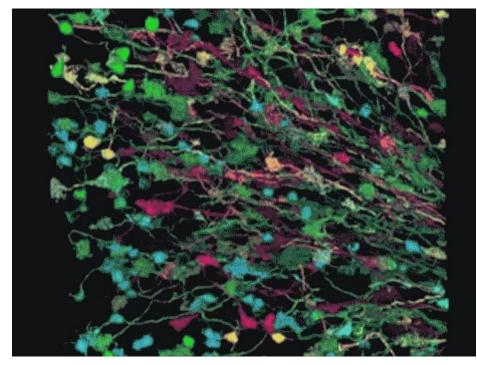
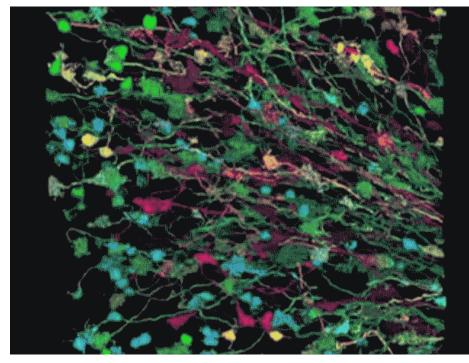
The brain: networks of neurons



Mouse cerebellum Lichtman et al. 2008

The brain: networks of neurons



1 mm³

~1.5 year, 1 petabyte (10^{15})

Mouse brain: ~ 2000 years, 1 *exabyte* (10¹⁸)

Human cortex: $\sim 10^7$ years, 10 *zettabytes* (10²¹)

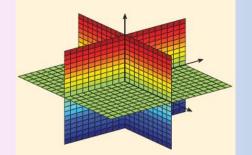
World storage: 300 exabytes

~ on January 2015

Mouse cerebellum

Lichtman et al. 2008

Scalable Inference in Large Neural Systems



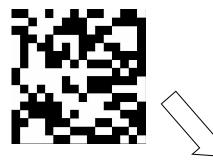
Allie Fletcher Nov 5, 2015

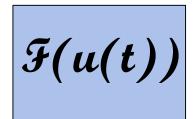
UC Santa Cruz Electrical Engineering UC Berkeley Redwood Center, HWNI UCLA Statistics, Math, & EE– Jan 2016

Outline

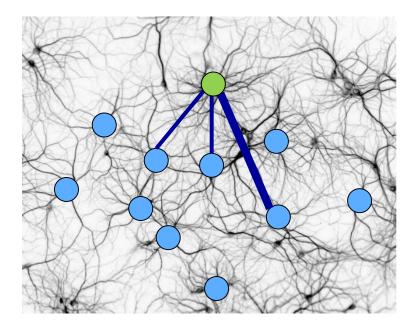
- Neural mapping via multineuron excitation
 - Background: Neuroscience
 - Optogenetic stimulation
 - Estimation via graphical models
- Network connectivity via Ca²⁺ imaging
 - Large scale but indirect and smoothed
 - Network model captures dynamics
 - Scalable accurate algorithm
- Receptive Field of Retinal Ganglion Cells
 - Spatio-temporal filtering
 - Improved identification with limited data

Neuroscience: Estimation Challenges





- Large-scale
 - ~86 billion neurons
 - V1 alone 140 million
- Sparse: ~1000 connections
- Complex:
 - Nonlinear dynamics
 - Feedback
- Indirect measurements
- Incomplete data
- Limited in vivo collection



Problem:

Detect connections to one neuron

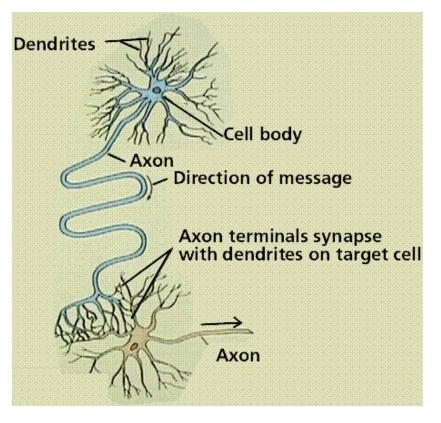
Goal:

Reduce trials and computation

How:

Optogenetics Improved "decoding" via subset stimulation

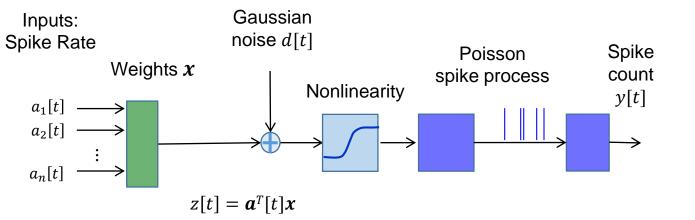
Neuron: Basic cell for information processing



Components

- Dendrites: Filaments receive signals
- Soma: cell body
- Axon:
 Outputs electrical signals to neurons or motor functions
- Synapses: Junctions of axons and dendrites

Neuron: Linear-Nonlinear Poisson Model



$$z[t] = \sum_{j} x_{j} a_{j}[t]$$

$$\int_{a_{f}}^{d_{f}} \lambda[t] = f(z[t] + d[t])$$

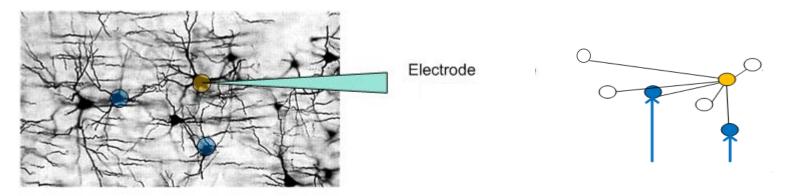
$$y[t] \sim Poisson(\lambda[t])$$

Functional Model: simple input-output

- Effectively captures average rates
- Windows: 10 to 200 spikes/s
- Three-stage LNP: Linear + Nonlinearity + Poisson process
- Connectivity: Identify weights x
- Biological models with feedback for precise timing later...

Classic Connectivity Detection

Measure at post-synaptic neuron of interest



Stimulate potential pre-synaptic neurons: one at a time

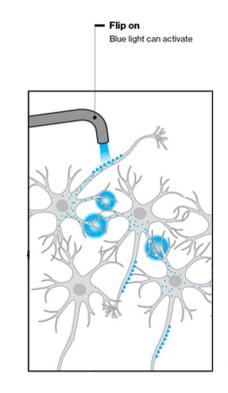
Problems: many measurements per test neuron

- Most neurons are not connected
- Noisy system with many exogenous inputs
- Test neurons die
- Can we do better?

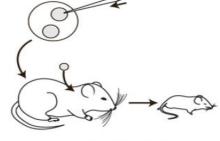
New Technologies: Optical Stimulation

Connectivity Detection:

- Genetically modified neuron
 - Photosensitive protein
- Optically activate test neurons
- Greater spatial precision
 - Pinpoint individual neurons
 - Multiple neurons at once

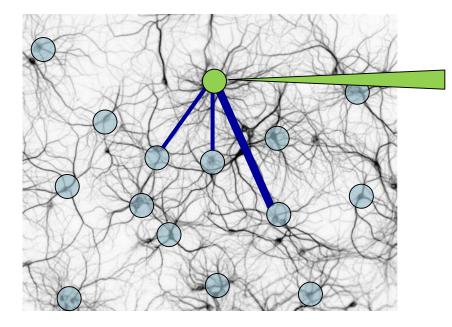






Transgenic mice

Connectivity via Multineuron Excitation

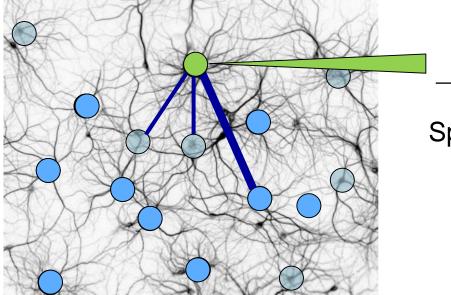


Spike recording Average over time windows

Potential presynaptic neurons

Synapses or connections

Detection via Multineuron Excitation



Strørresponse

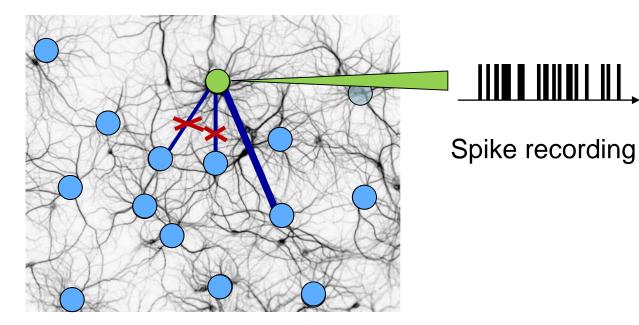
Norcomtection

Spike recording

Stimulate subsets of neurons at a time

- Increase probability of response
- Fewer wasted trials

Detection via Multi-Neuron Stimulation

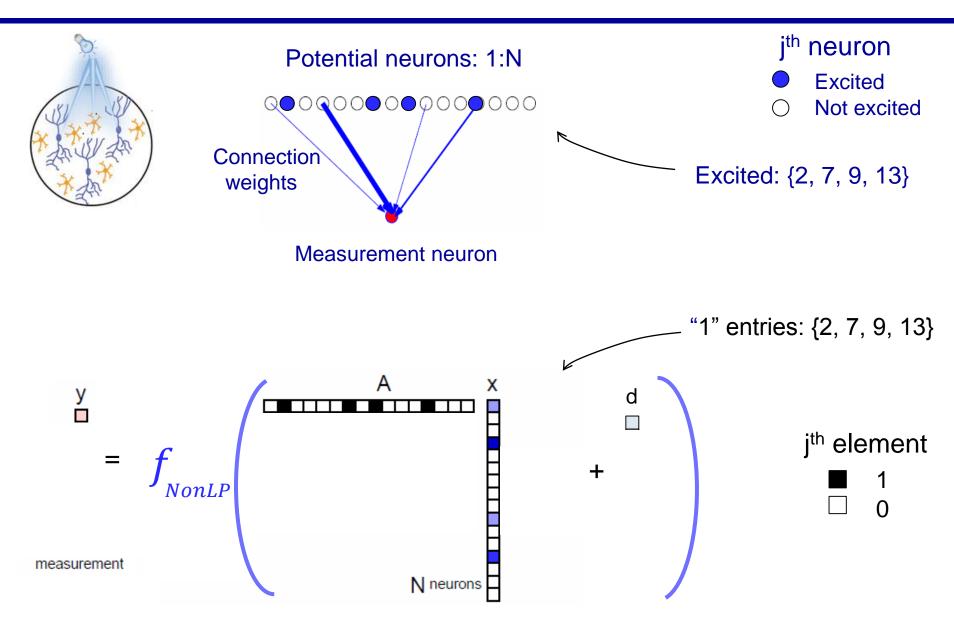


Nowedsponsection **Studentination**

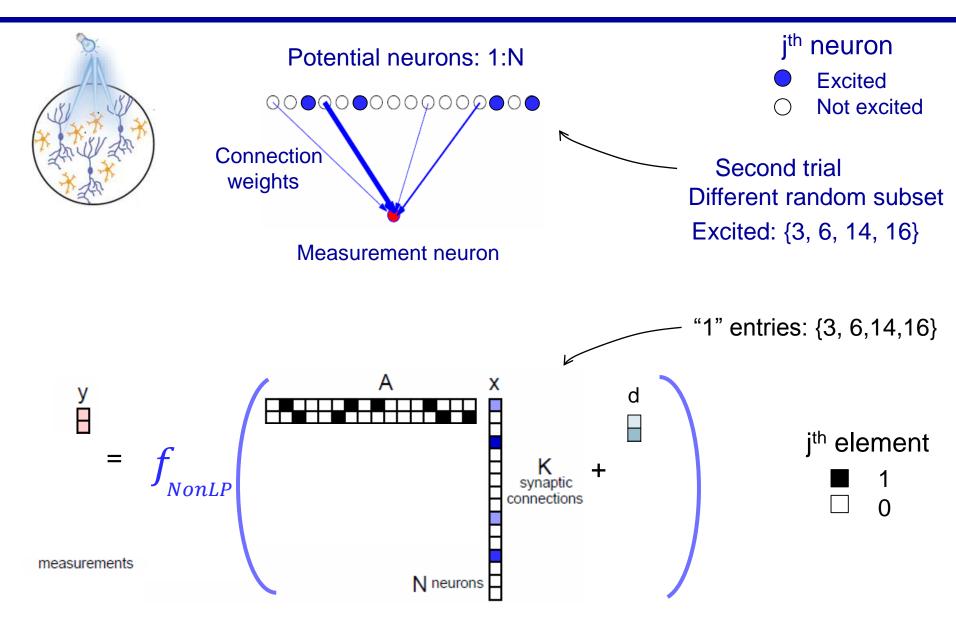
- Stimulate subsets of neurons at a time
 - Increase probability of a response
 - Less measurements wholly wasted
- Benefits
 - Weak sub-threshold connection
 - More reliable with less data

Hu & Chklovskii NIPS 2010, Fletcher et al NIPS 2011

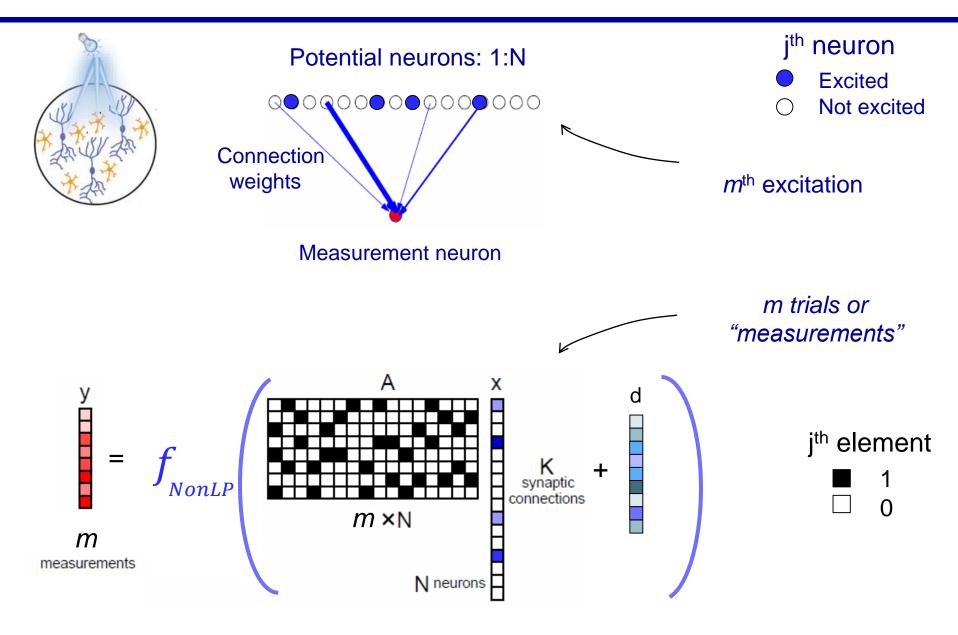
Multi-neuron Excitation: Model



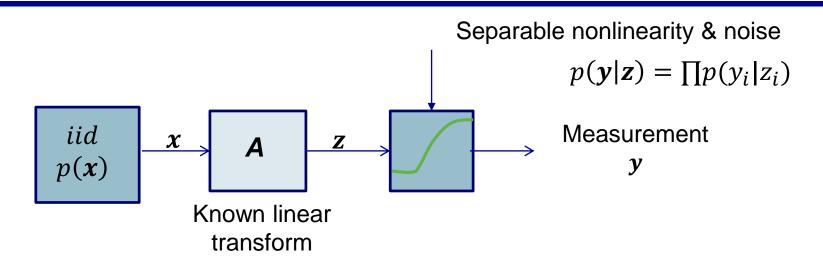
Multi-neuron Excitation: Model



Multi-neuron Excitation: Model

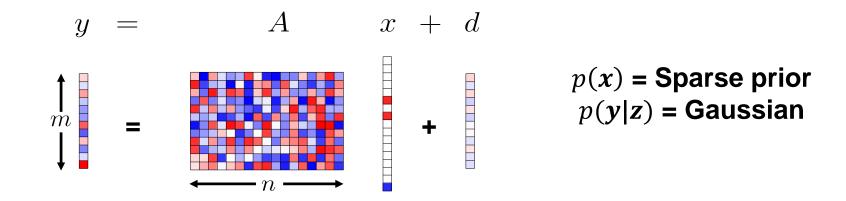


Bayesian Nonlinear Generalized Linear Models



- Problem: Estimate x and z given y and A
- Bayesian formulation: general system class
 - Prior $P_X(x)$ incorporates constraints, like sparsity
 - $P_{Y|Z}(y|z)$ models output: nonlinearities, randomness
- Challenge: optimal estimation is hard
 - Components of vector \mathbf{x} are coupled in \mathbf{z}

Example: Sparse recovery



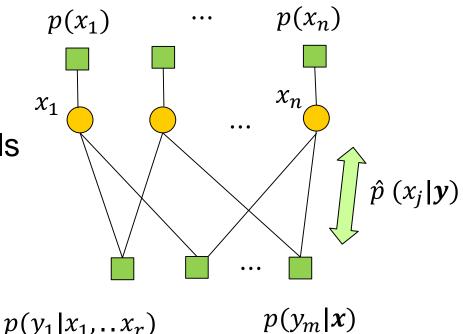
- Problem: Given A and y, recover sparse x
- Many applications
 - Communication channels, linear inverse problems
 - Wavelet image reconstruction
 - Regularized linear regression, classification
 - Compressed sensing...
- Now many algorithms, theoretical analyses, ...

Divide & Conquer with Graphical Models

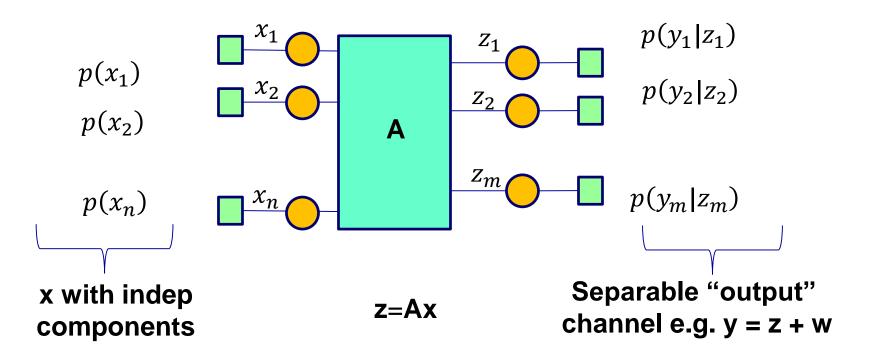
Subdivide & conquer

$$p_{X|Y}(\boldsymbol{x}|\boldsymbol{y}) = \prod_{j=1}^{n} p(x_j) \prod_{i=1}^{m} p(y_i|\boldsymbol{x})$$

- Few "smaller" components
 - Few variables
 - Limited connections
- Message passing:
 - Iteratively update marginals
 - Global estimation local
- But random A is dense!

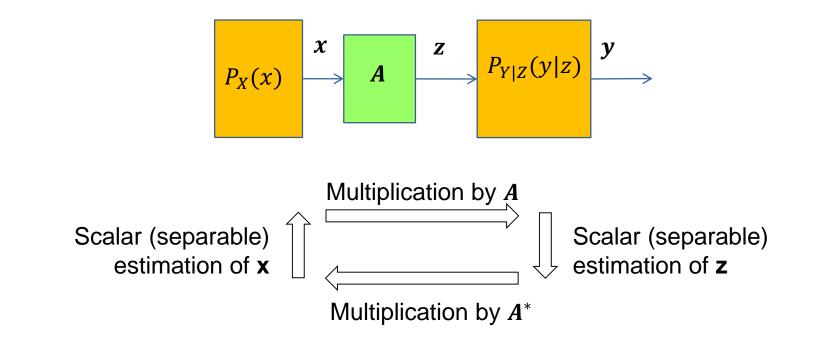


"Graphical Model" for GLM



- Assume separable priors & likelihoods
- The posterior density p(x|y) factors into:
 - m + n scalar terms; and
 - Linear constraint z = Ax

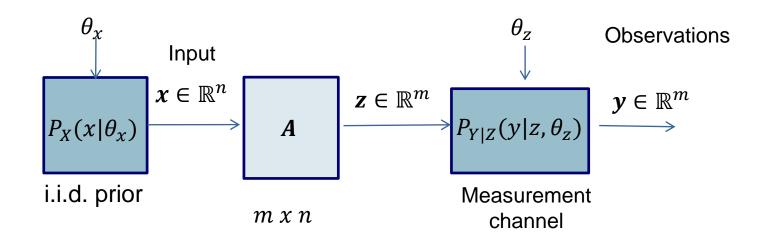
Generalized Approximate Message Passing (GAMP)



- Gaussian & quadratic approximations
- Asymptotic guarantees
- Low complexity: *O*(*mn*) each iteration
- Classic AMP*: separable distributions & AWGN
- GAMP: KNOWN nonlinearities

AMP Donoho, Maleki, Montanari 09, Bayati & Montanari 10, GAMP Rangan et al 10, HyGAMP Fletcher et al 11, ...

Theorem: Joint Estimation & Learning with Adaptive GAMP

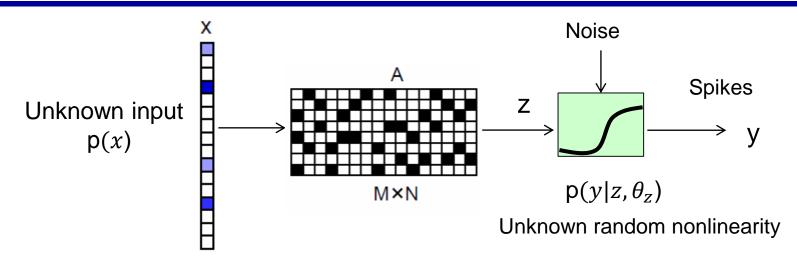


- **GLM** with unknown parameters θ_x and θ_z
 - Unknown prior, nonlinearities, noise...
- Joint estimation learning problem: Given y and A:
 - Estimate input x and z,
 - Learn parameters θ_x and θ_z in distribution
 - Consistent estimator

Kamilov, Fletcher, Rangan, Unser NIPS 2012, Trans IT 2014

 \triangleright

Neural Mapping via Adaptive-GAMP: NeuRAMP



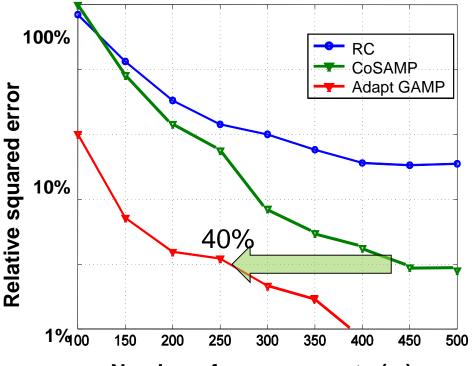
- Problem: For neural LNP model:
 - Incorporates sparsity on prior $P_X(x)$
 - $P_{Y|Z}(y|z, \theta_z)$ models unknown output nonlinearities
- Jointly: Estimate weight vector x

Learn the nonlinearity

- Computationally fast
- Improved estimates with fewer measurements

Fletcher et al. NIPS (2011)

Simulation: MSE of Synaptic Weight Estimates



Number of measurements (m)

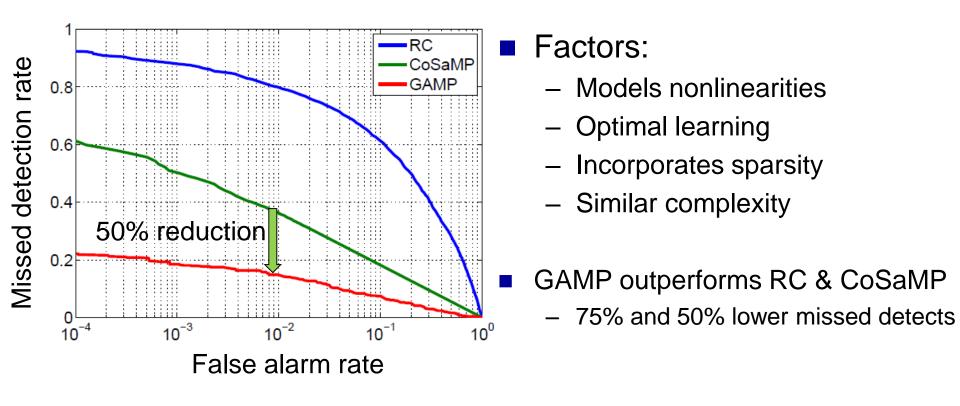
m = number of trials, random excitation ~40n = 500,k = 30 or 6%Bernoulli-Gayssuab weights

100 spike windows: 10.4s Spike rate: 10 spikes/s with.4 second reset 300 trials: ~1 hour

- RC: Reverse Correlation
 - Linear estimation
 - No sparsity
- *CoSaMP: Greedy CS
 - Ignores nonlinearities
- **Adaptive GAMP:
 - Lower MSE
 - Fewer measurements

*Hu & Chlovskii NIPS 2010 **Fletcher et al, NIPS 2011

Simulation: NeuRAMP Connectivity Detection

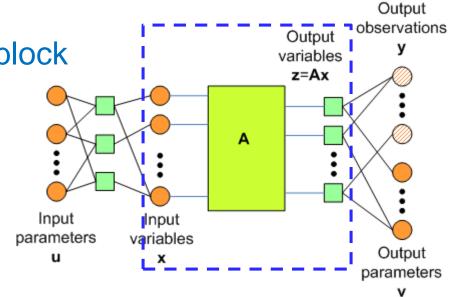


"Simultaneous all optical manipulation and recording...", AM Packer, Dec 2014 Nature ****"Block sparse" filters:** Salamander visual receptive field

 \triangleright

Moving forward: Scalable adaptive block

- Generalized Approximate Message Passing (GAMP)
- Improved neural connectivity detection
 - Data limited
 - Unknown nonlinearities, sparsity levels
- Scalable adaptive GAMP block
 - Linear mixing blocks
 - Low complexity: scalable
 - Extensible
 - Rich input output models
 - Adaptive



Outline

- Connectivity via multineuronal stimulation
 Iterative fast adaptive GAMP framework
- Network connectivity via Ca²⁺ imaging
 - Large scale in vivo layers
 - Remarkable spatial resolution
 - Indirect, temporally smoothed
 - Network model captures dynamics
 - Scalable accurate EM algorithm
- Receptive field of retinal ganglion cells
 - Space-time salamander response to stimuli
 - Improved identification with limited data

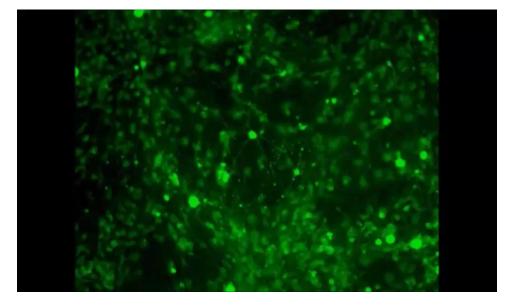
Inference of Network Connectivity

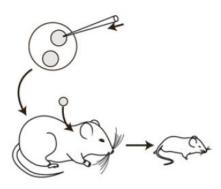


New Technologies: Calcium Imaging

Fluorescent Ca²⁺ indicators

- Genetically encoded
- Chemical dyes
- Spiking: Ca²⁺ influx
- Large populations in parallel



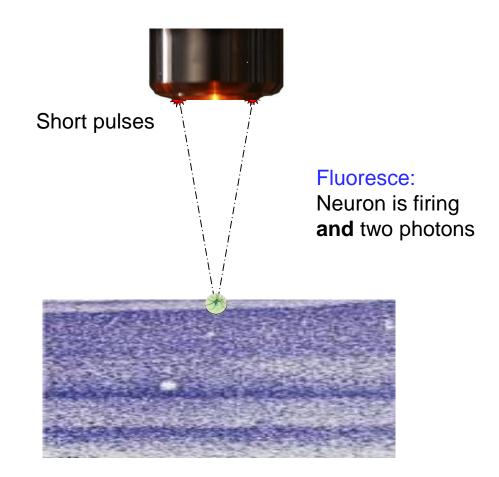


Mei Zhang 2009

Transgenic mice

Two photon Ca²⁺ imaging: depth acquisition

- Fluorescence & spiking:
 - Ca²⁺ influx
- Two-photon imaging
 - Raster scan
 - Depth acquisition
- Spatial resolution
 - Image into the cortex

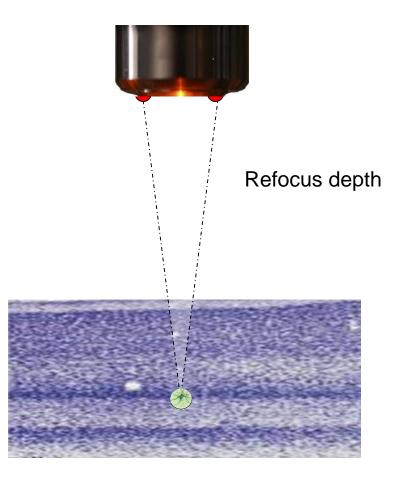


Two photon Ca²⁺ imaging: depth acquisition

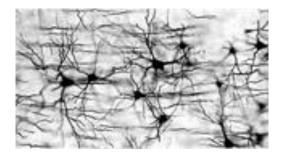
- Fluorescence & spiking:
 - Ca²⁺ influx
- Two-photon imaging
 - Raster scan
 - Depth acquisition
- Spatial resolution
 - Image into the cortex

Cortical layers

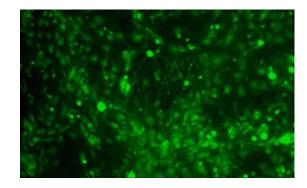
Cortex ~ 2-4 mm



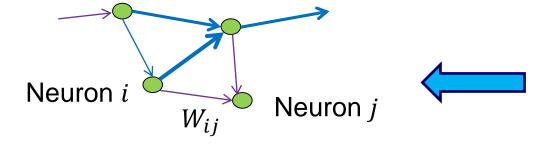
Calcium Imaging: Connectivity Detection Problem



Network of neurons: unknown synaptic connectivity



Ca²⁺ fluorescence movie

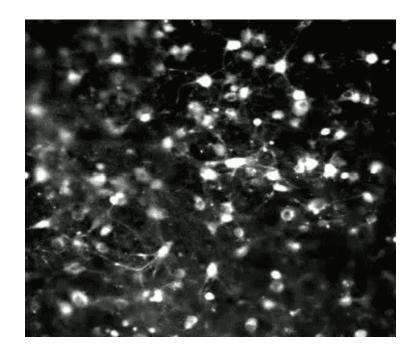


Estimated connectivity map with synaptic weights W_{ij}

Ca²⁺ fluorescence image MPI 2012

Ca²⁺ Imaging: Strengths

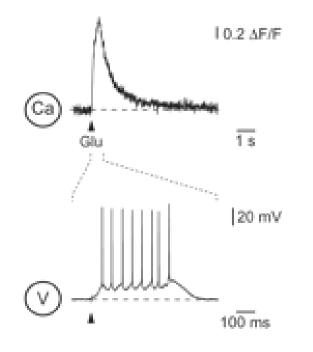
- Parallel measurements
 (~10³ neurons)
- In vivo or in vitro
- High spatial resolution (neuronal level, sub-μm)
- Image below surface



M. Kuykendal and G. Guvanasen, Georgia Tech

Challenges with Ca²⁺ Imaging

Calcium Fluorescence



[Stociek et al. (2003)]

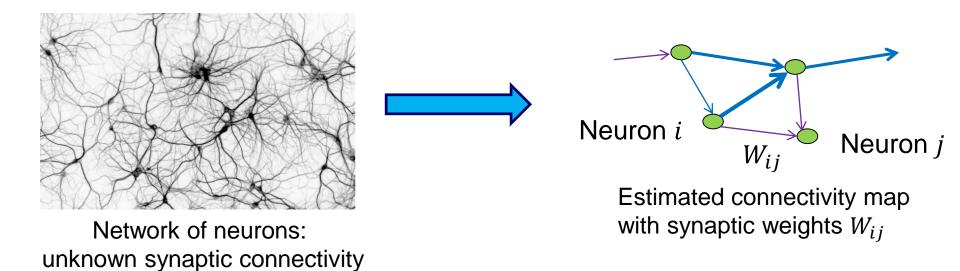
Glutamate induced spiking

- Indirect fluorescence traces
- Nonlinear dynamics
- Large data sets
- Exogenous inputs
- Heavy temporal blurring
 Ca²⁺ long decay: τ_c~0.5 s **
- Low frame rate
 - Frames: 10-100 ms*
 - Interneuron dynamics: 1-3 ms
- Need super-resolution

**GCaMP5, newer indicators faster

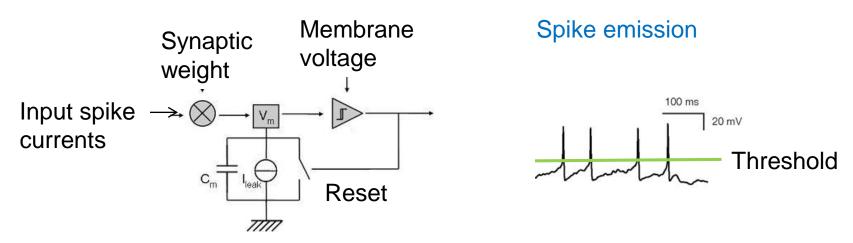
NIPS 2013 & NIPS 2015 workshops: "Statistical Methods For Understanding Neural Systems"

Network Inference: Causality Crucial



Elements of the network : time-varying electrochemical devices

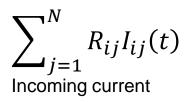
Neuronal Model: Integrate and Fire



- Electrochemical dynamic model:
- $V_i(t)$ = neuron *i* potential $I_{ij}(t)$ = current j^{th} to i^{th} neuron
- Integrate phase: Potential builds: $V_i(t) \le V_{th}$

$$RC_m \frac{dV_i(t)}{dt} = -V(t) +$$

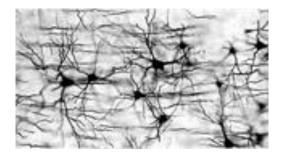
Charge increase leakage



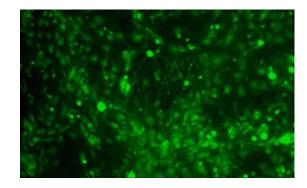
[Lapicque (1907)]

Fire: discharges spike, reset: $V_i(t) = V_{th} \Rightarrow V_i(t^+) = V_{reset}$

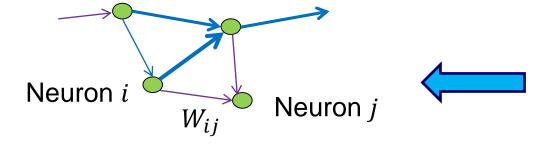
Calcium Imaging: Connectivity Detection Problem



Network of neurons: unknown synaptic connectivity



Ca²⁺ fluorescence movie



Estimated connectivity map with synaptic weights W_{ij}

Ca²⁺ fluorescence image MPI 2012

Each Neuron: Discrete-Time Neural Model

Voltage: integrate and fire:

$$\begin{split} v_i^{k+1} &= (1-\alpha)v_i^k + \sum_{j=1}^n W_{ij} \, s_j^k + d_{v,i}^k & \text{[Integrate]} \\ \text{if} \quad v_i^{k+1} \geq \mu \Rightarrow \ s_i^k = 1, \, v_i^{k+1} = 0, & \text{[spike \& reset]} \\ \text{else} \ v_i^{k+1} < \mu \Rightarrow \ s_i^k = 0 & \text{[no spike]} \end{split}$$

Calcium fluorescence

$$z_{i}^{k+1} = (1 - \beta)z_{i}^{k} + s_{i}^{k} + d_{z,i}^{k}$$
 [z: Ca²⁺]

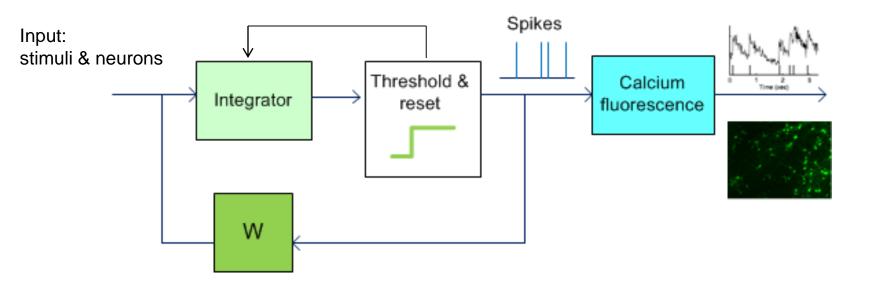
$$y_{i}^{k} = a z_{i}^{k} + d_{y,i}^{k}$$
 [y: fluorescence]

 W_{ij} = "weight" = integrated voltage change from spike current

- Ca²⁺ fluorescence: dynamical system also
- Nonlinear state space
- Need: connectivity, spike times, voltages, calcium...

Mischenko, Vogelstein, Paninski (2010), Yasuda(2004), Vogelstein et al (2010) Fletcher et al, COSYNE 2014, NIPS 2014

Summary: System



$$v^{k+1} = (1 - \alpha)v^k + Ws^k + d_x^k \quad \longleftarrow \text{Membrane voltage integration}$$

$$s^k = 1, v^k = 0 \text{ when } v^k > \mu \quad \longleftarrow \text{Spike and reset}$$

$$z^{k+1} = (1 - \beta)z^k + d_z^k + s^k \quad \longleftarrow \text{Bound Ca}^{2+} \text{ concentration}$$

$$y^k = a z^k + d_y^k \quad \longleftarrow \text{Fluorescence}$$

Maximum Likelihood Estimation of Connectivity

ML estimate:

$$\widehat{W} = \arg \max_{W} \log p(y|W) - \lambda \|W\|_{1}$$

$$\bigwedge_{W} \qquad \bigwedge_{W} \qquad \bigwedge_{W} \qquad \bigwedge_{W} \qquad 0$$

$$Besired \ parameters \\ e.g. \ connectivity \ matrix$$

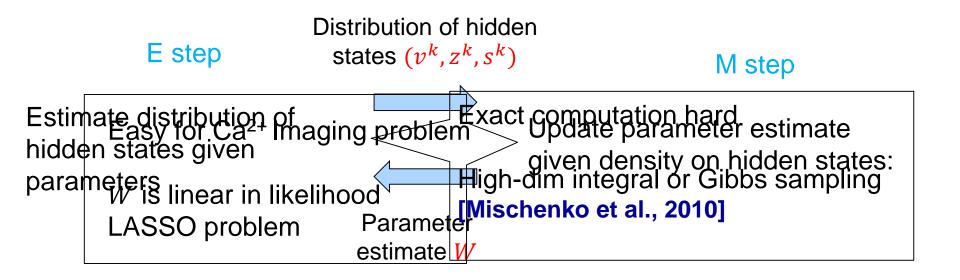
- Can add regularization term to impose sparsity

Expectation Maximization Algorithm

$$\boldsymbol{v}^{k+1} = (1-\alpha)\boldsymbol{v}^k + \boldsymbol{W}\boldsymbol{s}^k + \boldsymbol{d}_x^k$$
$$\boldsymbol{s}^k = 1, \, \boldsymbol{v}^k = 0 \text{ when } \boldsymbol{v}^k > \mu$$

$$z^{k+1} = (1 - \beta)z^k + d_z^k + s^k$$
$$y^k = az^k + d_y^k$$

- Want regularized ML: $\widehat{W} = \arg \max_{W} \log p(y|W) - \lambda ||W||_{1}$
- Problem: Hidden states (v^k, z^k, s^k)
- Use EM iterations

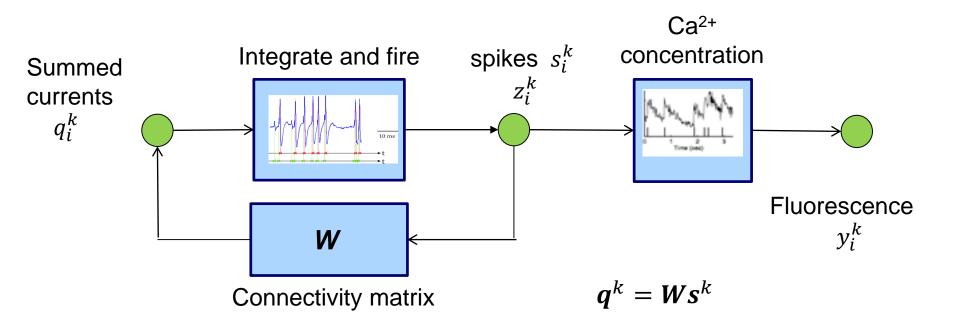


Decoupling for the E-Step

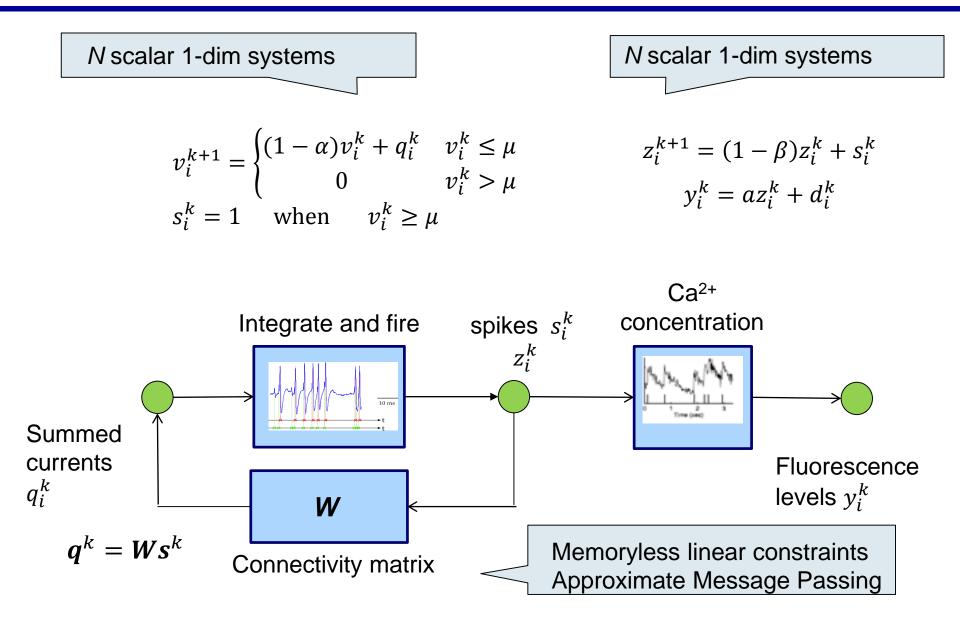
Want: State estimates for nonlinear system

 High dimensional : N Neurons, 3N states

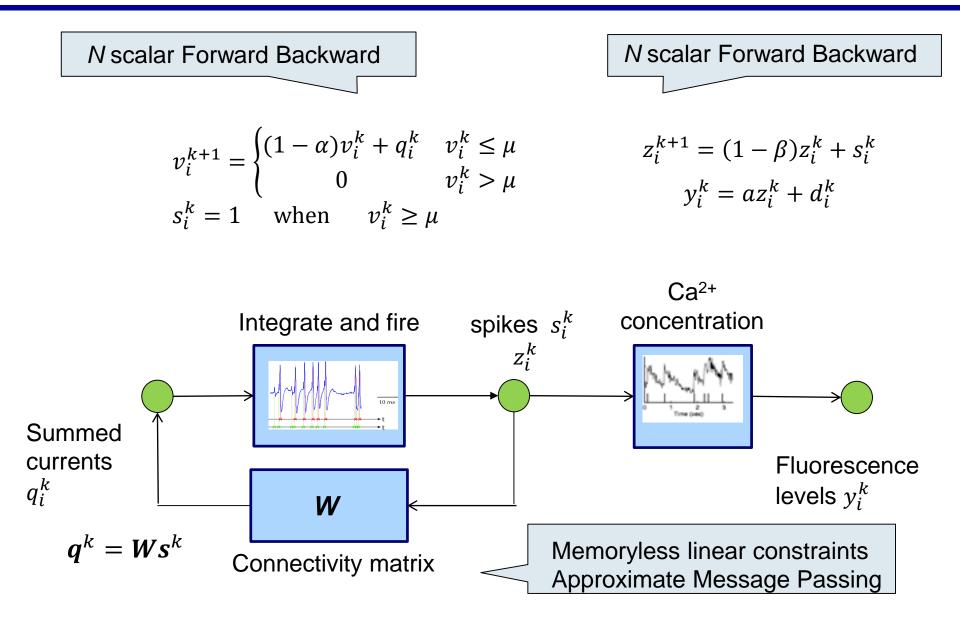
 Key insight: System decouples: scalar iterations q^k = Ws^k



Decoupling for the E-Step

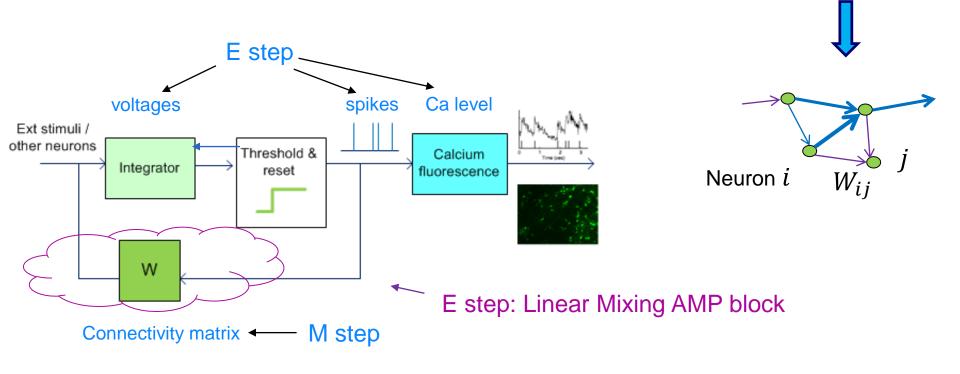


Decoupling for the E-Step

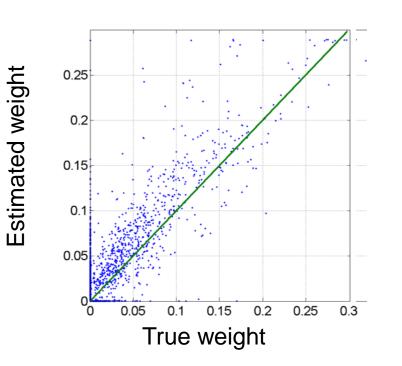


EM Overview

- Fluorescence movie: estimate
 - Connectivity matrix W, spike times, voltages
- Scalable block
 - High-dimensional, nonlinear dynamical system



Simulation Results: Accuracy of the Weights



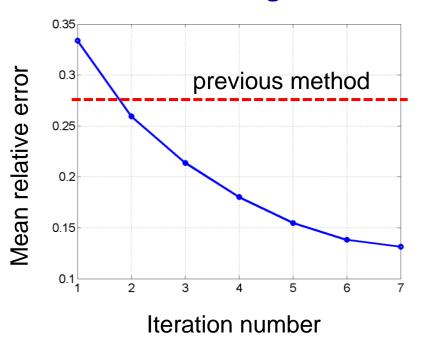
Accurate estimation

Neuron model

[Sayer (1990)]

- 100 guinea pig cortical neurons
- Synchronized bursting: 10 spikes/s
- 10% sparse random connectivity
- 20 *ms* integrate-fire τ_c
- 2 ms inter-neuron conduction time
- 1 *ms* time step
- Ca²⁺ imaging model
 - 100 frames/s, 100 s trials
 - 10000 $\mathcal{F}l$ values per neuron
 - 500 ms Ca²⁺ τ_c
 - Fluorescence SNR = 20 dB

Accuracy of the Weights



Fast convergence

•Relative MSE = $\frac{E(W_{ij} - \widehat{W}_{ij})^2}{E(W_{ij})^2} = 0.12$

- Neuron model [Sayer (1990)]
 - Guinea pig cortical column
 - 100 neurons
 - 10% sparse random connectivity
 - Synchronized bursting: 10 spikes/s
 - 20 ms integrate-fire τ_c
 - 2 ms inter-neuron conduction
 - 1 *ms* time step
- Data Collection
 - 100 frames/s, 100 s trials
 - 10000 St samples per neuron
 - Ca²⁺ τ_c = 500 ms, \mathcal{H} SNR = 20 dB

Fletcher et al NIPS '14

- Previous work MSE=0.28, same parameters
 Mischenko et al. (2010)
 - Accurate, low complexity O(N) per iteration, instead of $O(*^N)$

OD UCSC

Network Connectivity Summary

- Network analysis from Ca²⁺ imaging
 - Attack temporal resolution issues for neural dynamics
 - Scalable EM algorithm
- Rich, flexible modeling framework
 - Incorporates nonlinearities, indirect measurements, dynamics
- Computationally scalable solution
 - Linear in number of measurements
- Demonstrated performance
 - Outperforms existing techniques
 - Allows more biologically plausible model with feedback

http://gampmatlab.sourceforge.net/

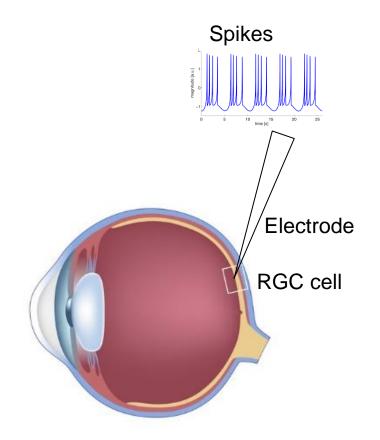
Phil Schniter!!!

Outline

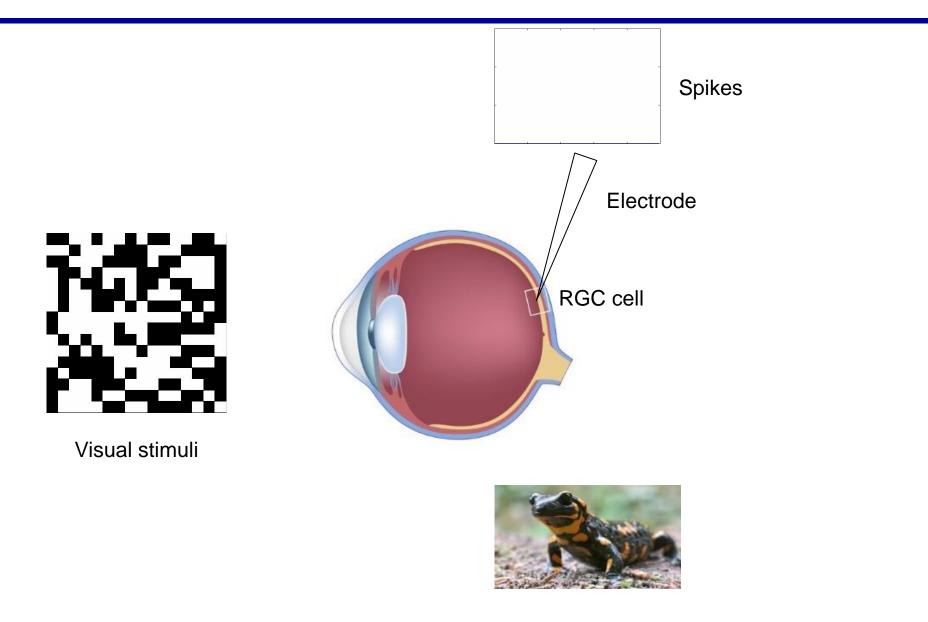
- Connectivity via multineuronal stimulation
 - Iterative fast adaptive GAMP framework
- Network connectivity via Ca²⁺ imaging
 - Network model captures dynamics
 - Graphical models
 - Scalable accurate based algorithm
 - Receptive field of retinal ganglion cells
 - Space-time salamander response to stimuli
 - Improved identification with limited data

Receptive Field Identification

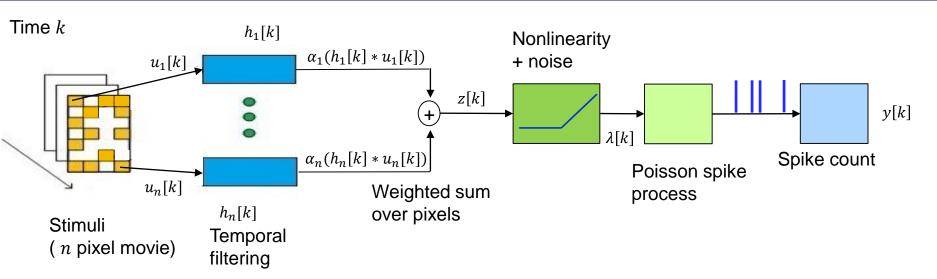
- Retinal ganglion cell (RGC) Sensitive to light in its field of view, or receptive field
- Tuned to some local features in time and space (curve, edge, etc)
- Response estimation of RGCs:
 - Expose retina to image
 - Measure response via electrode
 - Fit model
- Challenge: Model is often nonlinear



Salamander Receptive Field Identification



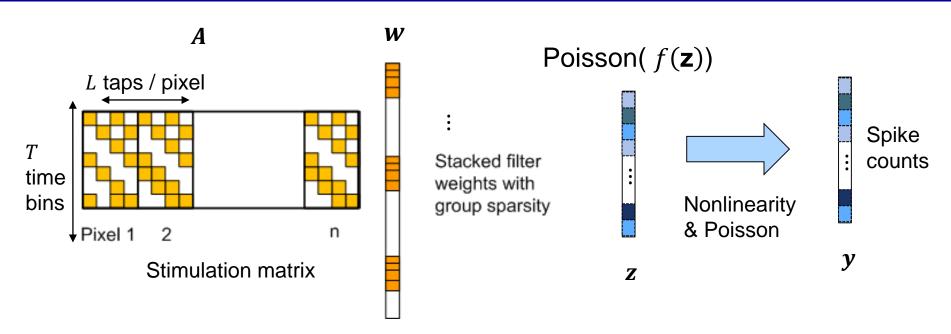
Retinal Ganglion Cell LNP Model



- Linear-Nonlinear Poisson model. Given stimuli $u_i[k]$
 - Filtering over time and space: $z[k] = \sum_{i=1}^{n} \alpha_i (h_i[k] * u_i[k])$
 - Nonlinear phase: y[k] = Poisson(f(z[k] + d[k]))
- Identification problem: Given stimuli $u_i[k]$ and spike counts y[k]
 - Estimate weighted filters $w_i[k] = \alpha_i h_i[k]$, Describes space-time response of neuron to pixel *i*
 - Each $h_i[k]$ is an L tap filter
 - Estimate nonlinearity $f(\cdot)$

Fletcher et al. NIPS 2012

Structured Matrix View of Dynamic LNP



- LNP model: cascade of linear and nonlinear system
 - A rows: *n* pixel values at *L* delays (L = filter taps)
- Weights have a group sparse constraint:
 - RGC sensitive to small image region (spatial sparsity)
 - Coefficients of filter of one stimuli are on or off together

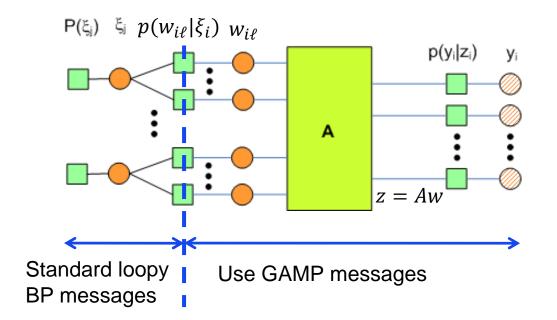
Classical Methods and their Limitations

- Linear methods:
 - Matched filter: $\widehat{w} = \frac{1}{n}A^T y$ (also called STA)
 - Linear MMSE: $\hat{w} = (A^T A + \sigma^2 I)^{-1} A^T y$ (also called RC)
 - Also, linear least squares / zero forcing
 - Simple but does not exploit sparsity
- Compressed sensing methods

$$\widehat{\boldsymbol{w}} = \arg\min_{\boldsymbol{w}} \|\boldsymbol{y} - \boldsymbol{A}\boldsymbol{w}\|_{2}^{2} + \lambda \|\boldsymbol{w}\|_{1}$$

- Exploit sparsity of w
- Many methods: LASSO, OMP, CoSAMP,...
- Could also incorporate group sparsity via group Lasso
- But, does not account for output nonlinearities

Hybrid Algorithm for Structured Input: GAMP



- Introduce binary variables ξ_i to correlate sparsity over time
- Apply GAMP in a "turbo" manner with loopy BP
- Low complexity: each ξ_i is binary
- More general than group OMP and group lasso;
 - Similar complexity,
 - Better performance [Rangan, Fletcher, Goyal & Schniter '12]

Receptive Field Computation Considerations

- Problem size: 3630 variables
 - 11 x 11 pixels, 30 taps per pixel
 - 190,000 measurements (~30 min at 10 ms sampling)
 - Structured A matrix is 190,000 by 3630
- AGAMP iteration cost: multiplying by A & A*
 - Exploit block Toeplitz structure and entries are 0-1
- For larger problems, algorithm is parallelizable
 - Graphical methods: inherent decomposable
 - Parallelize multiplications across rows/columns of A
- Cannot theoretically guarantee convergence
 - Demonstrate performance experimentally

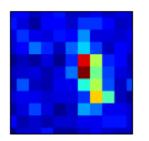
Experimental Results: Cross-Validation

STA	STA GAMP	Num training samples	Cross-validation score	
400 s Training			STA	G-AMP
600 s		25000	0.906	0.917
Training		50000	0.914	0.921
1000 s Training	\rightarrow	100000	0.918	0.923
0 100 200 300 Delay (ms)	0 100 200 300 Delay (ms)			

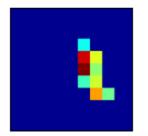
- Validated on data used in training (190000 total samples)
- Cross-validation score = Geometric mean of likelihood of spike rate
- GAMP: same error, 25000 samples versus 100,000

Data: Anthony Leonardo Janelia Farm

Non-sparse LNP w/ STA



Sparse LNP w/ GAMP



Spatial receptive field estimates for 11x11 pixel area

0 1 (normalized)

Spatial receptive field:

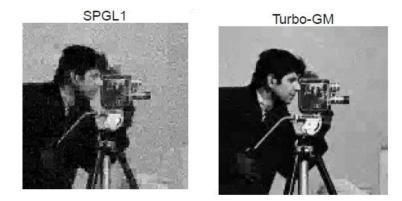
Plot estimated 11x11 response magnitudes. Color = 30-tap filter magnitude for each pixel

- Standard STA estimate shows noisy (spurious) responses outside
- GAMP method removes noise
 Shows only a response in a small area

Filter response 11 x 11 pixels for salamander RGCs Data from Anthony Leonardo, Janelia Farm

AMP++ methods: Applications in Imaging

- Hybrid-AMP can incorporate complex structure
 - Incorporate dependencies between wavelet coefficients
 - Hierarchical models, etc



http://gampmatlab.sourceforge.net/

Algorithm	NMSE (dB)	Comp time (secs)
MHT+IRWL1	-14.37	363
CoSAMP	-16.90	25
SPLG1	-18.06	536
MCMC	-20.10	742
Turbo-GM	-20.74	51

Lowest MSE and almost fastest computation

[Som, Schniter, 2011]

Thank you



Much thanks! To: Fritz Somer, Surya Ganguli, Eero Simoncelli, Eftychios Pnevmatikakis,Matthias Bethge, Anthony Leonardo, Evan Lyall, students of Deisseroth & Adesnik labs, Liam Paninski, Mayur Mudigonda, Jascha Sohl-Dickstein...

 Funding: NSF CAREER,ONR, AFOSR, Qualcomm

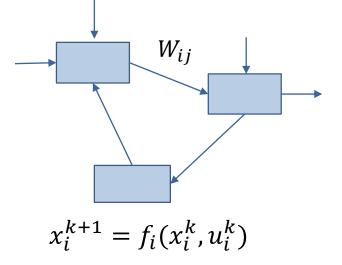
Moving forward

- Better account for exogenous effects
 - Correlations across neurons of interest**
 - Larger areas via "shotgun" techniques [Pnevmatikakis et al. 2013]
- Data sets in collaboration
 - Paninski Lab, Columbia; Tolias Lab, Baylor, Allen Institute
 - Validate methods: first cultured without exogenous
- Model new Ca²⁺ indicators:
 - GCaMP6f (2013): faster decay, rise time = 50-75 ms,
 - Nonlinear fluorescence model
- Theory
 - Convergence issues of GAMP via new ADMM GAMP
 - Networks of low-dimensional, nonlinear dynamical blocks
 - Provable results for structured non-iid, structured A

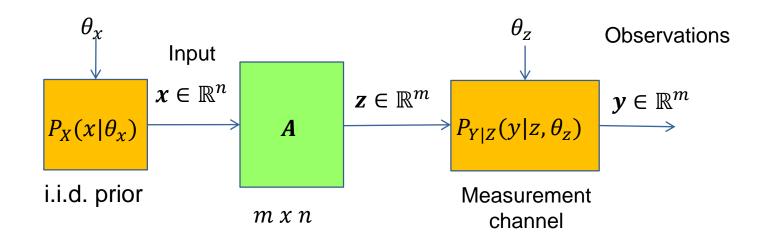
Future work : dynamical networks

High dimensional inference for dynamical systems

- Generalized linear dynamical networks:
 - Underlying low-dimensional, nonlinear dynamical blocks
 - Linear memoryless constraints, graphical models
- Many phenomena
 - Neural systems, communication networks, particles, media, ...
 - Extends GLM to include networked dynamics
- Can we extend methods for:
 - Scalable estimation algorithms?
 - Learning connectivity?
 - Provable guarantees?



Joint Estimation and Learning for GLMS



- **GLM** with unknown parameters θ_x and θ_z
 - Unknown prior, nonlinearities, noise...
- Joint estimation learning problem: Given *y* and *A*:
 - Estimate input x and z,
 - Learn parameters θ_x and θ_z in distribution
 - Consistent

Fletcher, Rangan NeuRAMP NIPS 2011

Kamilov, Fletcher, et al NIPS 2012, Trans IT 2014

High dimensional inference for dynamical systems

- Generalized linear dynamical detworks:
 - Underlying low-dimensional, nonlinear dynamical blocks
 - Linear memoryless constraints, graphical models
- Many phenomena
 - Neural systems, communication networks, particles, media, ...
 - Extends GLM to include networked dynamics
- Can we extend methods for:
 - Scalable estimation algorithms?
 - Learning connectivity?
 - Provable guarantees?

