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Motivation

Sparse Signal Recovery is an interesting area with many potential
applications.

Methods developed for solving sparse signal recovery problem can be a
valuable tool for signal processing practitioners.

Many interesting developments in recent past that make the subject
timely.

Bayesian Framework o↵ers some interesting options.
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Problem Description: Sparse Signal Recovery (SSR)

y is a N ⇥ 1 measurement vector.

� is N ⇥M dictionary matrix where M >> N.

x is M ⇥ 1 desired vector which is sparse with k non zero entries.

v is the measurement noise.
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Problem Statement: SSR

Noise Free Case

Given a target signal y and dictionary �, find the weights x that solve,

min
x

X

i

I (x
i

6= 0) subject to y = �x

I (.) is the indicator function.

Noisy case

Given a target signal y and dictionary �, find the weights x that solve,

min
x

X

i

I (x
i

6= 0) subject to ky � �xk
2

< �
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Useful Extensions

Block Sparsity

Multiple Measurement Vectors (MMV)

Block MMV

MMV with time varying sparsity
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Block Sparsity

Variations include equal blocks, unequal blocks, block boundary known or
unknown.
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Multiple Measurement Vectors (MMV)

Multiple measurements: L measurements

Common Sparsity Profile: k nonzero rows
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Applications

Signal Representation (Mallat, Coifman, Donoho,..)

EEG/MEG (Leahy, Gorodnitsky,Ioannides,..)

Robust Linear Regression and Outlier Detection (Jin, Giannakis, ..)

Speech Coding (Ozawa, Ono, Kroon,..)

Compressed Sensing (Donoho, Candes, Tao,..)

Magnetic Resonance Imaging (Lustig,..)

Sparse Channel Equalization (Fevrier, Proakis,...)

Face Recognition (Wright, Yang, ...)

Cognitive Radio (Eldar, ..)

and many more.........
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MEG/EEG Source Localization

? 

)�

source space (x) sensor space (y) 

i Forward model dictionary ) can be computed using 
Maxwell’s  equations  [Sarvas,1987]. 

i In many situations the active brain regions may be relatively 
sparse, and so solving a sparse inverse problem is required. 

  
�
 

[Baillet et al., 2001] 
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Sparse Channel Estimation

Potential Application: Underwater Acoustics
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Speech Modeling and Deconvolution

Speech Model

Speech specific assumptions: Voiced excitation is block sparse and the
filter is an all pole filter 1

A(z)
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Compressive Sampling (CS)

Transform Coding

 is the transform and b is the original data/image.
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Compressive Sampling (CS)

Transform Coding

 is the transform and b is the original data/image.
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Compressive Sampling (CS)

Computation:

Solve for x such that �x = y .

Reconstruction: b =  x

Issues:

Need to recover sparse signal x with constraint �x = y .

Need to design sampling matrix A.
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Model noise 

w: Sparse 
Component, 

Outliers 

ε: Gaussian 
Component, 
Regular error 

y X c n 
Robust Linear  
Regression 
X, y: data; 
c: regression coeffs.; 
n: model noise; 

Transform into 
overcomplete 
representation: 

Y = X c + Φ w + ε, where Φ=I, 
or  
Y = [X , Φ]       + ε 
 
 

c
w
ª º
« »
¬ ¼
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Potential Algorithmic Approaches

Finding the Optimal Solution is NP hard. So need low complexity
algorithms with reasonable performance.

Greedy Search Techniques

Matching Pursuit (MP), Orthogonal Matching Pursuit (OMP).

Minimizing Diversity Measures

Indicator function is not continuous. Define Surrogate Cost functions
that are more tractable and whose minimization leads to sparse solutions,
e.g. `

1

minimization.

Bayesian Methods

Make appropriate Statistical assumptions on the solution and apply
estimation techniques to identify the desired sparse solution.
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Bayesian Methods

1. MAP Estimation Framework (Type I)

2. Hierarchical Bayesian Framework (Type II)
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MAP Estimation Framework (Type I)

Problem Statement

x̂ = argmax
x

P(x |y) = argmax
x

P(y |x)P(x)

Choice of P(x) = a

2

e�a|x| as Laplacian and P(y |x) as Gaussian will lead
to the familiar LASSO framework.
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Hierarchical Bayesian Framework (Type II)
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Hierarchical Bayesian Framework (Type II)

Problem Statement

�̂ = argmax
�

P(�|y) = argmax
�

Z
P(y |x)P(x |�)P(�)dx

Using this estimate of � we can compute our concerned posterior
P(x |y ; �̂).

Example: Bayesian LASSO

Laplacian prior P(x) can be represented as a Gaussian Scale Mixture in
this fashion,

P(x) =

Z
P(x |�)P(�)d�

=

Z
1p
2⇡�

exp(� x2

2�
)⇥ a2

2
exp(�a2

2
�)d�

=
a

2
exp(�a|x |)
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MAP Estimation

Problem Statement

x̂ = argmax
x

P(x |y) = argmax
x

P(y |x)P(x)

Advantages

Many options to promote sparsity, i.e. choose some sparse prior
over x .

Growing options for solving the underlying optimization problem.

Can be related to LASSO and other `
1

minimization techniques by
using suitable P(x).
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MAP Estimation

Assumption: Gaussian Noise

x̂ = argmax
x

P(y |x)P(x)

= argmin
x

�logP(y |x)� logP(x)

= argmin
x

ky � �xk2
2

+ �
mX

i=1

g(|x
i

|)

Theorem

If g is non decreasing and strictly concave function for x 2 R+, the local
minima of the above optimization problem will be the extreme points, i.e.
have max of N non-zero entries.
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Special cases of MAP estimation

Gaussian Prior

Gaussian assumption of P(x) leads to `
2

norm regularized problem

x̂ = argmin
x

ky � �xk2
2

+ �kxk2
2

Laplacian Prior

Laplacian assumption of P(x) leads to standard `
1

norm regularized
problem i.e. LASSO.

x̂ = argmin
x

ky � �xk2
2

+ �kxk
1
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Examples of Sparse Distributions

Sparse distributions can be viewed using a general framework of
supergaussian distribution.

P(x ;�, p) =
p

2 p

p
2��( 1

p

)
e

�|x|p
2�p , p  1

If a unit variance distribution is desired � becomes a function of p.
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Example of Sparsity Penalties

Practical Selections

g(x
i

) = log(x2
i

+ ✏), [Chartrand and Yin, 2008]
g(x

i

) = log(|x
i

|+ ✏), [Candes et al., 2008]
g(x

i

) = |x
i

|p, [Rao et al., 1999]

Di↵erent choices favor di↵erent levels of sparsity.
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Which Sparse prior to choose?

x̂ = argmin
x

ky � �xk2
2

+ �
MX

l=1

|x
l

|p

Two issues:

If the prior is too sparse, i.e. p ⇠ 0, then we may get stuck at a
local minima which results in convergence error.

If the prior is not sparse enough, i.e. p ⇠ 1, then though global
minima can be found, it may not be the sparsest solution, which
results in a structural error.
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MAP Estimation

Underlying Optimization problem is

x̂ = argmin
x

ky � �xk2
2

+ �
mX

i=1

g(|x
i

|)

Useful algorithms exist to minimize the cost function with a strictly
concave penalty function g on R+ (Reweighted `

2

/`
1

algorithms).

The essence of this algorithm is to create a bound for the concave
penalty function and follow the steps of a Majorize-Minimization
(MM) algorithm.
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Reweighted `1 optimization

Assume: g(x
i

) = h(|x
i

|) with h concave.

Now we have to bound this concave penalty function.
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Reweighted `1 optimization

Assume: g(x
i

) = h(|x
i

|) with h concave.

Updates

x (k+1) ! argmin
x

ky � �xk2
2

+ �
X

i

w
(k)

i

|x
i

|

wk+1

i

! @g(x
i

)

@|x
i

| |
x

i

=x

(k+1)

i
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Reweighted `1 optimization

Candes et al., 2008

Penalty: g(x
i

) = log(|x
i

|+ ✏), 0✏ � 0

Weight Update: w (k+1)

i

! [|x (k+1)

i

+ ✏]�1
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Reweighted `2 optimization

Assume: g(x
i

) = h(x2
i

) with h concave

Upper bound h(.) as before.

Bound will be quadratic in the variables leading to a weighted
2-norm optimization problem

Updates

x (k+1) ! argmin
x

ky � �xk2
2

+ �
X

i

w
(k)

i

x2
i

= W̃ (k)�T (�I + �W̃ (k)�T )�1y

wk+1

i

! @g(x
i

)

@x2
i

|
x

i

=x

(k+1)

i

, W̃ (k+1) ! diag [w (k+1)]�1
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Reweighted `2 optimization: Examples

FOCUSS Algorithm[Rao et al., 2003]

Penalty: g(x
i

) = |x
i

|p, 0  p  2

Weight Update: w (k+1)

i

! |x (k+1)

i

|p�2

Properties: Well-characterized convergence rates; very susceptible
to local minima when p is small.

Chartrand and Yin (2008) Algorithm

Penalty: g(x
i

) = log(x2
i

+ ✏), ✏ � 0

Weight Update: w (k+1)

i

! [(x (k+1)

i

)2 + ✏]�1

Properties: Slowly reducing ✏ to zero smoothes out local minima
initially allowing better solutions to be found;
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Empirical Comparison
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Empirical Comparison

Figure: Probability of Successful recovery vs Number of non zero
coe�cients
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Limitation of MAP based methods

To retain the same maximally sparse global solution as the `
0

norm in
general conditions, then any possible MAP algorithm will possess O

⇥�
M

N

�⇤

local minima.

Bhaskar D Rao University of California, San Diego



Hierarchical Bayes: Sparse Bayesian Learning(SBL)

MAP estimation is just a penalized regression, hence Bayesian
Interpretation has not contributed much as of now.

MAP methods were interested in the mode of the posterior but SBL uses
posterior information beyond the mode, i.e. posterior distribution.

Problem

For all sparse priors it is not possible to compute the normalized posterior
P(x |y), hence some approximations are needed.
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Hierarchical Bayesian Framework (Type II)

In order for this framework to be useful, we need tractable
representations: Gaussian Scaled Mixtures
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Construction of Sparse priors

Separability: P(x) =
Q

i

P(x
i

)

Gaussian Scale Mixture :

P(x
i

) =

Z
P(x

i

|�
i

)P(�
i

)d�
i

=

Z
N(x

i

; 0, �
i

)P(�
i

)d�
i

Most of the sparse priors over x (including those with concave g) can be
represented in this GSM form, and di↵erent scale mixing density i.e,
P(�

i

) will lead to di↵erent sparse priors. [Palmer et al., 2006]

Instead of solving a MAP problem in x , in the Bayesian framework one
estimates the hyperparameters � leading to an estimate of the posterior
distribution for x , i.e. P(x |y ; �̂). (Sparse Bayesian Learning)
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Instead of solving a MAP problem in x , in the Bayesian framework one
estimates the hyperparameters � leading to an estimate of the posterior
distribution for x , i.e. P(x |y ; �̂). (Sparse Bayesian Learning)
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Examples of Gaussian Scale Mixture

Laplacian density

P(x ; a) =
a

2
exp(�a|x |)

Scale mixing density: P(�) = a

2

2

exp(� a

2

2

�), � � 0.

Student-t Distribution

P(x ; a, b) =
ba�(a+ 1/2)

(2⇡)0.5�(a)

1

(b + x2/2)a+1/2

Scale mixing density: Gamma Distribution.

Generalized Gaussian

P(x ; p) =
1

2�(1 + 1

p

)
e�|x|p

Scale mixing density: Positive alpha stable density of order p/2.
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Sparse Bayesian Learning (Tipping)

y = �x + v

Solving for the optimal �

�̂ = argmax
�

P(�|y) = argmax
�

P(y |�)P(�)

= argmin
�

log |⌃
y

|+ yT⌃�1

y

y � 2
X

i

logP(�
i

)

where, ⌃
y

= �2I + ���T and � = diag(�)

Empirical Bayes

Choose P(�
i

) to be a non-informative prior
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Sparse Bayesian Learning

Computing Posterior

Now because of our convenient choice posterior can be easily computed,
i.e, P(x |y ; �̂) = N(µ

x

,⌃
x

) where,

µ
x

= E [x |y ; �̂] = �̂�T (�2I + ��̂�T )�1y

⌃
x

= Cov [x |y ; �̂] = �̂� �̂�T (�2I + ��̂�T )�1��̂

Updating �

Using EM algorithm with a non informative prior over �, the update rule
becomes:

�
i

 µ
x

(i)2 + ⌃
x

(i , i)
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SBL properties

Local minima are sparse, i.e. have at most N nonzero �
i

Bayesian inference cost is generally much smoother than associated
MAP estimation. Fewer local minima.

In high signal to noise ratio, the global minima is the sparsest
solution. No structural problems.
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Empirical Comparison

For each test case

1 Generate a random dictionary � with 50 rows and 250 columns
from the normal distribution and normalize each column to have
2-norm of 1.

2 Select the support for the true sparse coe�cient vector x
0

randomly.

3 Generate the non-zero components of x
0

from the normal
distribution.

4 Compute signal, y = �x
0

(Noiseless case).

5 Compare SBL with previous methods with regard to estimating x
0

.

6 Average over 1000 independent trials.
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Empirical Comparison: 1000 trials

Figure: Probability of Successful recovery vs Number of non zero
coe�cients
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Empirical Comparison: Multiple Measurement Vectors
(MMV)

Generate data matrix via Y = �X
0

(noiseless), where:

1 X
0

is 100-by-5 with random non-zero rows.

2 � is 50-by-100 with Gaussian iid entries.
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Empirical Comparison: 1000 trials
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Summary

Bayesian methods o↵er interesting and useful options to the Sparse
Signal Recovery problem

MAP estimation (Reweighted `
2

/`
1

algorithms)
Sparse Bayesian Learning

Versatile and can be more easily employed in problems with
structure

Algorithms can often be justified by studying the resulting objective
functions.
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