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Optical Character Recognition
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Optical Character Recognition
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Examples from Google Books

Multiple scripts / languages on a page:
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Examples from Google Books (cont.)

Per-word script and language variation:
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Examples from Google Books (cont.)
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What’s a “character”?
Result Unicode Transliteration

0930 ra
0930 094d r
0930 094d 0926 rda
0930 094d 0926 094d rd
0930 094d 0926 094d 0935 rdva
0930 094d 0926 094d 0935 093f rdvi
0930 094d 0926 094d 0935 093f 0915 rdvika
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Bidirectional issues

123

U+0028 - open parenthesis U+0029 - close parenthesis
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Connected scripts
Naskh style:

Nastaliq style: 
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Part 2: Approach
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Optical character recognition as text-line decoding

Text Line 
Recognition Digital (Unicode) TextPreprocessing / 

Layout Analysis

Input 
Document

Style, Size, Position, 
Font, Weight

Script, Language



Ashok Popat, Sep 03, 2015

Goal: universal, accurate OCR
● Universal

○ Omni-script
○ Omni-language
○ Omni-setting

● Accuracy and Speed
○ Best-in-world, approaching human accuracy
○ Speed comparable to commercial engines
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Inspiration: Markov-model-based approaches
● Document image decoding [Kopec and Chou, 1994]

○ Explicit model of typesetting process: seek to invert
○ Influenced by speech recognition methods
○ Extremely high accuracy when models match the data

● BBN Byblos system [Schwartz et al., 1996]
○ Treat text line like a speech waveform
○ Built on existing speech recognition system
○ First successful Arabic OCR
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Underlying both: noisy channel model
● Communication theory perspective

○ Source produces a message m according to P(m)

○ Channel (noisily) renders observed image x according to P(x|m)

○ OCR task: given x, produce an estimate of m

○ Goal: choose m’ to minimize error rate:

● Challenges
○ Nobody tells us what P(m|x) is (modeling task)
○ Even if we knew P(m|x), how to compute arg maxm?



Ashok Popat, Sep 03, 2015

Component models
● Language models

○ Character- and Word N-grams with appropriate smoothing (ProdLM)

● Likelihood component
○ Speech, BBN OCR: GMMs, DNNs for HMM state-conditional densities, optimized for held-out 

likelihood
○ DID: Learned probabilistic character templates (foreground, background, “don’t-care”)
○ Ours: Sliding window / deep network / HMMs
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Generalization of the noisy channel model
● Speech approach

● Generalize to multiple feature functions

● Learn {λ} via minimum error-rate training
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Principles
● Minimize language-specific engineering

● Prefer integrated, wholistic decisions to pipelined steps

● Take advantage of data (labeled, unlabeled)

● Take advantage of advances in other areas 
(MT, Speech, NLP, CV,...)
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Accuracy and Speed over time
● More and more accurate
● Faster and faster
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● Optical model
○ GMM -> DNN
○ DNN -> LSTM
○ Sequential discriminative training of DNN/LSTM

● Language model
○ N-gram -> RNN-LM

● Decoding
○ Pruning algorithms designed for OCR
○ Automatic decoding parameter optimization

Technical advances in the past few years
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Script and Language Identification
● Some parameters usefully considered piecewise stationary latent processes

○ Font
○ Style (bold, italic,...)
○ Point size
○ Script
○ Language
○ Topic

● Most of these have low information rate → exploit!
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Script ID approach 1: re-use OCR engine
● Script class seen as evolving as a hidden Markov process
● Pretend all letters of a given script are different glyph instances of the same 

“letter” (script class label)
● Do OCR with a very small vocabulary
● Reasonably accurate, significant hit on processing time
● Details: Genzel et al., “HMM-based script identification for OCR,” 2013
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Alternative approach (Li et al., 2015)   
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Countries we don’t cover
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Part 3: Reflections and Comments
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Unicode: a Godsend for OCR
● Defining the goal requires specifying representation space
● Duality

○ Synthetic data
○ Document Image Decoding
○ Noisy Channel Formulation

● Internationalization libraries and resources, BiDi
● Corollary: OCR could not have been solved when it was most worked on
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Changing styles, orthographies
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Then and now
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Academia and Industry
● Strengths
● Evolving roles
● Cooperation
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Can OCR finally be a “solved problem?”
● Available to anyone, anywhere, ideally free-of-charge
● Network / cloud not required, keep your documents
● All languages, scripts, typefaces
● Quasi-linguistic: math, diagrams
● Regional libraries, cultural preservation efforts
● Newspapers, manuscripts, magazines, books



OCR in Google Products


