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Figure 1: Adaline. An adaptive linear neuron
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Figure 2: Knobby adaline

Widrow talk The Hebbian-LMS Algorithm

3



Figure 3: Adaline with bootstrap learning.
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Figure 4-(a): Bootstrap learning. The quantized output, the sum, and the error vs (SUM).
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Figure 4-(b): Bootstrap learning. The error vs (SUM).
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Figure 5: Decision-directed learning for channel equalization.
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Figure 6: Eye patterns produced by overlaying cycles of the received waveform.

(a) Before equalization. (b) After equalization.
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Figure 7: A sigmoidal neuron trained with bootstrap learning.
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Figure 8-(a): The error of a sigmoidal neuron with bootstrap learning.
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Figure 8-(b): The error function.
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Figure 9: A post-synaptic neuron with excitatory and inhibitory inputs and all positive 
weights trained with LMS bootstrap learning. All outputs are positive after rectification
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Figure 10-(a): The error of the sigmoidal neuron with rectified output, trained with 
bootstrap learning.

Widrow talk The Hebbian-LMS Algorithm

(SUM)

+1

-1

(OUT’) = 0

(OUT) = (OUT’)

–

+

+

–

Half Sigmoid Error

Error

(OUT) 
(OUT’)

slope = ઻

Negative stable 
equilibrium point

Unstable 
equilibrium point

Positive stable 
equilibrium point

13



Figure 10-(b): The error function.
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Figure 11-(a): Hebbian-LMS learning process. Initial condition.
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Figure 11-(b): Hebbian-LMS learning process. After 100 iterations
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Figure 11-(c): Hebbian-LMS learning process. After 2000 iterations

Widrow talk The Hebbian-LMS Algorithm

17



The Hebbian-LMS Algorithm

(Sum)

(Out)

Figure 11-(d): Hebbian-LMS learning process. After 5000 iterations
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Figure 11-(e): Hebbian-LMS learning curve.
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Figure 12: An example of a layered neural network.
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Figure 13: A general form of Hebbian-LMS.
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Figure 14: A synapse corresponding to a variable weight.
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Figure 15: A neuron, dendrite, and synapse.

Widrow talk The Hebbian-LMS Algorithm

(SUM) T PG

T: Threshold
PG: Pulse Generator

AXON

NEURO
TRANSMITTER

SYNAPSE

DENDRITE

CELL BODY &
NUCLEUS

SOMA

DENDRITE

MEMBRANE

23



Widrow talk The Hebbian-LMS Algorithm

• When the pre-synaptic neuron is not firing, there will be no 
neurotransmitter in the gap and there will be no weight change. This 
applies to both excitatory and inhibitory synapses.

• When the pre-synaptic neuron is firing, and the post-synaptic neuron is 
also firing, there will be neurotransmitter in the gap and the post-synaptic 
membrane voltage will be positive since the (SUM) is positive, and the 
number of neuroreceptors will gradually increase, thus increasing the 
weight. This applies to excitatory synapses.

• When the pre-synaptic neuron is firing, and the post-synaptic neuron is not 
firing, there will be neurotransmitter in the gap and the post-synaptic 
membrane voltage will be negative since the (SUM) is negative and its 
number of neuroreceptors will gradually decrease, thus decreasing the 
weight. This applies to excitatory synapses.

• The opposite of these rules apply to inhibitory synapses.

Figure 16: Postulates of synaptic plasticity
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Figure 17: A linear error function.
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Figure 18: Hebbian-LMS with a linear error function.
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