%)

k+1 — (1 — k K k
z (1-p)z"+dz +s m Use EM iterations

K — 4k K
Yy =az" +d,

Distribution of hidden
E step states (v", z¥, s%) M step

—
e
<

Estimate. distribut : Hxact tat :
rcdon ST %ag'”g@m% ;%gf%fgirf%{%igjgwietes:
igh- |

paramelets inear in likelihood MischeTk'Q t(:,.etg;? | 2010]
LASSO problem Parameiér i

estimate W

oy

bbs sampling




Decoupling for the E-Step

m \Want: State estimates for nonlinear system
— High dimensional : N Neurons, 3N states

m Key insight: System decouples: scalar iterations g* = Ws*

Caz*
' i k ncentration

Summed Integrate and fire splkei S Co
currents Zj

k

TN .0

Fluorescence
k
— W Vi

Connectivity matrix q* = Ws*

@@ |I0SC



Decoupling for the E-Step

N scalar 1-dim

systems

Summed
currents

qr

k — wek
Q- =Ws Connectivity matrix %

—

k+1={(1_“)vlk+qlk v < p
0

vk >

when i

Integrate and fire

vE > u

N scalar 1-dim systems
—

zFt = (1 - Bz + sf

yl-k = azik +d§c

Caz*
spikes s¥  concentration

i"»l'“ i \\ Ny

-

Fluorescence
levels yff

W

Memoryless linear constraints
Approximate Message Passing




Decoupling for the E-Step

N scalar Forward Backward

Summed
currents

qr

k — wek
Q- =Ws Connectivity matrix %

—

k+1={(1_“)vlk+qlk v < p
0

vk >

when i

Integrate and fire

vE > u

N scalar Forward Backward
—

zFt = (1 - Bz + sf

yl-k = azik +d§c

Caz*
spikes s¥  concentration

i"»l'“ i \\ Ny

-

Fluorescence
levels yff

W

Memoryless linear constraints
Approximate Message Passing




EM Overview

m Fluorescence movie: estimate

— Connectivity matrix W, spike times, voltages vw‘ﬁ
,,"3,\
m Scalable block Sy

— High-dimensional, nonlinear dynamical system

E step 1

.

voltages spikes Ca level | —
Ext stimuli / "'..Ju,"fh'k-"t
L—- . )i
other neurans Threshold & Calecium "
Integrator ——= >

reset fluorescence Neuron i W J
L

T

m
W

‘\ . . .
E step: Linear Mixing AMP block

Connectivity matrix «—— M step




Simulation Results: Accuracy of the Weights

Accurate estimation
m  Neuron model [Sayer (1990)]

— 100 guinea pig cortical neurons
— Synchronized bursting: 10 spikes/s
— 10% sparse random connectivity
— 20 ms integrate-fire t,
— 2 ms inter-neuron conduction time
— 1 mstime step

m Ca?"imaging model
— 100 frames/s, 100 s trials
— 10000 &t values per neuron

— 500 ms Ca?* 1,
— Fluorescence SNR =20 dB

0.25+

Estimated weight

b 005 01 045 02 025 03
True weight

Fletcher et al NIPS ‘14
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Accuracy of the Weights

Fast convergence m  Neuron model [Sayer (1990)]
035 — Guinea pig cortical column
. — 100 neurons
= — 10% sparse random connectivity
g — Synchronized bursting: 10 spikes/s
% — 20 ms integrate-fire T,
- — 2 ms inter-neuron conduction
S — 1 ms time step
= o1, S S S SN m Data Collection

— 100 frames/s, 100 s trials
— 10000 &¢ samples per neuron

— Ca?* 1, =500 ms, $ SNR = 20 dB

lteration number

E(W--—VT/--)Z
) 2012
E(Wij)

*Relative MSE =

m Previous work MSE=0.28, same parameters Mischenko et al. (2010)

m Accurate, low complexity O(N) per iteration, instead of 0(*")
Fletcher et al NIPS “14
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Network Connectivity Summary

m Network analysis from Ca?* imaging
— Attack temporal resolution issues for neural dynamics
— Scalable EM algorithm

m Rich, flexible modeling framework
— Incorporates nonlinearities, indirect measurements, dynamics

m Computationally scalable solution
— Linear in number of measurements

m Demonstrated performance
— Outperforms existing techniques
— Allows more biologically plausible model with feedback

Phil Schniter!!!

ANy 0 s



http://gampmatlab.sourceforge.net/

Outline

m Receptive field of retinal ganglion cells
— Space-time salamander response to stimuli
— Improved identification with limited data




Receptive Field Identification

 Spikes

m Retinal ganglion cell (RGC) MMMUM

Sensitive to light in its field of view,
or receptive field

m Tuned to some local features
In time and space (curve, edge, etc)

Electrode

A RGCch
\

m Response estimation of RGCs:
— EXxpose retina to image
— Measure response via electrode
— Fit model

m Challenge: Model is often nonlinear

ANy 0 s




Salamander Receptive Field Identification

Spikes

Electrode

Visual stimuli




Retinal Ganglion Cell LNP Model

Time k hy [k]

Nonlinearity
uq[k] . ay (hy[k] * uq [K]) 7 + noise
l [k]
| ° o A L, "
- . T AlK]
[ n(hnlk] = up[k . ) [
\ 1 @y (hn K] * un [K]) Poisson spike Spike count
Un[k] Weighted sum process
h, [k i
Stimuli nlk] over pixels
Temporal

( n pixel movie) filtering

m Linear-Nonlinear Poisson model. Given stimuli u;[k]
— Filtering over time and space: z[k] = X, a;(h;[k] * u;[k])
— Nonlinear phase: y[k] = Poisson(f (z[k] + d[k]))

m I|dentification problem: Given stimuli u;[k] and spike counts y|[k]
— Estimate weighted filters w;[k] = a;h;[k],
Describes space-time response of neuron to pixel i
— Each h;[k] is an L tap filter
— Estimate nonlinearity f(+) Fletcher et al. NIPS 2012

ANy 0 s




Structured Matrix View of Dynamic LNP

A

L taps / pixel
+—>

A

T L -

time

bins | LI

v Pixel 1 2

Stimulation matrix

m s

Poisson( f(z2))
a N
: Spike
Stacked filter counts
weights with

group sparsity Nonlinearity n

L & Poisson

z y

m LNP model: cascade of linear and nonlinear system
— A rows: n pixel values at L delays (L = filter taps)

m Weights have a group sparse constraint:
— RGC sensitive to small image region (spatial sparsity)
— Coefficients of filter of one stimuli are on or off together

.



Classical Methods and their Limitations

m Linear methods:
— Matched filter: w = %ATy (also called STA)

— Linear MMSE: w = (4TA + 021)_1ATy (also called RC)
— Also, linear least squares / zero forcing
— Simple but does not exploit sparsity

m Compressed sensing methods

W = argmin|ly — Aw||3 + Al|lwl|,

— Exploit sparsity of w

— Many methods: LASSO, OMP, CoSAMP,...

— Could also incorporate group sparsity via group Lasso
— But, does not account for output nonlinearities

ANy 0 s



Hybrid Algorithm for Structured Input: GAMP

P&) & pwirléi) wyp

pvilz)
: —
. M
. I A ITI @
: ¢
* O z=Aw O
|
= >p€ >
Standard loopy | Use GAMP messages
BP messages

Introduce binary variables g, to correlate sparsity over time
Apply GAMP in a “turbo” manner with loopy BP
Low complexity: each &; is binary
More general than group OMP and group lasso;
— Similar complexity,
— Better performance [Rangan, Fletcher, Goyal & Schniter “12]
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Receptive Field Computation Considerations

m Problem size: 3630 variables

— 11 x 11 pixels, 30 taps per pixel

— 190,000 measurements (~30 min at 10 ms sampling)

— Structured A matrix is 190,000 by 3630
m AGAMP iteration cost: multiplying by A & A*

— EXxploit block Toeplitz structure and entries are 0-1
m For larger problems, algorithm is parallelizable

— Graphical methods: inherent decomposable

— Parallelize multiplications across rows/columns of A
m Cannot theoretically guarantee convergence

— Demonstrate performance experimentally




Experimental Results: Cross-Validation

\ 25000 0.906 0.917

e S e
s V)

™~ 00000 0.914 0.921

ey
Training /A

- f‘“":}x 100000 0.918 0.923

0 100 200 300 0 100 200 300
Delay (ms) Delay (ms)

m Validated on data used in training (190000 total samples)
m Cross-validation score = Geometric mean of likelihood of spike rate
m GAMP: same error, 25000 samples versus 100,000

Data: Anthony Leonardo
Janelia Farm

<
ANy 0 s




Salamander Retinal Response (Spatial)

Non-sparse LNP w/ STA m Spatial receptive field:

Plot estimated 11x11 response magnitudes.
Color = 30-tap filter magnitude for each pixel
m Standard STA estimate shows noisy

(spurious) responses outside

Sparse LNP w/ GAMP

N m GAMP method removes noise
{ Shows only a response in a small area

Spatial receptive field
estimates for 11x11 pixel area
.
0 1 Filter response 11 x 11 pixels for salamander RGCs

(normalized) Data from Anthony Leonardo, Janelia Farm P

a® |I0Se



AMP++ methods: Applications in Imaging

m Hybrid-AMP can incorporate complex structure
— Incorporate dependencies between wavelet coefficients
— Hierarchical models, etc

SPGL1

Turbo-GM

Algorithm NMSE (dB) | Comp time (secs)

MHT+IRWL1 -14.37

CoSAMP -16.90
SPLG1 -18.06
MCMC -20.10
Turbo-GM -20.74

B Lowest MSE and almost
" fastest computation

536

742

51 [Som, Schniter, 2011]
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Thank you

e
Sere VT B
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~——— | forthe Theory of Computing  [Uiniverreity e e tifornia for Theoretical Neuroscience

SIHONS Berkeley )

Much thanks! To: Fritz Somer, Surya

Ganguli, Eero Simoncelli, Eftychios

Pnevmatikakis,Matthias Bethge, Anthony

Leonardo, Evan Lyall, students of Deisseroth g Fynding: NSF CAREER,ONR, AFOSR,
& Adesnik labs, Liam Paninski, Mayur Qualcomm
Mudlgonda Jascha Sohl-Dickstein..




Moving forward

m Better account for exogenous effects
— Correlations across neurons of interest**
— Larger areas via “shotgun” techniques [Pnevmatikakis et al. 2013]
m Data sets in collaboration
— Paninski Lab, Columbia; Tolias Lab, Baylor, Allen Institute
— Validate methods: first cultured without exogenous
m Model new Ca?* indicators:
— GCaMP6f (2013): faster decay, rise time = 50-75 ms, ....
— Nonlinear fluorescence model
m Theory
— Convergence issues of GAMP via new ADMM GAMP
— Networks of low-dimensional, nonlinear dynamical blocks

— Provable results for structured non-iid, structured A
=0 . 2 L’




Future work : dynamical networks

High dimensional inference for dynamical systems

m Generalized linear dynamical networks:
— Underlying low-dimensional, nonlinear dynamical blocks
— Linear memoryless constraints, graphical models

m Many phenomena

— Neural systems, communication networks, particles, media, ...
— Extends GLM to include networked dynamics

m Can we extend methods for: ] Wi |
— Scalable estimation algorithms? \ N
— Learning connectivity? \
— Provable guarantees? /

k+1 fl(xl ’uk)




Joint Estimation and Learning for GLMS

o 0, Observations
I Input l
x € R" z€eR™ y € R™
Py (x[6y) A PY|Z(3’|Z: 6,) >
I.i.d. prior Measurement
mxn channel

m GLM with unknown parameters 6, and 6,
— Unknown prior, nonlinearities, noise...

m Joint estimation learning problem: Given y and A:
— Estimate input x and z,
— Learn parameters 6, and 6, in distribution

— Consistent
Fletcher, Rangan NeuRAMP NIPS 2011

Kamilov, Fletcher, et al NIPS 2012, Trans IT 2014
Sy




Future work : broader

High dimensional inference for dynamical systems

m Generalized linear dynamical detworks:
— Underlying low-dimensional, nonlinear dynamical blocks
— Linear memoryless constraints, graphical models

m Many phenomena

— Neural systems, communication networks, particles, media, ...
— Extends GLM to include networked dynamics

m Can we extend methods for: ] Wi |
— Scalable estimation algorithms? \ N
— Learning connectivity? \
— Provable guarantees? /

k+1 fl(xl ’uk)




