

Advancements in Noise Measurement

by Ken Wong, Senior Member IEEE R&D Principal Engineer Component Test Division Agilent Technologies, Inc.

IEEE IMS SCV Chapter Mtg

Objectives

Noise Figure Measurements

- Y-Factor
- Cold source
- Noise Parameters
- Noise Wave
- Correcting for Source Impedance Mismatch
- Correcting for Receiver Mismatch and Noise

VNA Noise Figure Measurements

- Setup (S)
- Setting Input (Fwd) and Output (Rev) Powers
- Choosing Noise Bandwidth
- Setting Noise Averaging Factor
- Choosing the Receiver Gain Setting

Objectives (cont)

Calibration

- Noise Source Calibration (S)
- S-parameter Calibration (S)
- Noise Tuner Calibration (S)
 Verification
- Mismatch Line
- Amp Characteristics
- Combined S11
- Combined Gain
- Combined Noise Figure

The Early Days

340B

Advancements in Noise Measurement By Ken Wong Page 4

IEEE IMS SCV Chapter Mtg

Agilent Technologies

Agilent's Noise Figure Legacy

100.654

8970

1980

340A 1958

8560/90 with NF 1995

85120 1999

SA with NF 2002

NFA 2000

Advancements in Noise Measurement By Ken Wong Page 5

Agilent Technologies

IEEE IMS SCV Chapter Mtg

Definition

$$S_{out} = G_a * S_{in} ; \quad N_{out} = G_a * N_{in} \Big|_{T=T_0} + N_{add} \Big|_{T=T_0}$$

F(noise factor) = $\frac{(S / N)_{in}}{(S / N)_{out}} = \frac{N_{out}}{G_a * N_{in}} = 1 + \frac{N_{add}}{G_a * N_{in}}$

$G_a \equiv Available Gain, NF (Noise Figure) \equiv 10^* log_{10}(F) dB$

D. Vondran, "Noise Figure Measurement: Corrections Related to Match and Gain," Microwave J., pp 22-38, Mar. 1999 Collantes, J. M., R. D. Pollard, et al. (2002). "Effects of DUT mismatch on the noise figure characterization: a comparative analysis of two Y-factor techniques." Instrumentation and Measurement, IEEE Transactions on 51(6): 1150-1156.

Advancements in Noise Measurement By Ken Wong Page 6

IEEE IMS SCV Chapter Mtg

Definition in Terms of Noise Temperature

$$N_{in} = k * T_0 * B; \quad N_{add} = G_a * k * T_e * B$$

 $T_0 \equiv 290K$; $B \equiv$ bandwidth

 $k \equiv$ Boltzmann's constant = 1.380 6505×10⁻²³ joule/kelvin

 $T_e \equiv$ effective input noise temperature of device

$$F = \frac{N_{out}}{G_a * N_{in}} = 1 + \frac{T_e}{T_0}$$

Advancements in Noise Measurement By Ken Wong Page 7

IEEE IMS SCV Chapter Mtg

Advancements in Noise Measurement By Ken Wong Page 8

IEEE IMS SCV Chapter Mtg

Definition In Terms Of Noise Parameters

IRE Subcommittee 7.9 On Noise: "Representation Of Noise In Linear Two-ports," Proc. IRE, Vol. 48, Pp. 69-74, Jan. 1960

Advancements in Noise Measurement By Ken Wong Page 9

IEEE IMS SCV Chapter Mtg

Noise parameters Definition (cont)

$$F = F_{\min} + \left(\frac{R_{n}}{G_{s}}\right) |Y_{s} - Y_{opt}|^{2} = F_{\min} + \frac{4R_{n}}{Z_{0}} \frac{\left|\Gamma_{opt} - \Gamma_{s}\right|^{2}}{\left|1 + \Gamma_{opt}\right|^{2} \left(1 - \left|\Gamma_{s}\right|^{2}\right)}$$

 $F_{\min} \equiv \text{minimum noise factor}$ $R_{n} \equiv \text{noise resistance}$

 $Y_{opt} \equiv$ optimum input admittance $Y_s =$ source admittance $G_s =$ real part of Y_s

 $\Gamma_{opt} \equiv$ optimum input noise match Z_0 = reference impedance Γ_s = source match

Advancements in Noise Measurement By Ken Wong

Noise Source ENR – Excess Noise Ratio

$$\mathrm{ENR} \equiv 10 \log_{10} \left(\frac{\mathrm{T_{h}} - \mathrm{T_{c}}}{\mathrm{T_{0}}} \right)$$

 $T_h =$ Hot Noise Temperature $T_c =$ Cold Noise Temperature $T_0 =$ 290 K

 $T_c = T_0$ when noise sources are calibrated by reference labs.

Advancements in Noise Measurement By Ken Wong Page 11

IEEE IMS SCV Chapter Mtg

Y factor Method

 $P_{out,cold} = kBG_a(T_{cold} + T_e)$

 $T_e = \frac{T_{hot} - YT_{cold}}{Y - 1}$

$$F = \frac{N_{out}}{G_a * N_{in}} = 1 + \frac{T_e}{T_0} = 1 + \frac{T_{hot} - Y * T_{cold}}{(Y - 1) * T_0}$$

Assumes ALL Reflections are the same.

"Fundamentals of RF and Microwave Noise Figure Measurements," Hewlett-Packard Application Note 57-1, Palo Alto, CA July 1983

$$F_{(R)}\Big|_{\Gamma_s} = \frac{N_{out(R)}}{G_{a(R)} * N_{in}} = 1 + \frac{T_{e(R)}}{T_0} = 1 + \frac{T_{hot} - Y * T_{cold}}{(Y-1) * T_0}$$

Assumes $\Gamma_{s(hot)} = \Gamma_{s(cold)}$

Advancements in Noise Measurement By Ken Wong Page 13

IEEE IMS SCV Chapter Mtg

Actual Y factor Measurement

Advancements in Noise Measurement By Ken Wong Page 14

Agilent Technologies

IEEE IMS SCV Chapter Mtg

Some Y factor Measurement Assumptions

$$\begin{split} \Gamma_{s(hot)} &= \Gamma_{s(cold)} \\ F_{(R)} \Big|_{\Gamma_{o(device)}} &= F_{(R)} \Big|_{\Gamma_{s}} \\ G_{a(device)} &= \frac{N_{hot(all)} - N_{cold(all)}}{N_{hot(R)} - N_{cold(R)}} \quad \text{True only if } S_{11} \text{ and } S_{22} \text{ are } <<1 \end{split}$$

Notes:

 G_a (available gain) is a function of S_{11} , S_{22} and $\Gamma_s =$ source reflection of the incident signal

Advancements in Noise Measurement By Ken Wong

By Ken Wong

Page 16

Agilent Technologies

Cold Noise Source Technique

Advancements in Noise Measurement By Ken Wong

IEEE IMS SCV Chapter Mtg

Cold Noise Figure Cal and Measurement

 $kGB = k \cdot Gain \cdot Bandwidth$ Calibrate P_{N} kGB = $\frac{P_{hot} - P_{cold}}{T_{hot} - T_{cold}}$ Measure P_N DUT $\Gamma_{i(rec)}$ $T = T_{meas}$ $\Gamma_{o(device)}$ $\Gamma_{\rm s}$ $\Gamma_{i(device)}$ $\mathbf{F}_{\text{Dut}} = \frac{1}{\mathbf{G}_{a}} \cdot \left(\frac{\mathbf{P}_{n}}{\mathbf{k}\mathbf{G}\mathbf{B}} - \mathbf{F}_{r} + 1\right)$

Advancements in Noise Measurement By Ken Wong Page 18

IEEE IMS SCV Chapter Mtg

Four noise parameters: F_{min} , R_n , $\Gamma_{opt (mag)}$, $\Gamma_{opt (phase)}$

Advancements in Noise Measurement By Ken Wong Page 19

IEEE IMS SCV Chapter Mtg

Noise parameters Definition

$$F = F_{\min} + \left(\frac{R_n}{G_s}\right) |Y_s - Y_{opt}|^2 = F_{\min} + \frac{4R_n}{Z_0} \frac{|\Gamma_{opt} - \Gamma_s|^2}{|1 + \Gamma_{opt}|^2 (1 - |\Gamma_s|^2)}$$

 $F_{\min} \equiv \text{minimum noise factor}$ $R_{n} \equiv \text{noise resistance}$

 $Y_{opt} \equiv$ optimum input admittance $Y_s =$ source admittance $G_s =$ real part of Y_s

 $\Gamma_{opt} \equiv$ optimum input noise match Z_0 = reference impedance Γ_s = source match

Advancements in Noise Measurement By Ken Wong

Noise parameters Definition – Noise Temperature

$$T_{n} = T_{\min} + \frac{\left(R_{n}T_{0}\right)\left|Y_{s} - Y_{opt}\right|^{2}}{G_{s}} = T_{\min} + \frac{4T_{0}R_{n}}{Z_{0}}\frac{\left|\Gamma_{opt} - \Gamma_{s}\right|^{2}}{\left|1 + \Gamma_{opt}\right|^{2}\left(1 - \left|\Gamma_{s}\right|^{2}\right)}$$

 $T_{min} \equiv minimum noise Temperature R_n \equiv noise resistance T_0 \equiv 290^{\circ} K$

 $Y_{opt} \equiv$ optimum input admittance $Y_s =$ source admittance $G_s =$ real part of Y_s

 $\Gamma_{opt} \equiv$ optimum input noise match Z_0 = reference impedance Γ_s = source match

Advancements in Noise Measurement By Ken Wong

Noise Parameters

- Plots of noise figure circles versus impedance (at one frequency)
- F_{min} is lowest noise figure and occurs at Γ_{opt}
- F changes with Γ
- F changes with device bias

Measuring Noise parameters

A. C. Davidson, B. W. Leake, et al. (1989). "Accuracy improvements in microwave noise parameter measurements." <u>Microwave</u> <u>Theory and Techniques, IEEE Transactions on</u> **37**(12): 1973-1978.

Advancements in Noise Measurement By Ken Wong Page 23

Agilent Technologies

P. Penfield, Jr "Wave Representation of Amplifier Noise." <u>IRE Transactions On Circuit Theory</u>: Mach (1962) pp. 84-86
K. Hartmann, "Noise Characterization of Linear Circuits," IEEE Transactions on Circuits and Systems, Vol. cAS-23, No. 10, Oct. 1976, pp. 581-590
R.P. Meys, "A Wave Approach to the Noise Properties of Linar Microwave Devices," IEEE Transactions on Microwave Theory and Techniques, Vol. MTT-26, No. 1, Jan. 1978, pp 34-37
S. W. Wedg and D. B. Rutledge (1992). "Wave techniques for noise modeling and measurement." Microwave Theory and Techniques, IEEE

Transactions on **40**(11): 2004-2012.

Advancements in Noise Measurement By Ken Wong

Measurement using (S) noise correlation matrix

Noise output power from two-port is

$$\begin{split} P_{out} &= kBG_{av} \left(T_e + T_0\right) \\ P_{out} &= \left(\frac{kB|s_{21}|^2}{|1 - \Gamma_s S_{11}|^2}\right) \begin{cases} \left(1 - |\Gamma_s|^2\right)T_s + |\Gamma_s|^2 X_1 + \\ |1 - \Gamma_s S_{11}|^2 X_2 + 2\operatorname{Re}\left[\left(1 - \Gamma_s S_{11}\right)^* \Gamma_s X_{21}\right] \end{cases} \\ X_1 &= \overline{|b_{n1}|^2} = cs_{11} , \quad X_2 = \frac{\overline{|b_{n2}|^2}}{|S_{21}|^2} = \frac{cs_{22}}{|S_{21}|^2} , \quad X_{12} = \frac{\overline{b_{n1}b_{n2}^*}}{S_{21}^*} = \frac{cs_{12}}{S_{21}^*} \end{split}$$

J. Randa, W. Wiatr, "Conte Carlo Estimation of Noise Parameter Uncertainties," IEE Proc. Sci. Meas. Technology, Vol. 149, No. 6, Nov. 2002, pp. 333-337

IEEE IMS SCV Chapter Mtg

Noise correlation matrix (C_S) in terms of noise parameters

$$\mathbf{C_{s}} = \begin{pmatrix} (F_{\min} - 1)(|s_{11}|^{2} - 1) + \frac{4R_{n}}{Z_{0}} \frac{|1 - s_{11}\Gamma_{opt}|^{2}}{|1 + \Gamma_{opt}|^{2}} & \overline{s_{21}} \left((F_{\min} - 1)s_{11} - \frac{4R_{n}\overline{\Gamma_{opt}}(1 - s_{11}\Gamma_{opt})}{Z_{0}|1 + \Gamma_{opt}|^{2}} \right) \\ \hline \frac{1}{\overline{s_{21}}} \left((F_{\min} - 1)s_{11} - \frac{4R_{n}\overline{\Gamma_{opt}}(1 - s_{11}\Gamma_{opt})}{Z_{0}|1 + \Gamma_{opt}|^{2}} \right) & |s_{21}|^{2} \left(F_{\min} - 1\frac{4R_{n}|\Gamma_{opt}|^{2}}{Z_{0}|1 + \Gamma_{opt}|^{2}} \right) \end{pmatrix}$$

Advancements in Noise Measurement By Ken Wong

IEEE IMS SCV Chapter Mtg

Page 26

New Noise Measurement System

IEEE IMS SCV Chapter Mtg

Page 27

ECal as Noise Tuner

PNA-X varies source match around 50 ohms using an ECal module ECal can provide 7 impedance states

Advancements in Noise Measurement By Ken Wong Page 28

IEEE IMS SCV Chapter Mtg

Noise Figure in PNA – contributions

Speed and accuracy –

- Single Connection S-parameters and Noise Figure
- Fast Step Frequency Sweep
- Complete Mismatch Correction

Use of ECal or Compatible Impedance Tuner

Embedding and De-embedding of Probes in On-Wafer Noise Measurements

Can Accommodate Coax Noise Source for On-Wafer Noise Measurements

Calibration of the receiver

$$P_{out} = \left(\frac{kB|S_{21}|^2}{|1 - \Gamma_s S_{11}|^2}\right) \begin{cases} \left(1 - |\Gamma_s|^2\right)T_s + |\Gamma_s|^2X_1 + \\ |1 - \Gamma_s S_{11}|^2X_2 + 2\operatorname{Re}\left[\left(1 - \Gamma_s S_{11}\right)^*\Gamma_s X_{21}\right] \end{cases}$$

5 unknowns, linear equation

Note: The PNA-X uses a different form of the above equation.

Advancements in Noise Measurement By Ken Wong Page 30

IEEE IMS SCV Chapter Mtg

Calibration of receiver - solution of equations

Require Minimum Of 5 Equations To Solve

Can Be Over-determined

At Least One Measurement Must Be Made With Different Source Temperature

Use Noise Source (Known ENR, Measure $\Gamma_{\text{Cold}}, \Gamma_{\text{Hot}}$)

ECal Module Provides 7 Terminations

Advancements in Noise Measurement By Ken Wong

Noise Figure Mode Instrument Default Settings

S-parameter Mode Source Power \rightarrow -30 dBm Noise RF BW \rightarrow 4 MHz Noise IF BW \rightarrow 2 MHz Noise Averaging \rightarrow Point to Point (1 = 10K) Noise Receiver Gain \rightarrow 30 dB Factory Receiver Cal \rightarrow ON

Noise Figure Measurement Instrument Setup

	-		2	10		~	120	
	Meas	3	4			-)(Click	
	• 511	Trace	Channel	A Read		~	+	
	• S21	Meas	Format	ОК	ENTR	Help	Bk Sp	
	• 512	Scale	Display	2	8	9	G/n	
	• S22	Avg	Cal	4	5	6	M/u	
Www		MARKER	Search	1	2	3	k/m	
	Receivers	Memory	Analysis	0		+/-	Enter Off	
	Measurement Class	STIM Freq	Power	Save	Print		acro	

Noise Measurement Softkeys

Advancements in Noise Measurement By Ken Wong

IEEE IMS SCV Chapter Mtg

Noise Set Up

File Trace/Chan Response Mark	er/Analysis Stimulus Utility Help	
50.00 Tr 1 NF LogM 10.00dB/ 0.00dE	3 V MMAM MANYAWI VVV	Noise Meas Setup
Noise Figure Setup: Channel 1		×
Noise Figure		1
Bandwidth/Average Noise <u>4.0 MHz</u> Bandwidth Average ON Average <u>1</u> Number:	Noise Receiver Gain Low (0): (DUT Gain > 30 dB) Medium (15): (Average DUT Gain < 30 dB High (30): (DUT Gain < 15 dB) Set Normal Receiver Attenue	3) rator
Select Noise Tuner ECal Module: N4691-600	Max Acquired Impedance St 001, S/N 00553, Factory	tates: 4
2		ОК Нер
1 Ch1: Noise Start 10.0000 MHz	- Stop 26	.5000 GHz
Cont. CH 1: NF No Cor		LCL

Noise Set Up

File Trace/Chan Response Marker/Ana	lysis Stimulus Utility	Help				
Tr 1 NF LogM 10.00dB/ 0.00dB 50.00	M.M. W.	~ <u></u>	Noise Meas Setup			
Noise Figure Setup: Channel 1			×			
Noise Figure						
Bandwidth/Average Noise Bandwidth Average 0 Average 0 Average 2.0 MHz	Noise Receiver Gain C Low (0): C Medium (15): C High (30):	(DUT Gain > 30 dB) (Average DUT Gain < 30 dB) (DUT Gain < 15 dB)				
Number: 800 kHz		Set Normal Receiver Attenuator				
Select Noise Tuner	ſ	Max Acquired Impedance States:	•			
ECal Module: N4691-60001, S/N 00553, Factory						
J <u></u>		ОК	Help			
1 Ch1: Noise Start 10.0000 MHz —		Stop 26.5000 GHz				
Cont. CH 1: NF No Cor			LCL			

Noise Figure Measurement Calibration

Noise Cal

Page 38

S-parameters and Noise Calibrations

S-parameters and Noise Calibrations

Noise Calibration: Step 2 of 3	
Connect port 1 to port 2.	Apartinization March 1000 mm
Select [Measure] when connections have been made.	Measure Done
< <u>Back</u> Next>	
This step provides the	Noise Tuner
rest of measurements required to calibrate the noise receiver.	ADAPTER Γ_{nr} $P_{nt(i)}, \Gamma_{nt(i)}$

S-parameters and Noise Calibrations

Measurement of DUT

Known from Measured S-parameters

$$P_{out} = \left(\frac{kB|S_{21}|^{2}}{\left|1 - \Gamma_{s}S_{11}\right|^{2}}\right) \begin{cases} \left(1 - \left|\Gamma_{s}\right|^{2}\right)T_{s} + \left|\Gamma_{s}\right|^{2}X_{1} + \left|1 - \Gamma_{s}S_{11}\right|^{2}X_{2} + 2\operatorname{Re}\left[\left(1 - \Gamma_{s}S_{11}\right)^{*}\Gamma_{s}X_{21}\right] \end{cases}$$

4 unknowns, linear equation

Advancements in Noise Measurement By Ken Wong

IEEE IMS SCV Chapter Mtg

Page 42

DUT S-parameters and Noise Measurement

Advancements in Noise Measurement By Ken Wong Page 43

IEEE IMS SCV Chapter Mtg

Noise Measurement System With On-Wafer Probes

IEEE IMS SCV Chapter Mtg

Advancements in Noise Measurement By Ken Wong Page 45

IEEE IMS SCV Chapter Mtg

Advancements in Noise Measurement By Ken Wong Page 46

Agilent Technologies

IEEE IMS SCV Chapter Mtg

Noise Figure Uncertainty Example (ATE Setup)

IEEE IMS SCV Chapter Mtg

Noise Figure Uncertainty Example (Wafer Setup)

Advancements in Noise Measurement By Ken Wong Page 48

Agilent Technologies

IEEE IMS SCV Chapter Mtg

Verification approach

Need To Avoid Using An Active Device

- Cannot Guarantee Behavior Over Time
- Dependence On Temperature
- Noise May Be Injected Through Bias Supply

Use Mismatched Transmission Line, Passive Device

- Noise Parameters, Noise Figure Are Calculated From Sparameters
- Can Cascade With Any Amplifier And De-embed

Mismatch Transmission Line Characteristics

Advancements in Noise Measurement By Ken Wong Page 51

Agilent Technologies

IEEE IMS SCV Chapter Mtg

Measured S-parameters of Amplifier

Advancements in Noise Measurement By Ken Wong

IEEE IMS SCV Chapter Mtg

Page 52

Calculated vs. Measured Combined |S₁₁|

Calculated vs. Measured Combined Gain

Calculated vs. Measured Combined Noise Figure

Additional References:

[1] D. Vondran, "Noise Figure Measurement: Corrections Related to Match and Gain," Microwave J., pp 22-38, Mar. 1999

[2] Collantes, J. M., R. D. Pollard, et al. (2002). "Effects of DUT mismatch on the noise figure characterization: a comparative analysis of two Y-factor techniques." <u>Instrumentation and Measurement, IEEE</u> <u>Transactions on</u> **51**(6): 1150-1156.

[3] "Fundamentals of RF and Microwave Noise Figure Measurements," Hewlett-Packard Application Note 57-1, Palo Alto, CA July 1983

[4] IRE Subcommittee 7.9 On Noise: "Representation Of Noise In Linear Two-ports," Proc. IRE, Vol. 48, Pp. 69-74, Jan. 1960

[4] A. C. Davidson, B. W. Leake, et al. (1989). "Accuracy improvements in microwave noise parameter measurements." <u>Microwave Theory and Techniques, IEEE Transactions on</u> **37**(12): 1973-1978.

[5] R.Q. Lane, "The Determination of Device Noise Parameters," Proceedings of the IEEE, Aug. 1969, pp. 1461-1462

[6] P. Penfield, Jr "Wave Representation of Amplifier Noise." <u>IRE Transactions On Circuit Theory</u>: Mach (1962) pp. 84-86

[7] K. Hartmann, "Noise Characterization of Linear Circuits," IEEE Transactions on Circuits and Systems, Vol. cAS-23, No. 10, Oct. 1976, pp. 581-590

[8] R.P. Meys, "A Wave Approach to the Noise Properties of Linar Microwave Devices," IEEE Transactions on Microwave Theory and Techniques, Vol. MTT-26, No. 1, Jan. 1978, pp 34-37

[9] S. W. Wedg ,and D. B. Rutledge (1992). "Wave techniques for noise modeling and measurement." <u>Microwave Theory and Techniques, IEEE Transactions on</u> **40**(11): 2004-2012.

[10] J. Randa, W. Wiatr, "Conte Carlo Estimation of Noise Parameter Uncertainties," IEE Proc. Sci. Meas. Technology, Vol. 149, No. 6, Nov. 2002, pp. 333-337

[11] E.C. Valk, D. Routledge, J.F. Vaneldik, T.L. Landecker, "De-Embedding Two-Port Noise Parameters Using a Noise Wave Model," IEEE Transactions on Instrumentation and Measurement, vol. 37, no. 2, June 1988, pp 195-200

Advancements in Noise Measurement By Ken Wong

Page 57

Agilent Technologies

IEEE IMS SCV Chapter Mtg