Perceiving Graphical and Pictorial Information via Hearing and Touch

IEEE Signal Processing Society, Santa Clara May 21, 2015

Thrasos Pappas EECS, Northwestern University On Sabbatical Leave at LLNL

LLNL-PRES-669870

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Lawrence Livermore National Laboratory

People

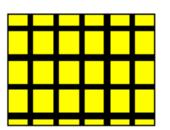
- Pubudu Madhawa Silva, Northwestern Univ. now at Intel
- Andrew Seward, Northwestern Univ.
- Dzung Nguyen, Northwestern Univ.
- Joshua Atkins, Johns Hopkins Univ. now at Beats by Dr. Dre
- James E. West, Johns Hopkins Univ.
- William M. Hartmann, Michigan State Univ.
- James D. Johnston, independent consultant formerly Bell Labs
- Karen Gourgey, Baruch College, CUNY
- Ilona Kretzschmar, CCNY, CUNY
- Vivien Tartter, CCNY, CUNY

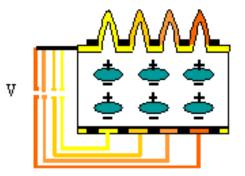
Visual to Tactile-Acoustic Mapping

Original Image

Semantic Segmentation Acoustic-Tactile Layout

- Present a picture as a collection of segments with perceptually distinct tactile-acoustic textures
 - Tactile texture and sound (plus vibrations, variable friction, etc.)
- Active exploration with the finger or a pointer
 - Kinesthetic feedback
- Haptic space and scene perception
 - Advantages over line drawings

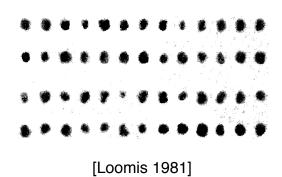



Other Approaches

- Invasive prosthesis
- Tongue display [Bach-y-Rita et al., 2002]
- "vOICe" [Meijer, 1992]
 - 64x64 image of 16 graylevels mapped to tones
 - Vertical: frequency; horizontal: time and stereo panning; loudness ~ brightness
- "SoundView" [Doel et al., 2003]
 - Tablet with pointer, colors mapped to sounds
- Raised line drawings [Wijntjes et al., 2008]
- NOMAD [Parkes, 1988]
- Talking Tactile Maps [1994]
- Talking Tactile Tablet [Landau & Wells '03]
- Halftoning [Nayak & Barner '04]
- Dynamic variable friction displays
 - Tesla touch [Xu '11; Israr '12]
 - On Glass [Winfield '07; Chubb '09; Marchuk '10; ...]
- Audio tactile maps [Jacobson '98; Parkes '88; Blenkhorn '94; Landau, 2003; Parente '03]

Motivation: Dynamic Tactile Tablet

- "Dynamic Tactile Interface for Visually Impaired and Blind People"
 - I. Kretzschmar, K. Gourney, V. Tartter, L. Abts, J. West, T. Pappas
- Three layers
 - Top: deformable electroactive polymer film
 - Middle: electrodes to address positions on the film
 - Bottom: touch sensitive screen
- Display dynamic tactile patterns (fast dynamic response)
- Fully addressable
- Detect finger position
- Audio feedback

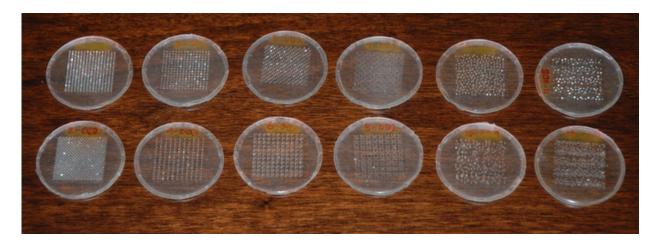

Braille

Dot diameter: 1.3 mm Dot spacing: 2.5 mm Dot Height: 0.5 mm [NLS 2005]

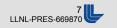
к	Q	н	т	м	A	Ρ	x	ł	Z	\$	0	D
v	F	w	E	С	U	B	J	G	Y	L	R	N
:	F	:.	1 1	•	•	r	:	·	4	:*	÷	•:
i.	ŗ	4	•.	••	:	:	4	n	3	i	ł	2

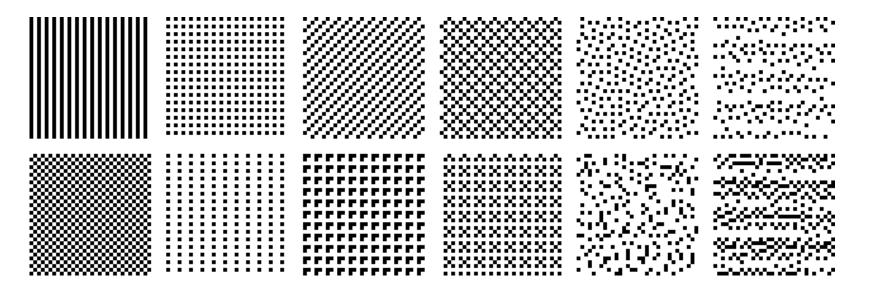
Letters:

		с "							-
k∶	1:	m∵	n∶	o∶	p∷	q₿	r₿	s:	t 🗄
u :.	v i.	w∶	х ::	у∷	z ::				



Numbers:


$$1 \stackrel{.}{..} 2 \stackrel{.}{..} 3 \stackrel{.}{..} 4 \stackrel{.}{..} 5 \stackrel{.}{..} 6 \stackrel{.}{..} 7 \stackrel{.}{..} 8 \stackrel{.}{..} 9 \stackrel{.}{..} 0 \stackrel{.}{..}$$


Device Model

- Simulate with polydimethylsiloxane (PDMS)
 - Milling machine to create molds in polypropylene or acrylic
- Assume
 - Fully addressable array, static patterns
 - Two states at each site (raised or flat)
 - Circularly symmetric, bell-shaped bumps
- Control spacing, diameter, height, and shape of dots
- Material properties: softness, friction
 - PDMS vs. embossed paper

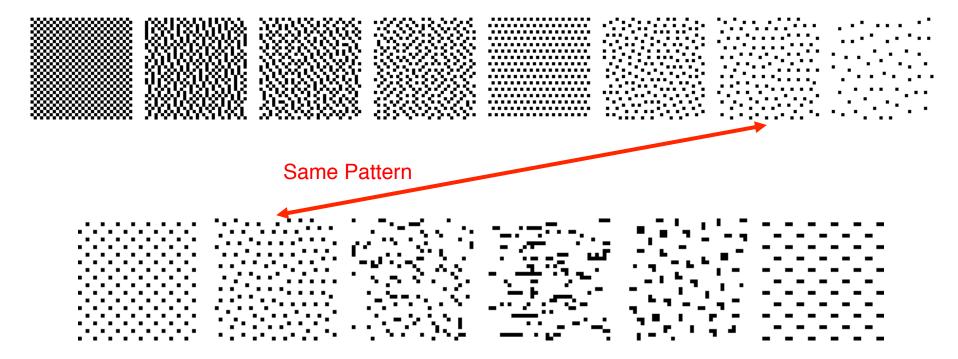
Tactile Pattern Generation

- Generate perceptually distinct tactile textures
- Leverage existing techniques: digital halftoning
- Visual patterns: Minimize visibility of halftone-induced textures
- Tactile patterns: Accentuate texture characteristics

Dot diameter: 1.0 mm Spacing: 1.0 mm Height: 0.2 mm

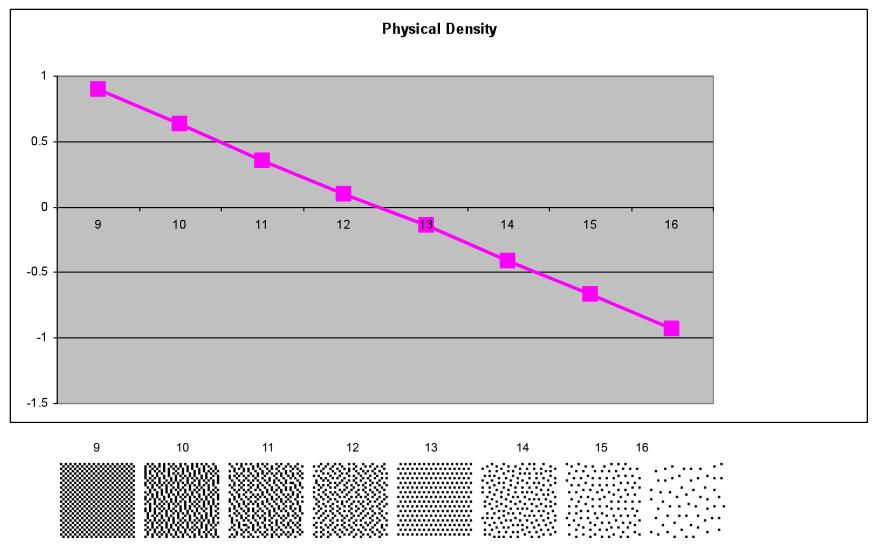
Visual Vs. Tactile Pattern Perception

10/06/202
A

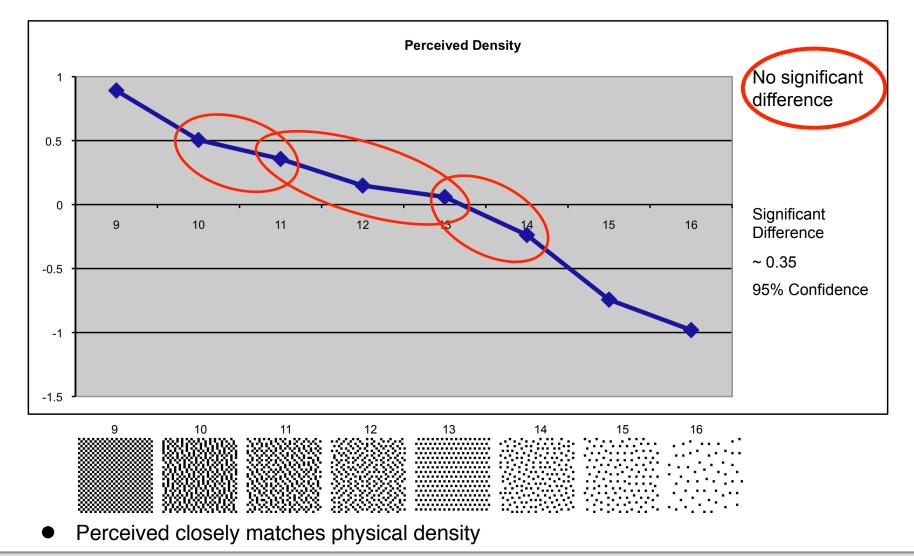


- Visually pleasing blue noise pattern
 - Floyd-Steinberg error diffusion
 - High frequency noise, less visible
- Tactile impression: smooth, boring
- Visually less pleasing
 - Error diffusion with weight perturbations
 - Contains more low frequencies
- Tactile impression: interesting, exciting
- Visually impaired and blind subjects
- Visually blocked subjects

Tactile Patterns

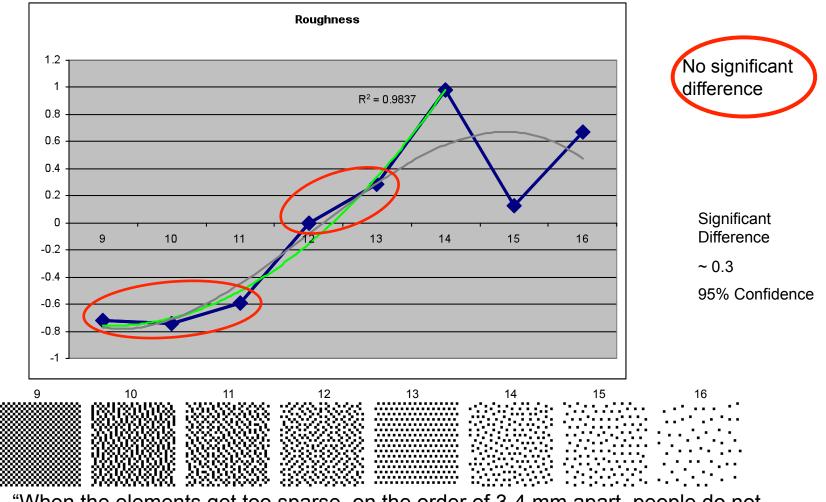

Decreasing Density

Equal Density – Different Pattern


Physical Density (Across Dot Density)

Lawrence Livermore National Laboratory

11


Perceived Density (Across Dot Density)

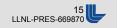
Lawrence Livermore National Laboratory

12 LLNL-PRES-669870

Roughness (Across Dot Density)

 "When the elements get too sparse, on the order of 3-4 mm apart, people do not perceive the surface as textured." [Klatzky, Lederman '02]

Lawrence Livermore National Laboratory

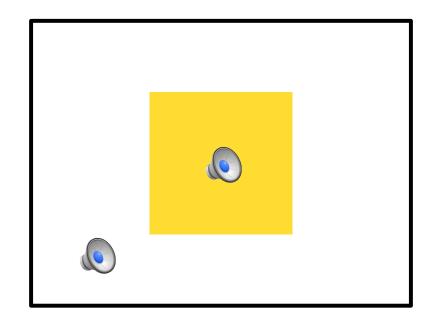


Pa

Patterns		
Lawrence Livermore National Lab	oratc.	

Devices

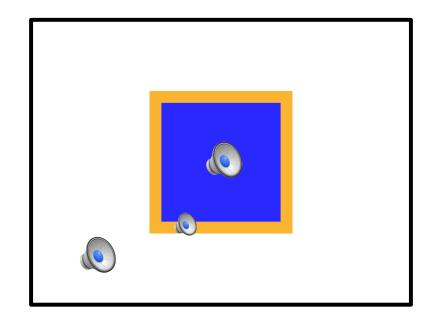
- Tactile Sensing
 - iPhone, iPad, other touch screen interfaces
- Tactile Display?
 - Variable friction
 - Vibration
 - Mechanical pin arrays
 - Dynamic electrically activated dot patterns?
 - Dynamic Tactile Tablet
- Acoustic Display
 - Use finger to actively explore 2-D layout on touch screen
 - Touch used as pointing device
 - Provides kinesthetic feedback
 - Static tactile overlay


Conveying Shape

C1	C2, C4, C5	C3

C1	2 Constant sounds
C2	3 Constant sounds
C3	2 Tremolo sounds with varying border rate
C4	3 Sounds with varying border intensity
C5	3 Sounds with HRTF (directionality and proximity) in background and border – original: KEMAR, modified: human

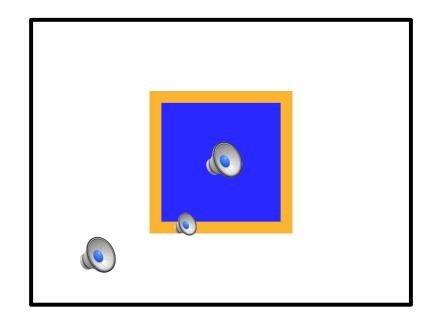
Shape C1: Two Constant Sounds


Two regions with distinct constant sounds

Silva, et al., ICASSP 2011

Lawrence Livermore National Laboratory

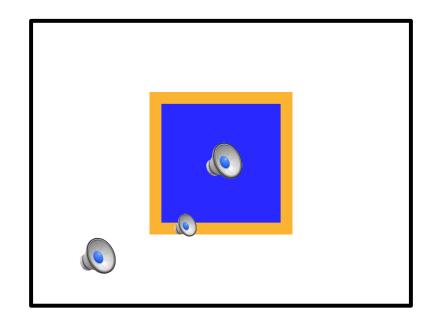
Shape C2: Three Constant Sounds


Three regions with distinct constant sounds

Silva, et al., ICASSP 2011

Lawrence Livermore National Laboratory

Shape C4: Three Sounds, Variable Intensity Border



- Background and object: constant sounds
- Border: variable intensity

Silva, et al., submitted

Shape C5: Three Sounds, Directional Sounds

- Use directional acoustic feedback (background and border)
- Head Related Transfer Function (HRTF)
- Playback via stereo headphones

Silva, et al., ICASSP 2011

Shape - Experiments

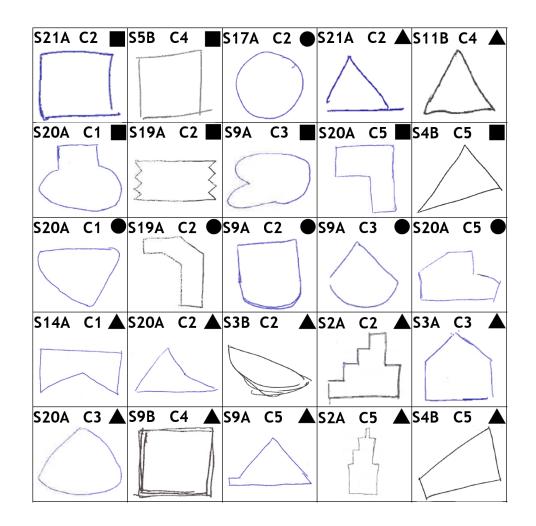
- Two sets of experiments with basic shapes
- First set with 21 subjects touch screen users (except one)
 - C1-2cons, C2-3cons, C3-2trem, C5-3hrtf-ke
- Second set with different subjects
 - Unaltered C2-3cons for comparison
 - Added C4-3int
 - Modified C5-3hrtf-hu (better sounds, human HRTFs)
 - 6 subjects touch screen users (experienced)
 - 5 subjects little experience with touch screen devices
- Apple iPad touch screen
- SENNHEISER HD595 headphones

Experimental Procedure

- Subjects had no prior information about the objects they were going to be tested on
- Training example with the same task but different object (or scene) at the beginning of each experiment
- Initially, the subject was able to see the pattern/shape and the scanning finger on the touch screen
- Then, the subject repeated the trial without seeing the pattern/shape or the finger

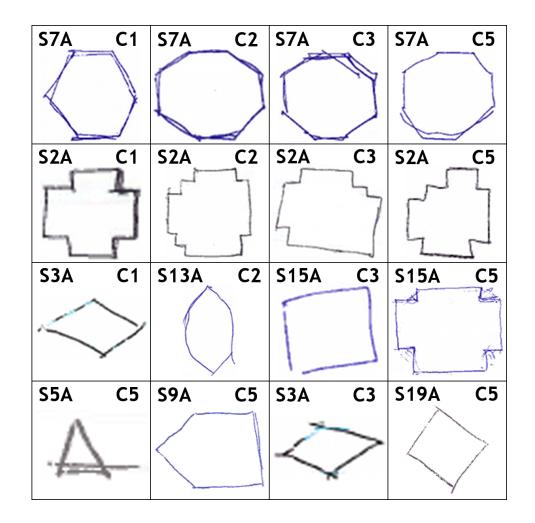
Shape - Results

First set of experiments

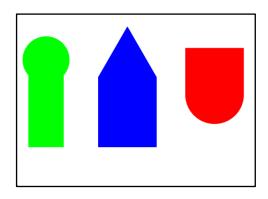

	C1-2cons	C2-3cons	C3-2trem	C5-3hrtf-ke
Accuracy	67%	81%	72%	80%
Time	236 s	228 s	181 s	182 s

Second set of experiments

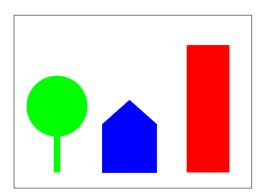
	C2-3cons	C4-3int	mC5-3hrtf-hu
Accuracy	70%	82%	73%
Accuracy (6 subjects)	78%	89%	89%
Time	331 s	259 s	189 s
Time (6 subjects)	243 s	212 s	103 s



Shape Approximations: C1 – C5

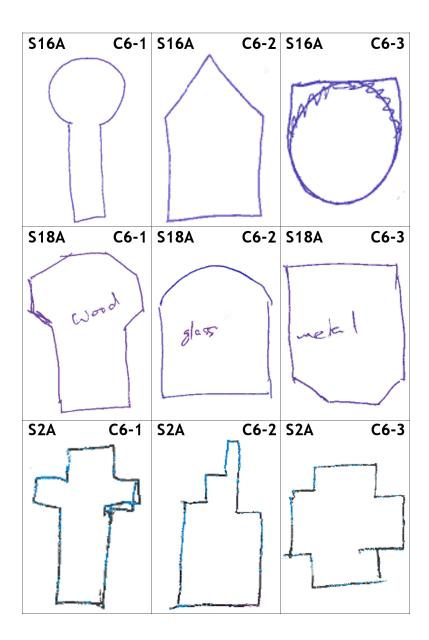


Circle Approximations: C1 – C5



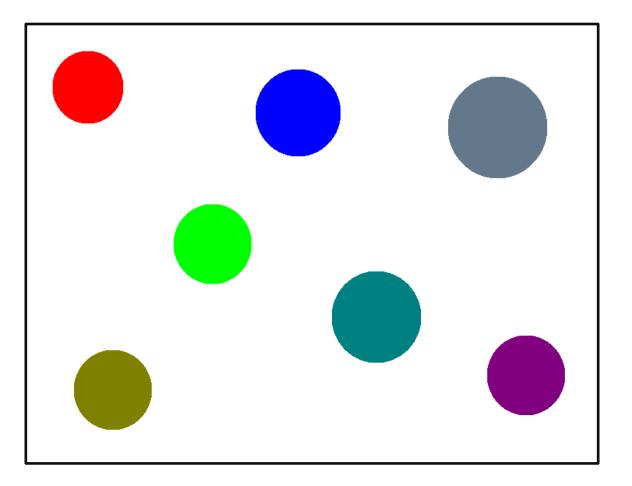
Shape – Simple Layout

- C6 Virtual cane acoustic display with zoomed-in mode
- C7 Virtual cane acoustic display with tactile overlay
 - Tapping sounds for objects; silent background
 - Zoomed-in mode: one shape presented with C5

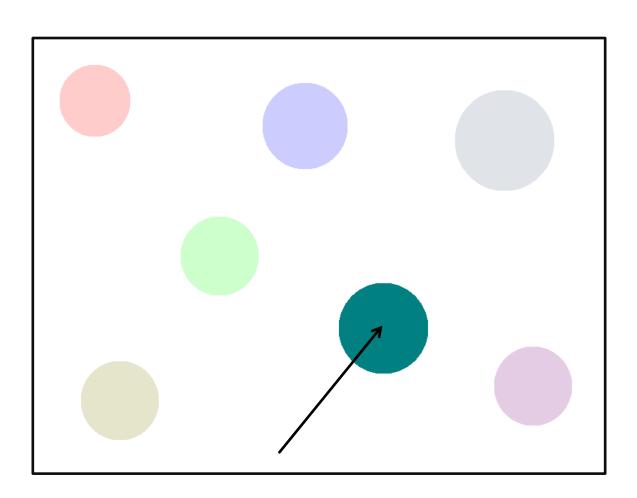


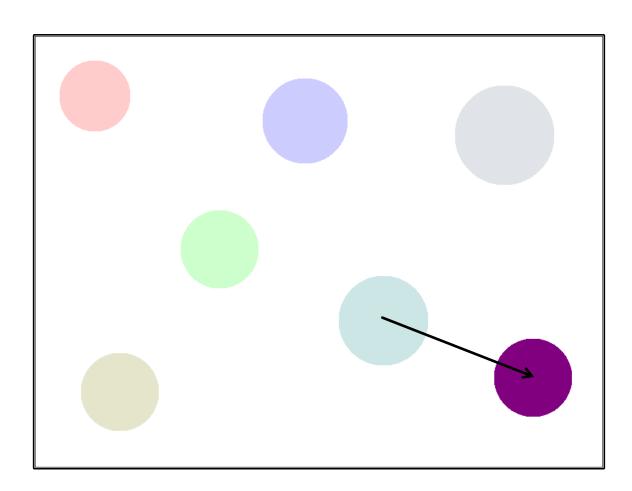
	C6-cane-ac-zm	C7-cane-ac-ta
Number of Subjects	21	5
Number of Objects	100%	100%
Shape Accuracy	23%	100%
Material Identification	80%	73%
Time	745 s	240 s

Drawings for C6

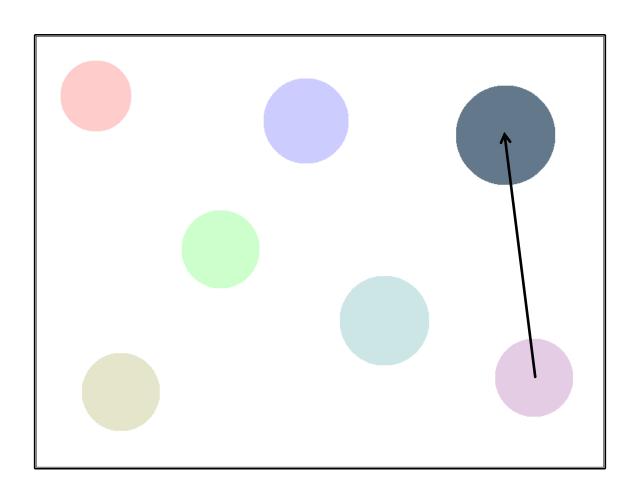

 Subjects were asked to draw objects in scene indicating their relative positions, shapes, and the material they are made off

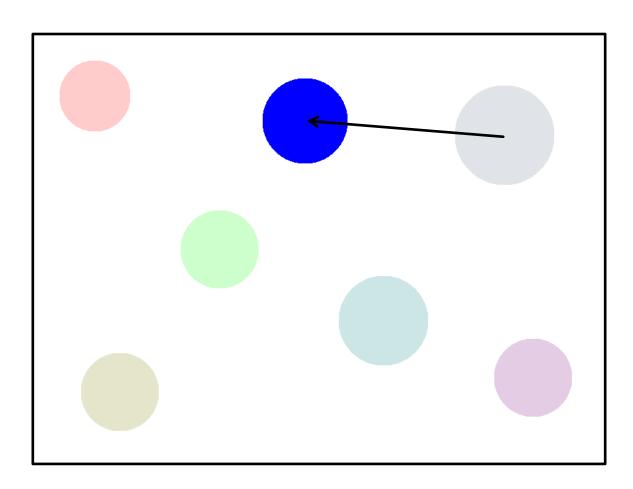
Shape - Conclusions


- Outperformed all existing techniques
 - Acoustic displays: SoundView, vOICe
 - Dynamic tactile displays: Tesla Touch
- Considered advantages of proximity & directionality cues
- Virtual Cane
 - Acoustic-tactile (C7) significantly better than acoustic with zoom (C6) in both accuracy and time
 - Raised dot patterns best for shape rendition
- Considerable learning curve
 - Significant difference in accuracy (with comparable or better time) between experienced and inexperienced subjects
 - Performance could be improved by systematic training



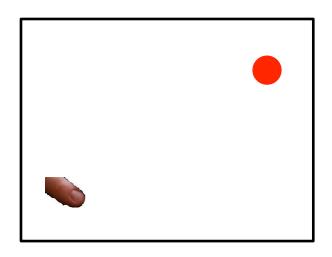
Lawrence Livermore National Laboratory





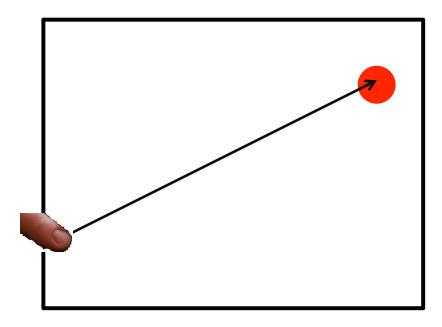
Locating Object: Sound Rendering

Directionality

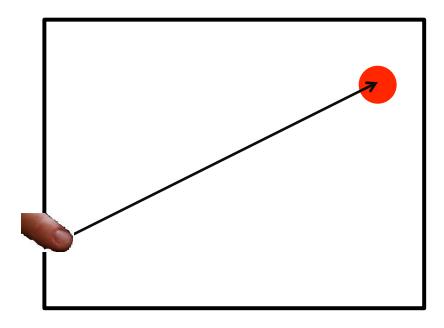

- Head Related Transfer Function HRTF
- Natural cue: Models acoustic signals that enter ear from source at given location

Proximity

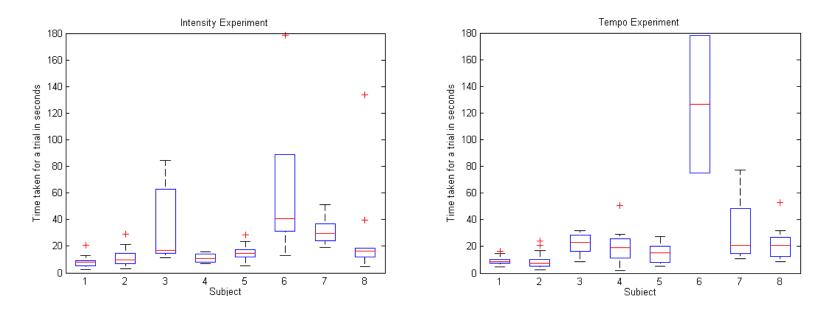
- Natural cues: Intensity, direct-to-reverberant energy ratio, spectrum distortions, binaural differences
- Humans are consistently inaccurate in acoustic proximity judgments [Zahorik ICAD'02, JASA'02]
- Use intuitive cues (not realistic)
 - Relative intensity of object tone and background noise
 - Tempo variations


Nav: Navigation Experiment

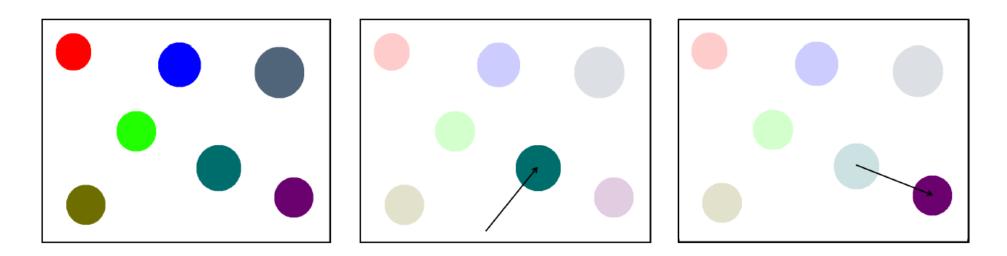

- Task: locate a single dot as fast as possible and notify
- Multiple trials in a fixed time window (10 minutes)
- Random object placement in each trial
- Measure time per trial
- **Object:** tone; **background:** tone + white noise
- Proximity via intensity or tempo variations

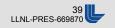

Locating Object: Intensity

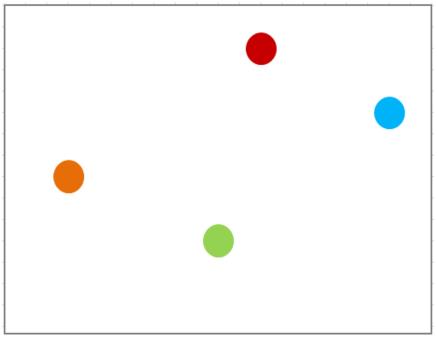
- Directionality via HRTF
- Proximity via relative intensity
 - Tone-to-noise intensity ratio


Locating Object: Tempo

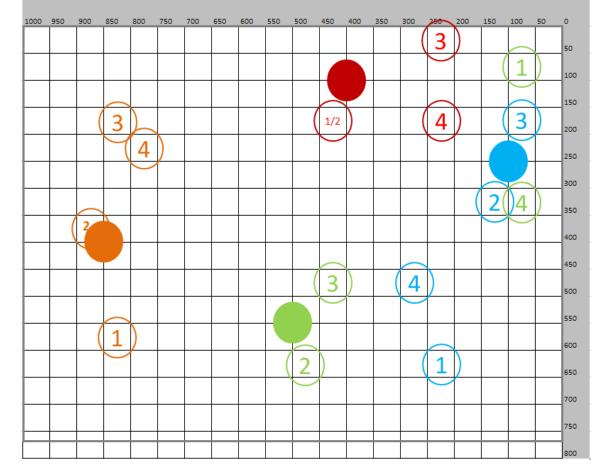
- Directionality via HRTF
- Proximity via tempo viariations
 - Quantized to 3 levels (1 3 Hz)


NAV: Intensity vs. Tempo


- 8 subjects: 4 male, 4 female
- Intensity: mean = 25.6 s, median = 15.6 s
- Tempo: mean = 32 s, median = 19.8 s
- No significant differences (t-test: p = 0.31)
- Intensity: rendition is instantaneous; continuum of values (vs. a few levels of tempo)


Serial Layout – L1

- Objects presented serially, one at a time
- Starts with object closest to the finger
- Double taps to get the next
- Presented in cycles and visited marked 'inactive'


Serial Layout – L1: HRTF + Intensity

- HRTF for directionality; intensity (tone-to-noise ratio) for proximity
- Pitch for object identification (452, 652, 852 &1052 Hz)
- Subjects asked to draw object corresponding to each sound in graph sheet
- No time limitations; not allowed to draw during exploration
- Implemented on iPad 1
- 4 Subjects, 2 male, 2 female

Serial Layout – L1: Results

Average time: 7 mins

Serial Layout – L1: Problems

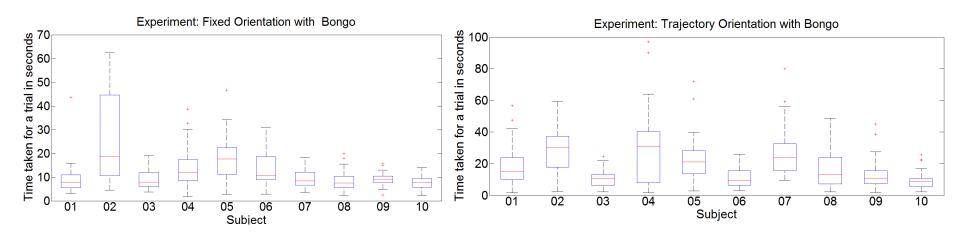
- Proximity rendering via intensity (tone-to-noise ratio)
 - Insensitivity of intensity for small finger movements
- Object confusions
 - Hard to discriminable and memorize sounds
- "Manhattan scanning"
- Serial exploration

Layout: Enhancements

- Directionality rendering
 - 54 quantization levels: 5^o steps for [-45^o, 45^o]; 10^o steps otherwise
 - Boosted high frequencies of sounds
- Calibrated proximity vs. volume curve
 - Measured the relationship between tablet volume and intensity
 - SPL at headphones measured for 50 uniform volumes of 1KHz sine
 - Curve designed such that SPL is uniformly varied with proximity
- Proximity via direct-to-reverberant ratio
 - Natural proximity cue
- Musical instrument sounds
- Listener orientation
- Non-serial scanning

Sound Selection: Percussion vs. Wind

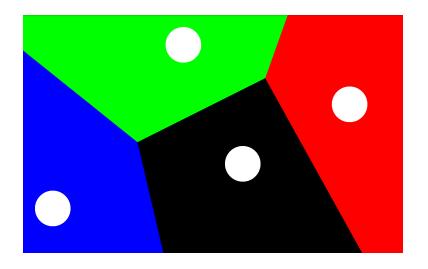
- Navigation experiment
 - 4 male subjects
 - Object: Bongo roll vs. trumpet
 - Background: object sound + reverb + directionality + proximity
 - Different tempo for object and background
- Time per trial
 - Bongo roll: mean = 14 s, median = 10.1 s
 - Trumpet: mean = 13.4 s, median = 9 s
 - No significant difference (t-test: p=0.47)
- Conclusion: Enables use of diverse set of sounds



Virtual Listener Orientation

- Not the subject's physical head orientation
- Fixed orientation (FO): north
 - May be a reason for Manhattan scanning ears most sensitive to head-on directionality changes
- Use direction of scanning pointer (virtual listener) movement
 - Based on the scanning trajectory (TO: trajectory orientation)
 - Analogous to natural human behavior
 - Face object as you move toward the object
 - Will this eliminate Manhattan scanning?
 - Will this add confusion?

Fixed vs. Trajectory Orientation

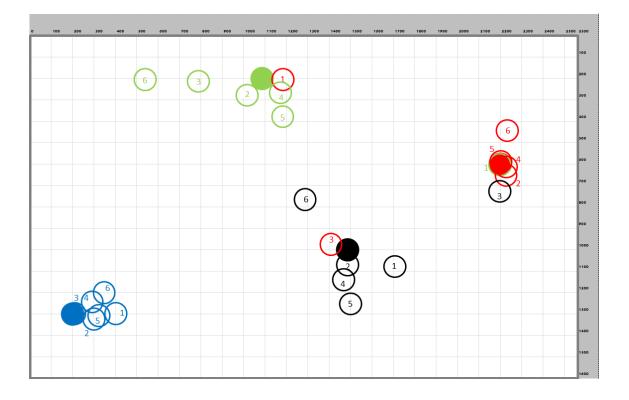

- Navigation Experiment to determine the best method
 - 10 subjects, bongo roll for object sound
- Time per trial
 - FO: mean = 12.1 s (median = 9.5 s)

TO: mean =
$$17.9 \text{ s}$$
 (median = 13.2 s)

- Significant difference (t-test: p=0.01)
- Subject ratings
 - Difficulty: FO: mean = 3.3 TO: mean = 5.8
 - Cognitive load: FO: mean = 2.95 TO: mean = 5.7
 - Significant difference in Difficulty (p=0.02) and Cognitive load (p=0.01)

Voronoi Layout

- All objects are available on the screen at once
- Subject hears only sound of object closest to finger location
 - Sound guides to object in the region
- Screen is partitioned to Voronoi regions of object centers
- Each object's background is limited to its Voronoi region

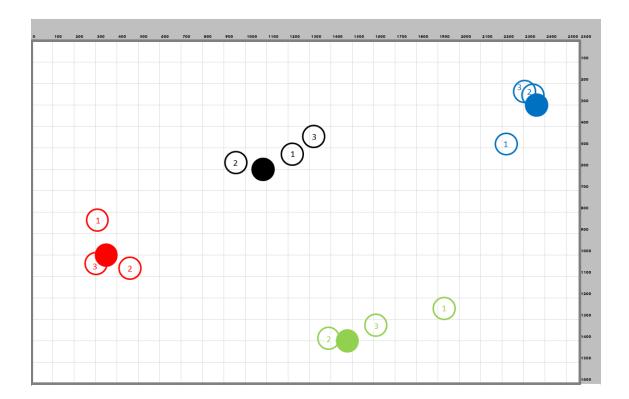


L2-vor: Voronoi Layout

- Initial mode: Serial introduction of objects
- Main mode: Voronoi layout
- 6 subjects, FO
- Sounds
 - G3 (note G of 3rd octave) of bass clarinet
 - B3 of oboe
 - D5 of trumpet with no vibrato
 - Bongo roll

L2-vor Results

Average time: 8 minutes



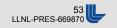
L3-ung: Unguided Layout

- Each object identified by characteristic sound
- Background is silent
 - Arbitrary scanning
- Used as benchmark to analyze the effectiveness of acoustic guidance (directionality and proximity)
- Experiment
 - 3 subjects (out of 6 subjects of L2-vor)
 - Same 4 sounds as L2-vor experiment
 - Layout was the transpose of L2-vor

L3-ung Results

- No confusions
- Average time 14 minutes

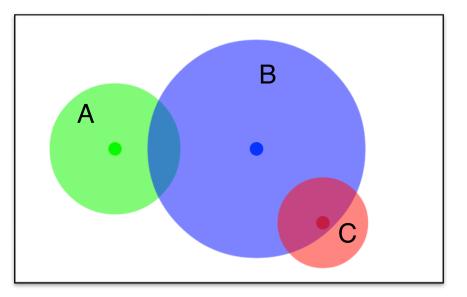
Comparison: L1, L2 & L3


- Error of reproduction (EOR)
 - Displacement between object location and subject placement
 - Measured in pixels
 - Averaged across objects and subjects
 - Normalized for resolution
 - Expressed as percentage of maximum distance for given resolution

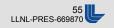
Layout	EOR	Time
L1-ser	16.6%	7 minutes
L2-vor	9.9%	8 minutes
L2-vor after correcting for confusions	4.9%	
L3-ung	4.1%	14 minutes

Does Acoustic Guidance Help?

- Objects were represented by dots of 0.2 inch radius
- 4 dots took 4.5% of the total screen area
- How does the performance scale with object size?
- Conducted 3 navigation experiments
 - Silent (unguided) background (UG)
 - Guided background (GG)
 - With directionality and proximity as in L2-vor
 - All with bongo roll assigned to object


NAV: Dot Size Effect on Localization Guided vs. Unguided

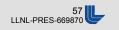
- Two dot sizes of
 - Large size: 0.20 inch radius original size
 - Small size: 0.05 inch radius 1/16 of original area
- Stylus scanning only
- 3 subjects will add more subjects


Experiment	Mean of trial times	Median of trial times
GG - Large dot	12.1 s	9.5 s
GG - Small dot	11.7 s	11.0 s
UG - Large dot	93 s	80 s
UG - Small dot	382 s	331 s

Venn Diagram

- Background is silent
- Similar to the Voronoi layout representation
 - · Circular area analogous to the Voronoi region
 - With the exception of possible overlaps between circles
 - Circle center represented by a small dot (radius 0.07 inches) analogous to the object
- Multiple sounds played in overlaps

Venn Diagram


- Proximity rendition similar to L2
 - But, intensity change depends on radius of each circle (maximum at center, minimum at the edge)
 - Thus, intensity gradient provides cue for circle size
- Goal is to convey
 - Relative position and size of each circle
 - Amount of overlap as a percentage of the smaller circle area
- Experiment
 - Subjects had to select among different choices
 - Subjects were then asked to draw and label the diagram

Venn Diagram: Results

	Overlaps		Relative Locations			Relative Sizes			
	A & B	B & C	C & A	A/B	B / C	C / A	А	В	С
Accuracy (%)	100	50	100	83.3	100	100	83.3	100	100

- 6 Subjects
- Available choices
 - Overlap: none, 10 40%, 40 60%, 60 90%, full
 - Location: N, NE, E, SE, S, SW, W, NW, N
 - Size: small, medium, large
- Actual overlaps
 - A & B : 16%
 - B & C : 59%
- All accuracies are better than the chance values

Conclusions: Shape

(Red indicates statistically significant results)

- Use of spatial sound (directionality and proximity cues)
 - Offers faster shape rendition for comparable or better accuracy
 - Performance (accuracy) can be improved significantly with training
- Raised-dot patterns
 - provide best shape rendition (in terms of time and accuracy)
 - but current technology does not allow dynamic display
- Friction display
 - Inferior to both for shape rendition

Conclusions: Localization

- Use of spatial sound (directionality and proximity cues)
 - Fixed head orientation superior to trajectory orientation in terms of time, difficulty, and cognitive load
 - Advantages depend of scene resolution
 - Large dot size: spatial sound outperforms unguided localization in terms of time to dot
 - Small dot size: Performance remains the same for spatial sound; goes down significantly for unguided layout

General Conclusions

- Dynamic (and static) acoustic-tactile representation of visual signals
 - Designed and implemented several configurations
 - Conducted pilot subjective tests that offer some statistically significant results, but also, many valuable insights for the design of further systematic tests with visually impaired and visually blocked subjects
- Acoustic display
 - Dynamic
 - Good for object identification
 - Can be used for shape rendition and object localization
- Raised dot display
 - Good for shape rendition
- Simple and intuitive concepts yield better results than natural analogies (fixed vs. trajectory orientation)
- Applications: Virtual cane, Venn diagrams

