MEMS Technologies for Optical Applications

Dr. Veljko Milanović Adriatic Research Institute 2131 University Ave Suite 322 Berkeley, CA 94704-1079 http://www.adriaticresearch.org

Outline

- Motivations and Background
 - Application Examples
 - Electrostatic actuators overview
 - Some micromirror examples
- High aspect ratio MEMS
 - Silicon on Insulator MEMS (SOI-MEMS)
 - Micromirrors in SOI-MEMS
- ARI Approach: Multilevel Beam SOI-MEMS
 - Fabrication and Results
 - Device examples
- Latest results with collaborators at UC Berkeley, demos
- Gimbal-less 2D Optical Scanner *Kyoto* device

BSAC Motivation: cm³ Multisensor Optical Transceiver

Latest SALT Objectives

Free-space laser communication between mobile nodes using MEMS transceivers

Applications: Automotive

Collision Avoidance

HUD – head-up display

- Demand for miniature and low-cost laser beam-steering systems
- High speed scanning/refresh rate
- Large deflection angles desirable

Fiber-optic switches Optical cross-connects (OXC)

- Optical switches
 - 1xN and NxN switch arrays for network restoration/protection (OADMs)
 - NxN large port-count optical cross-connects (OXC)
 - Above e.g. 32x32 count beam-steering mirrors with 1DoF or 2DoF

Beam-steering OXC

- Analog mirrors more complex implementation
 - 1DoF or 2DoF

. . .

- 2N Scaling easier to achieve larger N
 - Lucent, C-speed, Xros,

Motivation: Adaptive Optical Arrays

- Array of micromirrors
 - High fill factor
 - High reflectivity
 - Analog Tip and tilt rotation
 - Analog piston (vertical) actuation
- Universal optical element
 - Beam steering
 - Reflective lenses
 - Gratings, etc.
 - Yield breaks!

Figure 3. A portion of a DMD array showing selected mirror elements deflected. Digital micromirrors – TI No tip/tilt, nor piston Not analog

Outline

- Motivations and Background
 - Application Examples
 - Electrostatic actuators overview
 - Some micromirror examples
- High aspect ratio MEMS
 - Silicon on Insulator MEMS (SOI-MEMS)
 - Micromirrors in SOI-MEMS
- ARI Approach: Multilevel Beam SOI-MEMS
 - Fabrication and Results
 - Device examples
- Latest results with collaborators at UC Berkeley, demos
- Gimbal-less 2D Optical Scanner *Kyoto* device

Electrostatic Actuators

Parallel-Plate Electrostatic Actuator Pull-in

Electrostatic instability

Outline

- Motivations and Background
 - Application Examples
 - Electrostatic actuators overview
 - Some micromirror examples
- High aspect ratio MEMS
 - Silicon on Insulator MEMS (SOI-MEMS)
 - Micromirrors in SOI-MEMS
- ARI Approach: Multilevel Beam SOI-MEMS
 - Fabrication and Results
 - Device examples
- Latest results with collaborators at UC Berkeley, demos
- Gimbal-less 2D Optical Scanner *Kyoto* device

2x2 MEMS Fiber Optic Switches

2x2 MEMS Fiber Optic Switches with Silicon Sub-Mount for Low-Cost Packaging

Shi-Sheng Lee, Long-Sun Huang, Chang-Jin "CJ" Kim and Ming C. Wu

Electrical Engineering Department, UCLA 63-128, engineering IV Building, Los Angeles, California 90095-1594 Mechanical and Aerospace Engineering Department

Figure 1. SEM of the 2x2 MEMS fiber optic switch.

Lucent 2DoF Micromirror

Surface MEMS Micromirror Structure

Conant et al, MOEMS99

Optical Phased Arrays Of Micromirrors

Courtesy of O. Solgaard

- Phased arrays of micromirrors allow directional control and optical phase correction for precision optical spatial and spectral scanning
- Applications:
 - Spectroscopy
 - Fiber optics
 - Free space optical communication

Far-field pattern of scanning mirror array with phase correction

SEM of phased array for spatial switching.

Adriatic Research Institute

1D Phased Array with Tilt and Piston motion

Krishnamoorthy et al, Transducers 01, Munich, Germany

Outline

- Motivations and Background
 - Application Examples
 - Electrostatic actuators overview
 - Some micromirror examples
- High aspect ratio MEMS
 - Silicon on Insulator MEMS (SOI-MEMS)
 - Micromirrors in SOI-MEMS
- ARI Approach: Multilevel Beam SOI-MEMS
 - Fabrication and Results
 - Device examples
- Latest results with collaborators at UC Berkeley, demos
- Gimbal-less 2D Optical Scanner *Kyoto* device

High Aspect Ratio MEMS (HARM) SOI-MEMS

- Height/width > ~3:1
- Height/space > ~3:1
- Increased capacitance for actuation and sensing
- Low-stress structures
 - single-crystal Si only structural material
- Highly stiff in vertical direction
 - isolation of motion to wafer plane
 - flat, robust structures

Courtesy Robert A. Conant, BSAC

- DRIE etching of SOI materials
- High-quality, flat, and stiff mirrors
- High-speed deflection
- Electrostatic actuators
 - High force, Dual-mode and twosided possible, All-conductive structure
- Flexible Process
 - Phased arrays, 2-D arrays, Through-the-wafer interconnects
- Combs require accurate alignment
 - Yield, Reliability, Maximum deflection
- Front-side processing
 - I mproved reliability and yield, controlled damping, standard wafers, integration

STEC Micromirror – Vertical Comb-drives

Conant et al, HH2000

Coherent phased array Far-field diffraction patterns

K. Li, U. Krishnamoorthy, J.P. Heritage, O. Solgaard "Micromirror Array Phase Modulator for Ultrashort Optical Pulse Shaping", Proceedings of the Solid-State Sensor and Actuator Workshop, pp. 15-18, Hilton Head, South Carolina, June 2-6, 2002.

U. Krishnamoorthy, K. Li, K. Yu, D. Lee, J.P. Heritage, O. Solgaard, "Dual mode micromirrors for optical phased array applications", Sensors and Actuators: A. Physical, Vol. 97-98C, May 2002, pp 22-26.

K. Li, U. Krishnamoorthy, J.P. Heritage, O. Solgaard "Coherent micromirror arrays", Optics Letters Vol. 27, No. 5, March 1, 2002 p.366-368.

Outline

- Motivations and Background
 - Application Examples
 - Electrostatic actuators overview
 - Some micromirror examples
- High aspect ratio MEMS
 - Silicon on Insulator MEMS (SOI-MEMS)
 - Micromirrors in SOI-MEMS
- ARI Approach: Multilevel Beam SOI-MEMS
 - Fabrication and Results
 - Device examples
- Latest results with collaborators at UC Berkeley, demos
- Gimbal-less 2D Optical Scanner *Kyoto* device

New methodology and devices: Multilevel Beam SOI-MEMS – ARI-MEMS

- Front- and Back-side multilevel etching for advanced HARM
- 2 front masks gives lowSCS, highSCS
- 2 front + 1 back mask gives lowSCS, highSCS, upperSCS
- 3 front + 2 back (or other combos) gives low, mid, upper, high, midup, middown SCS Previous wafer surface, or surface of bonded SOI layer,

3-level ARI-MEMS

Push-mode 1DoF mirror

Device is actuated by SEM charging of the comb-drive

Adriatic Research Institute Milanović et al, MOEMS 2001

Most recent 1DoF measurements – over 40° optical static deflection

Push-mode

Pull-mode (with displaced attachment)

Milanović et al, MOEMS 2001

Device improvement example – pure torque actuation (both directions) and up/down piston motion

Fabricated 1DoF Mirror with Independent Pistoning Control

Adriatic Research Institute

Milanović et al, to appear in IEEE Photonics Tech. Lett. Milanović et al, MOEMS'02, Switzerland, Aug. 02

Multiple modes of actuation

Fabrication: Embedded "Backup" mask

Fabrication: Mask Self-alignment process steps

Fabrication: masks and backside steps

- All masks prepared before DRIE steps
- Front-side two oxide masks
- One embedded oxide mask
- Back-side thick-resist mask

Fabrication: final, frontside steps

- Front-side steps on chips
- Good cooling for structures is needed

Resulting structures - II

Adriatic Research Institute

- Self aligned combdrives
- Compliant low aspect-ratio beams
- Isolated combdrives
- Opposing actuation combdrives

4-mode device: Rotation Measurements

Milanović et al, MOEMS'02, Switzerland, Aug. 02

4-mode device: Up and Down Pistoning Measurements

Milanović et al, MOEMS'02, Switzerland, Aug. 02

Adriatic Research Institute

Two-axis rotation and independent pistoning - future adaptive optics arrays -

1DoF Micromirror				2DoF Micromirror					
Rotation [opt. deflect.]		Pistoning [µm]		Outter axis [opt. deflect.]		Inner axis [opt. deflect.]		Pistoning [µm]	
+	-	+	-	+	-	+	-	+	-
10° at 68V	-10° at 72V	8.0 at 60V	-7.6 at 60V	7.0° at 50V	-12.0 at 50 V	7.6° at 50V	n/a	n/a	n/a
24° at 130V	-20° at 123V	12 at 120V	-11 at 120V	15.6° at 100V	-20.3° at 100V	11.9° at 100V	n/a	7.0 at 100V	-6.0 at 100V

Kwon, et al, Optical MEMS 2002

Adriatic Research Institute

Low-voltage pistoning actuator for imaging applications

Down pistoning 8 μ m < 10V

Up/Down pistoning, -8 μm to +8 μm, <15V

At 8 μ m of piston, only 0.035° of tilt

Tilt correction demonstrated

Kwon et al, Hilton Head Workshop 2002

Demonstration video

Outline

- Motivations and Background
 - Application Examples
 - Electrostatic actuators overview
 - Some micromirror examples
- High aspect ratio MEMS
 - Silicon on Insulator MEMS (SOI-MEMS)
 - Micromirrors in SOI-MEMS
- ARI Approach: Multilevel Beam SOI-MEMS
 - Fabrication and Results
 - Device examples
- Latest results with collaborators at UC Berkeley, demos
- Gimbal-less 2D Optical Scanner *Kyoto* device

UAV (MLB Bat) Specifications

- 5 ft. wingspan
- Weight 13 lbs (including video equipment)
- Speed 25-50 miles/hr
- Cost \$35,000
- Laser comm UAV to be
 - Gasoline engine, 18 lb at takeoff, 2

Pod Assembly

V. Milanović, IEEE, 12/2002

29

Outline

- Motivations and Background
 - Application Examples
 - Electrostatic actuators overview
 - Some micromirror examples
- High aspect ratio MEMS
 - Silicon on Insulator MEMS (SOI-MEMS)
 - Micromirrors in SOI-MEMS
- ARI Approach: Multilevel Beam SOI-MEMS
 - Fabrication and Results
 - Device examples
- Latest results with collaborators at UC Berkeley, demos
- Gimbal-less 2D Optical Scanner *Kyoto* device
- Toward high-frequency beam-steering micro-optical devices!

 Adriatic Research Institute

Gimbal-less 2D scanners – Kyoto device

1st generation Kyoto device SEM

Milanović et al, MEMS, Kyoto, Japan, Jan. 2003

Mechanical transformer / linkages

Milanović et al, MEMS, Kyoto, Japan, Jan. 2003

Characterization of a Kyoto device

X-axis 4.9kHz lowest res. Y-axis 6.52 kHz lowest res.

Milanović et al, MEMS, Kyoto, Japan, Jan. 2003

Demonstration video

Latest tape-out with improved stability

Support beams shorter and farther apart

200ur

V. Milanović, IEEE, 12/2002

Adriati

Characterization of a large angle device – latest tape-out

X-axis 1.03 kHz lowest res. Y-axis 1.36 kHz lowest res.

V. Milanović, IEEE, 12/2002

Summary

- New class of High Aspect Ratio MEMS is possible by providing additional degrees of freedom
 - Especially useful for Optical Applications!
- Many mechanical, optical, etc. applications can benefit from the technology
 - Microoptics, microrobotics, inertial sensing
- Technologies are maturing
 - variety of mechanical designs are being tested
 - models and tools (CAD) are being developed for beams, structures, layout
- ARI seeks research grants and commercial partners to further the work and apply to commercial applications
- Near the goal of >10kHz two-axis scanners with large angle static scanning
- Working toward large arrays (above + pistoning)

