Rohit Bhasin
Senior Technical Sales Engineer

Digital Verification and Design Validation Solutions

Agilent Technologies

"Overview of Significant Changes in Computer Architecture and Tackling the Challenges of High Speed Digital Interfaces"

...with a Focus on PCI and Memory

Agenda

- Changes in chipsets
- Intro to current/new interfaces
- Commonalties in interconnects (serial/parallel)
- Tool lifecycle
- PCI Express (including new tools)
- Fully Buffered DIMM (including new tools)

Computer System Topologies

Mid 90's

Circa 2002

enabling digital innovation

Digital Technologies in the Bay Area

- Serial ATA/Attached SCSI
- •Fully Buffered DIMM
- PCI Express
- •PCI-X 2.0
- Hypertransport
- •Intel FSB
- •DDR I/II/III
- •USB 2.0/Firewire 1394B
- •Infiniband 1x, 4x, 12x
- •FibreChannel 4Gb/s, 6/8Gb/s, 10Gb/s
- •1Gb/s, XAUI 10Gb/s Ethernet over copper
- Advanced TCA
- •SPI 4.2
- Serial Rapid I/O
- Digital Video Interface
- •High Definition Multimedia Interface

10 GIGABIT ETHERNET ALLIANCE

Transitions and Commonalities in Interconnect Technology

High Speed Serial

- Differential Signaling
- Embedded Clock, CDR
- Spread Spectrum, EMI Reduction
- Reduced Pin/Signal Count
- Packet Based Transactions
- Improved Quality of Service

High Speed Parallel

- Differential (e.g. FBDIMM, HyperTransport)
- Single Ended (e.g. DDR2, DDR3, Legacy Intel FSB)
- Clk rates increased (multi-gigabit)
- Reduced slot count (e.g. PCI-X, DDR3)
- Improved Quality of Service, ECC
- Reduced Pin/Signal Count

Lifecycle Tools for Multi-Gigabit Designs

Design Simulation		Device and Board		System	Mfg.
Link to Model Database	Devices & Interconnect Characterization	Prototype Characterization & Validation	Bring-Up Test	System Integration & Functional Validation	Chipset Test
	Physic	cal Layer Link Layer			
Passive Interconnect Measurements - Impedance, Crosstalk,		Active Live Signal Measurements - Voltage, Jitter, BER, Timing, Packets,			
Device Characterization & Modeling Services		Serial/Parallel BERT			
a wodeling Services		Pulse Generator			
ADS)	Physical Layer Test System	Logic Analysis System & Probes			
SPICE/IBIS		Sampling Scope, jitter capable			
		13 GHz Infiniium Real Time Scope			
IConnect	Sampling Scope W/TDR Network Analyzer	Robust scope Physical Layer Probing System			
WALE		Parametric Fixtures (FBD, PCI-E)			

PCI Express Validation Methodologies

Rohit Bhasin Agilent Technologies

> Presented at PCI-SIG Developers Conference June 2004

PCI Express Debug Challenges

PCI Express Validation Steps

Signal Integrity - Verify the 2.5/5.0 Gb design

- Eye Measurements
- Capture waveforms
- Measurement on parameters (jitter analysis, mask test, etc.)
- Board and Component characterization
- BERT

Serial Data Analysis Toolkit

- Clock recovery and serial data analysis for highspeed serial data signals
- Masks for PCI Express, Serial ATA/Attached SCSI, Fibre Channel, and XAUI
- Real-time eye diagram display
- Time interval error (TIE) jitter measurement
- First-order or second-order PLL clock recovery, and PCI Express clock recovery (provided by PCI-SIG)

An example using the Serial Data Tool

Features and Capabilities

- 8b/10b decoding
- 8b/10b search
- 8b/10b trigger
- Real time eye mask violation unfolding

8b/10b Decoding

Symbols in the serial data stream can be decoded and displayed as hex or decimal values, or as labels

Search and trigger

Search Navigation

Navigate to all the instances of the specified sequence of symbols using the arrow keys

Locating mask violations and failures

The real-time eye combined with the PCI Express mask test indicates there were multiple violations. But how do you gain insight into the individual violations by looking at the composite eye?

Locating mask violations

Using the controls, we can instruct the scope to go to the first violation in the serial data stream.

Locating mask violations

You can use the arrow keys to view each violation individually.

PCI Express Compliance Test Setup (add-in card)

PCI Express TS-1 Compliance Test

PCI Express Compliance and Validation Tool Suite

PCI Express Compliance Report Showing Marginal Performance Analysis

Pass Test Name

Spec Range

PCI Express Compliance Report

Overall Result: FAIL (3 of 35 Tests Failed)

Test Configuration Details

Test Date Jan 27, 2004, 21:04:30

Instrument ID Agilent Technologies, 54855A, No Serial, A.03.18,001, EZJ, SDA

Probe ID 1134A

Serial Number Jan 27, 2004, 21:04:30

Calibration Status All Passed

Summary of Results

Margin Thresholds

Warning <=3%

Critical <=

PCI Express Validation Steps

Signal Integrity - Verify the 2.5/5.0 Gb design

Probing

New Probe Architectures

Making Good Connections (Gen 1)

Flexibility Probe Systems

- Browser probe head
- Solder-in probe head
- Socketed probe head
- SMA probe head
- Differential and single-ended

Probing in confined spaces

Browser Probe

- 6 GHz BW
- Most versatile for hand-held probing
- Z-Axis compression enhances connection
- Adjustable tip spans
- Ergonomic sleeve
- Replaceable damping resistor tips
- Can be used with probe stand holder

Solder-in Probe (Gen 1)

- 8 GHz BW
- Use for high bandwidth connection
- Least space requirement
- Replaceable damping resistors (8 mil)

Socketed Probe

- 7 GHz BW
- Semi-permanent attachment
- Move between multiple test points
- Adapter for standard headers
- Standard axial lead resistors (20 mil)
- Same resistors support Logic Analyzer Flying Lead Set

Differential SMA Probe

- 50-Ohm Input Impedance
- 7 GHz BW
- Span-adjustable semi-rigid coax
- High common-mode rejection
- Cable loss compensation
- Cost effective adapter for existing probe amp
- Can apply DC offset bias

12 Ghz Active Probes (Gen 2)

Probe Amplifiers		
Specified Bandwidth	12 GHz	
Characterized Probe Tips	Yes	
Noise Referred to Input	2.5 mV rms	
Attenuation	3.45:1	
Diff Dynamic Range	3.3 V p-p	
DC Offset Range	+/- 16 V	
Maximum Voltage	+/- 30 V	

Offers excellent bandwidth, characterized performance for various probe tips, low noise, low attenuation, good dynamic range and small size

enabling digital innovation

12 GHz Differential SMA Adapter Probe Head

12 GHz Differential Solder-in Probe Head: 210 fF input capacitance, 50 kOhm input resistance, 4" reach, 2 mm probe head size at taper, 0.2-3.3 mm lead span

12 GHz Differential Browser:

210 fF input C, 50 kOhm input R, 0.2-3.3 mm lead span

- Logic Layer PCI-E probing
- DLLP and TLP debug

Tools for PCI-Express Logic Layer debug

Packet Analysis Probe

Logic Analyzer

Config./OS

Software

Transaction

Data Link

Physical

Mechanical

PCI Express Packet Analysis Probe

Digital Validation for PCI Express

- Logic Analysis Value Proposition

- Probing
 - Non Intrusive passive observation of data flow
 - Validation of Add-in Cards Chip-to-Chip Architectures
- Packet Analysis and Display
 - Dedicated Packet Triggering in LA
 - Dedicated FPGA Hardware Pattern Recognizers in Probe
 - Software Decode Tool runs on LA
- Full System Validation
 - Cross-Bus Analysis (Time Correlated)
 - Cross-triggering correlation between scope and analyzer

Logic Analysis PCI Express Connection

PCI Express Packet Analysis Probe Slot Interposer Solution

Connect: Low Intrusion is a must PCI

- Types of connection
 - Chip-to-Chip Link PCI Express FOOTPRINT (Soft Touch TECHNOLOGY)
 - Card Edge
 - Slot connector/interposer

Midbus Probe

Mid-Bus Footprint Routing

Mid-Bus Connector Layout

												_
	one d	irectio	n of x	16:	other	directi	on of	x16:	both (direction	ons of	x8:
			0				0				0	
		1				1				0		
Additional			2				2				1	
, idditional		3				3				1		
x16		_	4			_	4			_	2	
XIO		5	6			5	6			2	3	
Layouts		7	U			7	U			3	3	
		·	8			,	8			3	4	
Supported		9	Ŭ			9	ŭ			4		
Supported			10				10				5	
		11				11				5		
			12				12				6	
		13				13				6		
			14			4-	14			_	7	
		15				15				7		
	hoth /	direction	on of S) v/1·	hoth (lirooti	on of 2	v2.	hoth (direction	on of 2	v1·
	וווטטנוו	anecn		λ4.	וווטטוו	mecn	אוט ווע	ΧΖ.		มแบบแ	JII OI 2	X I.
			\cap				0					
		0	0			0	0				0	
		0	0			0	0			0		
Additional		0				0					0	
Additional										0	0	
			1				1			0	0 nc	
		1 2	1			1	1			0 nc	0 nc	
.ayouts		1	1 2 3			1	1 nc			0 nc	nc nc	
.ayouts	•	1 2 3	1 2			1 nc	1 nc			nc nc	0 nc	
	•	1 2	1 2 3			1 nc	1 nc nc			0 nc nc	nc nc nc	
.ayouts	•	1 2 3	1 2 3			1 nc nc	1 nc			nc nc	nc nc	
.ayouts	>	1 2 3	1 2 3 0			1 nc	1 nc nc 1			nc nc	nc nc nc	
.ayouts	>	1 2 3	1 2 3			1 nc nc	1 nc nc			nc nc	nc nc nc	
.ayouts	•	1 2 3 0 1	1 2 3 0			1 nc nc 1	1 nc nc 1			o nc nc o nc	nc nc nc	
.ayouts	•	1 2 3 0 1	1 2 3 0 1 2			1 nc nc 1	1 nc nc nc			o nc nc o nc	nc nc nc nc nc	

Signal Pair
Polarity can be reversed
Entire Link Lane assignment can be reversed

Connect: Flying Lead Set

Logic Analysis PCI Express Validation Steps

Acquire: PCI Express Traditional LA

 Traditional Serial Analysis Probes

enabling digital innovation

Acquire: PCI Express Packet Recognition

 PCI Express Packet Analysis Probe

enabling digital innovation

PCI Express Packet Recognition

- Enhanced Trigger Capability Through Packet Recognition
 - 8 Header Recognizers will exist in the Analysis Probe (4 Tx/4 Rx)
 - Implemented in h/w, includes GUI
 - 24 Bytes in each Header Recognizer (Recognition into Data Portion)
 - Recognizers send simple event notification back to Logic Analyzer
 - Full, Robust Logic Analyzer Sequencing will be available on event notification bits.

Recognizer 0:	3DW Memory Read Request	▼ Trigger on 0
Recognizer 1:	3DW Memory Write Request	▼ Trigger on 1
Recognizer 2:	DLLP Ack	▼ ☐ Trigger on 2
Recognizer 3:	DLLP Nak	▼ ☐ Trigger on 3

Logic layer Validation Challenges

"Read" & "Write" Cycles replaced by Packets

Completion Header Format

Requester Header Format For 64-bit addressing of memory

Validation Steps

Defining a Packet

Logic Analysis PCI Express Validation Steps

Display: Packet Decode

ose for press ESC	Iools Markers Run/Stop Listing Window Help	ensumana and in						Scenii I					_		20000
bee manned	Packet Decode	Bad CRC					Lane	Data							Ch
-10		00	4 A	4.4	4.6	A.P	4A	4.8	44	AP	4A	4.8	D10.2	D10.2	D10.
-9		00	4.4	44	4.4	4A	4 A	41	48	4.4	4 A	41	D10.2	D10.2	D10.
-8		00	4 A	4.1	48	4A	4A	41	4.E	4.8		41		D10.2	
-7		00	44	4.8	AP	4A	4.8	44	4.8	4.8	44	44		D10.2	
-6		00	4.4	41	4.4	4.4	4.4	41	4.4	44	4.4	41		D10.2	
-5		00	4A	44	44	44	4.4	4.k	44			44		D10.2	
-4		00	BC	BC	BC	BC	BC	BC	BC	BC	BC	BC		K28.5	
-3		00	10	10	10	10	10	10	10	10	10	10		K28.0	_
-2		00	10	10	10	10	10	10	10	10	10	10		K28.0	
-1	A	00	1C	10	10	10	10	10	10	10	10	10		K28.0	
0.1	Start TLP = STP ******************	00	I B	00.	UU.	UU	00	.00	UU	00	00	00	K27.7	D00.0	DOO.
0.1	Reserved = 0 Hex TLP Sequence Number = 000 Hex														
0.3	Reserved1 = 0 Hex														
0.4	Fmt = 3DW header, no data														
0.5	Type - Memory Read Request														
0.6	Reserved2 = 0 Hex														
0.7	TC - TCO														
0.8	Reserved3 = 0 Hex														
0.9	TD = TLP Digest Not Present														
0.10	EP = TLP Not Poisoned														
0.11	Attributes = Default Ordering, Defaul														
0.12	Reserved4 = 0 Hex														
0.13	Length = 000 Hex														
0.14	Requester ID = 0000 Hex														
0.15	Tag = 00 Hex														
0.16	Last DW Byte Enable = O Hex														
0.17	First DW Byte Enable = 0 Hex														
0.18	Address[31:2] = 0000 0000 Hex														
0.19	Reserved5 = 0 Hex														
0.20	LCRC = c779 bbd1 Hex (GOOD)														
	End TLP - END					FD		F7	F7	F7		F7		D27.5	
0.00	Start TLP = STP ******************	00	FB	00	00	01	.00	00	00	00	00	00	K27.7	D00.0	D00.
2.1	Reserved = 0 Hex														
2.2	TLP Sequence Number = 000 Hex														
2.3	Reserved1 = 0 Hex														
2.4	Fmt = 3DV header, no data														
2.5	Type = Memory Read Request-Locked														
2.6	Reserved2 = 0 Hex TC = TCO														
2.8	Reserved3 = 0 Hex														
2.9	TD = TLP Digest Not Present														
2.10	EP = TLP Not Poisoned														

Packet Decode / Display (TLP)

K/D	Time	Packet Decode	Data0	Data1	Data2
Binary	Absolute	Text	Hex	Hex	Hex
1000	0 s	Start TLP	FB	00	00
0000	20.000 ns	Reserved = 00 Hex Packet Sequence Number = 00 Hex Reserved = 0 Binary Global Format = 00 Binary (3DW header, no data) Type = 04 Hex (Configuration Read Type 0) Reserved = 0 Binary TC = 000 Binary Reserved = 00 Hex Attr = 00 Binary Reserved = 00 Binary Length = 000 Hex Requester ID = 0000 Hex	00	00	00
0000	40.000 ns	Tag = 00 Hex	00	00	00
0000	60.000 ns	Last DW BE = 0 Hex First DW BE = 0 Hex Bus Number = 00 Hex Device Number = 00 Hex Function Number = 0 Hex Reserved = 0 Hex Ext. Reg Address = 0 Hex Register Address = 00 Hex TLP Digest = 0 Binary EP = 0 Binary 32b CRC: 0x00000000	00	00	00
0001 1000	80,000 ns 100,000 ns	End Start TLP	00 FB	00 00	00 00

Packet Decode / Display (DLLP)

	- 1		- 1	I (I	-1
K/D	Time	Packet Decode	Data0	Data1	Data2
Binary	Absolute	Text	Hex	Hex	Hex
1000	10.340 us	Start DLLP	5C	10	00
		Type = 1 Hex (Nak)			
		Must be zero = 0 Hex			
		Reserved = 00 Hex			
		Reserved = 00 Hex			
0001	10.360 us	End	01	00	00
		AckNak_Seq_Num = 01 Hex			
		16b CRC: 0x0000			
1000	10.380 us	Start DLLP	50	20	00
		Type = 2 Hex (PM)			
		PM = 0 Hex (PM_Enter_L1)			
		Reserved = 00 Hex			
		Reserved = 00 Hex			
0001	10.400 us	End	00	00	00
		Reserved = 00 Hex			
		16b CRC: 0x0000			
1000	10.420 us	Start DLLP	5C	21	00
		Type = 2 Hex (PM)			
		PM = 1 Hex (PM_Enter_L2)			
		Reserved = 00 Hex			
		Reserved = 00 Hex			
0001	10.440 us	End	00	00	00
		Reserved = 00 Hex			
		16b CRC: 0x0000			
1000	10.460 us	Start DLLP	50	22	00
		Type = 2 Hex (PM)			
		PM = 2 Hex (PM_Active_State_Request_L0s)			

Protocol Verification Challenges

Protocol Variations / Maximum Load

- Maintain system stability over different configurations
 - What happens if the link is fully populated with packets?
 - Does my system still work if an add-in card is inserted that implements the protocol differently?
 - How can I tell if my design is protocol compliant?

Serial Protocol Tester and Protocol Test Card

GUI Protocol Analyzer

Protocol Analyzer Trigger Setup

Exerciser GUI

Protocol Test Card for PCI Express Compliance Testing

Collaboration and joint development with Intel

- Cost-effective compliance solution
- Easy-to-use
 - GUI/push-button solution
 - Pre-programmed tests
 No programming effort
 - Pass/Failed report
 - Improves design quality, compliance and accelerates time to market

PTC GUI - main view

X -₩ Aç	gilent E2969	A Protocol Test Car	d for PCI Express - Compliance Test Suite						
<u>F</u> ile	<u>V</u> iew <u>T</u> ests	s <u>H</u> elp							
Execut	te Status	Name	Description						
F	PASSED	DLL.5.3#2	Discard TLP on bad LCRC, send NAK						
П	n/a	DLL.5.2#15	If a normal TLP (one with END framing symbol) is						
П	n/a	DLL.5.3#3.1	received and its LCRC doesn't match calculated CRC, discard the TLP, free any storage						
	n/a	DLL.5.2#2	associated with it, schedule a NAK DLLP for transmission if one is not already scheduled and						
П	n/a	DLL.5.3#3.2	report an error associated with the Port.						
	n/a	DLL.5.2#1	Retransmit TLP on NAK						
	n/a	DLL.5.2#1.2	Retransmit TLP until REPLAY_NUM overflow						
	n/a	DLL.5.2#10	Ensure correct TLP order in replay						
	n/a	DLL.5.2#1.2	Start REPLAY upon REPLAY_TIMER expiring						
	n/a	DLL.4.1#2	All reserved fields must be 0						
	n/a	DLL.5.2#16	DLLP with undefined encoding shall be dropped						
	n/o	DIT 5 2417	Danast away an uwang agguanga ny in ACV						

Fully Buffered DIMM Overview

PHY and Logic Probing Overview

Rohit Bhasin
Senior Technical Sales Engineer
Digital Verification and Design Validation Solutions
Agilent Technologies

What is Fully Buffered DIMM?

Routing Comparison

Direct DDR2 Registered DIMMs:

1 Channel, 2 Routing Layers with 3rd layer

required for power

Serpentine routing is complicated and uses up a lot of board area

Fewer signals and no trace length matching minimizes board are

FB-DIMMs:

2 Channels, 2 Routing Layers (includes power delivery)

FB-DIMM: Fewer Layers, Less Routing Area Dayele

FBD Measurement Points and Validation Components

High Speed Channel Probes

Interposer Channel Probe

- Does not consume a slot
- Adjustable orientation of interposed DIMM for maximum installation flexibility
- Supports probing of 2 channels in adjacent slots
- Full SB/NB protocol analysis

Slot Channel Probe

- Same size as standard FB DIMM to fit in crowded systems
- High Speed channel layout identical to standard DIMM for operation in marginal systems
- Full SB/NB protocol analysis

Complete Pre-AMB Probing

Logic Analyzer Probing for Instrumented DIMMs

- RC/B Validation DIMM
 - Fast connection to all post-register signals (Addr/Cmd/DQ)
 - Support to DDR800+ Speeds
 - Supports all Jedec AMBs and x8 DRAMS
 - RC/A,C,D,G,H,I support planned if demand warrants

Validation DIMM (Pre-AMB)

- Functional and signal integrity validation of addr/cmd and data
- Adds 2 layers to DIMM reference design for embedded probing resistors to eliminate stub loading from for routing to logic analysis connectors.
- Validation DIMM for each raw card type
- Straddle mount connector topology minimizes loading and allows probing of adjacent slots and system with limited vertical clearance.
- Supports all DDR2 DRAMs and AMB components

enabling digital innovation

Signals	Count
CK0/CK0#	1
Addr/Cmd	28
DQ	72
DQS	18
DQS#	17
TOTAL	136

VDIMM Configuration (Pre-AMB)

Looking at Channel & AMB/DRAM traffic concurrently

Complete Post-AMB Probing

Logic Analyzer Probing for OEM DIMMS

- RPACK Probe
 - Probing of FBD Addr/Cmd Bus to DDR1067
 - Supports all FBD Raw Cards
 - Supports DDR1/DDR2 DIMM and SODIMM
- DDR2 Probe
 - Probes DDR2 BGA packages
 - DQ/DQS/CK for x4 and x8
 DDR2 DRAMs
 - Supports all FBD Raw Cards
 - Supports DIMM, SODIMM and embedded DDR2
 - Scope probing may be possible

OEM DIMM Probe (RPACK)

OEM DIMM Probe (DRAM)

- 0.8mm micro-BGA probe of DQ/DQS using flying lead probes
- Embedded tip resistors isolate probe from bus
- Functional and signal integrity validation (EyeScan/scope)
- Supports DDR2 common footprint (x4/x8)

Complete Pre and Post-AMB Probing

Logic Analyzer Probing for Instrumented and OEM DIMMS

RC/B Validation DIMM

- RC/B based most commonly used DIMM
- Uses actual RC/B layout for accurate results
- Compact design minimizes loading
- Straddle mount analyzer connections for zero increase in DIMM thickness
- Right angle probes fits in tight server systems

RPACK Probe

- Probing of FBD Addr/Cmd Bus to
 DDR1067
- Supports all FBD Raw Cards
- Supports DDR1/DDR2 DIMM and
 SODIMM

DDR2 Probe

- Probes DDR2 BGA packages
- DQ/DQS/CK for x4 and x8 DDR2 DRAMs
- Supports all FBD Raw Cards
- Supports DIMM, SODIMM and embedded DDR2
- Analog scope connection with high bandwidth probes

FBD Requires Bandwidth

 Recommended - 13 Ghz Real Time Scope with very high bandwidth probes or FBD parametric fixtures provide bandwidth required for 4.8Gb FBD measurements

Comprehensive Data Analysis

- Complete Jitter Analysis
 - RJ/DJ (ISI,DCD, Periodic jitter) separation
 - Jitter histograms
 - Spectral analysis
 - Traceable to individual bits
 - Bathtub BER analysis
 - FBD Mask and Compliance Test
 - Real Time Eye
 - Eye unfolding identifies failure pattern
 - Fixture control and compliance test suite integration

Graduated Physical Layer Parametric Test

AMB Parametric Test

- AMB Die and Package focus
- Jedec Tx/Rx, BERT, Return Loss, etc.
- Package modeling

DIMM Parametric Test

- Adds DIMM and connector to test environment
- DIMM and connector impact on Channel specification
- Supports all Raw Cards
- Simplifies failure analysis

Characterized with
S-parameters for
de-embedding fixture impact

N4238A Slot Parametric Probe

- Adds MB and second connector to test environment
- System channel SI performance
- Supports any FBD channel
- Simplifies failure analysis

CTC test scripts work across all fixtures

Anyone awake?

Summary and take aways...

- Serial Links ramping up to 5-6Gb (per lane), probably higher
- Parallel signaling ramping up to 9.6Gb (e.g. FBD)
- Equipment out there to help you design any interface you want! Scope, LA's can also be used as a general purpose debug tool (for proprietary interfaces)
- Probing is KEY (both at PHY and logic/protocol layers, don't think you can use a conventional probe to look at multi-gigabit signaling
- Use the automated tools that are available to help you validate your interfaces (i.e. Automated mask testing on scope, predefined DDR IA's, etc)

