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Σ an cos(2nπt/T) + bn sin(2nπt/T)f(t) = a0 + 
oo

n=1



Time  ⇔ Frequency Domain

Many of us are used to 
thinking in the time domain.

The Fourier Series is a method 
that allows us to travel back 
and forth between the time 
and frequency domains.

f(t)

Unfortunately, many EMC 
specification limits such as  
conducted and radiated 
emissions  are in the 
frequency domain.

Time →

Freq →

|f(ω)|
Limit

Σ an cos(2nπt/T) + bn sin(2nπt/T)f(t) = a0 + 
oo

n=1



o Author of  "Théorie
Analytique de la  Chaleur"

o Inventor of the definite 
integral symbol

o Teacher

o Secret 
policeman

o Political 
prisoner

o Govenor of 
southern 
Egypt

o Prefect of 
Isère and 
Rhône

o Friend of 
Napoleon

o Secretary of 
the Académie 
des Sciences
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Fourier’s "Claim to Fame"

In 1807, Fourier proposed that any bounded periodic function, 
f(t), defined in the interval [−π, π] could be expressed as the 
trigonometric series:

where an and bn are real numbers that represent the 
magnitudes of the corresponding sine and cosine terms.

oo

f(t)

oo−

π−π

f(t) =    Σ    an cos(nt) + bn sin(nt)
oo

n=0



o Square Wave

− Only odd harmonics

− What kind of waveform produces only even
harmonics?

o Rectangular Pulse Train

− Sometimes envelope of harmonics looks like
sinc function, sin(X)/X .

o Trapezoidal with Equal Rise/Fall Times

Well Known 
Spectral Responses

20 dB/decade

40 dB/decade

Envelope of Maximums

What
Happens 
in Here



o Trapezoidal with non−equal rise/fall times

o Waveforms with over/under shoots

o Digital Differential Drivers

− Do they really cancel each other out?

o Most spectrum analyzer displays

− Can a connection even be made 
between a Fourier series and a 
typical spectrum analyzer display?

Not So Well Known 
Spectral Responses
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o Non−periodic functions such as polynomials,
log, and exp do not fit well since they  all
(with the exception of a polynomial constant) 
go to to infinity

o Periodic functions such as the tangent and
cotangent functions also do not fit  well
because they periodically go to infinity

o Only the sine and cosine functions fit well
since they are periodic and do not go to
infinity

"Fitting" an Equation
to a Periodic Waveform 

oo

f(t)

oo−

−T T−2T 2T0



A good start for a general (all encompassing)
equation is the following:

The only problem with this equation is it does
not tell you how to go about finding the 
optimum values for a0 , an and bn.

"Fitting" an Equation
to a Periodic Waveform 

Σ an cos(2nπt/T) + bn sin(2nπt/T)f(t) = a0 + 
oo

n=1

oo

f(t)

oo−

−T T−2T 2T0



Math Products

o Scalar (Times) Product

scalar  ∗ scalar = scalar 2  ∗ 2  =  4

scalar  ∗ vector = vector
  

o Outer (Cross or Vector) Product

Only valid for vectors in 3−D space

vector  x vector = vector

o Inner (Dot) Product

vector  ∗ vector = scalar
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o If the inner product of two vectors is zero 
then the vectors are perpendicular to each
other

o The inner product can be used as a "filter" 
to "extract" the components of a vector that
align with the desired axis.

Perpendicularity 

4
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−1
2 = (−1)∗4 + 2∗2 = 0

(−1,2) (4,2)
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0 = (1)∗4 + (0)∗2 = 4
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Orthogonality 

o Perpendicular vectors exhibit the property
of orthogonality

 A = [a0, a1, ... ,  an]

B = [b0, b1,  ... , bn]

A∗B = <A,B> = a0 b0+a1 b1 + ... + an bn = 0

T/2

−T/2

f(t) cos(2mπt/T) dt = 0

o The concept of orthogonality can be 
extended to other mathematical entities 
such as the definite integral of algebraic 
expressions

n

Σ
i=0

ai bi = 0



Finding an Using 
an "Orthogonal Filter"

bn sin(2nπt/T) cos(2mπt/T) dt  

T/2

−T/2

Σ
oo

n=1

+

an cos(2nπt/T) cos(2mπt/T) dt  

T/2

−T/2

Σ
oo

n=1

+

T/2

−T/2

f(t) cos(2mπt/T) dt   = a0 cos(2mπt/T) dt  

T/2

−T/2

= 0 for all n, m

= 0 for all  m

= 0 for n  <>m
= anT/2 for n=m

T/2

−T/2

f(t) cos(2nπt/T) dt  = anT/2

Note: n = m

Σ an cos(2nπt/T) + bn sin(2nπt/T)f(t) = a0 + 
oo

n=1



The Fourier Series  and 
Associated  Euler Formulas

T/2

−T/2

f(t) dta0 =  1
T

f(t) cos(2nπt/T) dt 

T/2

−T/2

an =  2
T

f(t) sin(2nπt/T) dt 

T/2

−T/2

bn =  2
T

Σ an cos(2nπt/T) + bn sin(2nπt/T)f(t) = a0 + 
oo

n=1

Magn =    an
2 + bn

2     θn = Tan −1(bn/an)

hint:  cos(nωt) = cos(n2πft) = (2nπt/T) 



Other Forms of 
the Fourier Series 

Σ an cos(2nπt/T) + bn sin(2nπt/T)f(t) = a0 + 
oo

n=1

Σ an cos(2nπt/T) + bn sin(2nπt/T)f(t) =
oo

n=0

Σ cn cos(2nπt/T + φn)f(t) = a0 + 
oo

n=1

Σ cn sin(2nπt/T + θn)f(t) = a0 + 
oo

n=1

Σ gn e
i2nπt/T

f(t) =  

n=−oo

n=+oo



A

−T/2 T/2

f(t)

t

−W/2 W/2

Rectangular Pulse

Note that there are no bn terms, and for most EMC 
applications, the DC term, a0, is of no interest and so 
is usually ignored.

Harmonic
Amplitude

 an

DC
Term

Σ 2A/nπ  sin(nπW/T) cos(2nπt/T)f(t) = AW/T + 

oo

n=1

Frequency
of

Harmonic

Magn =    an
2 + bn

2  =    an
2 + 02    = | an |

θn = Tan −1(bn/an)  =  Tan −1(0/an) = 0, π

− Cos(θ) = Cos(θ+π)



Rectangular Pulse

|an|= |2A/nπ sin(nπW/T)| = |2AT/n²π²W sinc(nπW/T)| 

A

−T/2 T/2

f(t)

t

−W/2 W/2

If a rectangular 
pulse produces a 

sinc shaped 
spectrum....

...how come the 
spectrum of a 50% 
duty cycle pulse does 
not look like one???
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Rectangular Pulse
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Rectangular Pulse

A

−T/2 T/2

f(t)

t

−W/2 W/2

an = 2A/nπ sin(nπW/T)

an is at a local "maximum" when  sin(nπW/T) = 1 

or n = (m − 1/2) (T/W)

For a 50% duty cycle, W/T = 0.5   ⇒  n = 1, 3, 5, ...

For a 25% duty cycle, W/T = 0.25   ⇒  n = 2, 6, 10, ...

an is at a local "minimum" when  sin(nπW/T) = 0 

This occurs when nπW/T = 2mπ, m = 1, 2, ...
or n = mT/W 

For a 50% duty cycle, W/T = 0.5   ⇒  n = 2, 4, 6, ...

For a 25% duty cycle, W/T = 0.25   ⇒  n = 4, 8, 12, ...

This occurs when nπW/T = (2m−1)(π/2), m = 1, 2, ...



Rectangular Pulses

 
Freq (MHz)

1
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4

5
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7

8

9

10

an (dBµV)
50%

116.1

−−−

106.5

−−−

102.1

−−−

99.2

−−−

97.0

−−−

an (dBµV)
25%

113.1

110.1

103.5

−−−

99.1

100.5

96.2

−−−

94.0

96.1

an (dBµV)
10%

105.9

105.4

104.7

103.6

102.1

100.1

97.3

93.4

86.8

−−−

Every
2nd
One

Every
4th
One

Every
10th
One



Some Examples of Rectangular Pulses
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What Goes Down
Must Come Back Up

an = 2A/nπ sin(nπW/T)

Lim  sin(x) = x
x → 0

Lim   [ an ] =   Lim    [(2A/nπ) (nπW/T)]  = (2AW/T)
W → 0 W → 0

For narrow rectangular pulses....

Only for very narrow pulse width do all harmonics 
decrease equally with duty cycle

For not−so−narrow rectangular pulses....

For not−so−narrow rectangular pulses the rate of increase 
of low level harmonics is greater than the rate of decrease
of high level harmonics

∂an

∂W ∂W

∂[2A/nπ sin(nπW/T)]
=  =  2A/T cos(nπW/T)]



What Goes Down
Must Come Back Up
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What Goes Down
Must Come Back Up

 
Freq (MHz)
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an (dBµV)
50%

116.1

−−−

106.5

−−−

102.1

−−−

99.2

−−−

97.0

−−−
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113.1
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Symmetrical  1 MHz Trapezoidal Pulses

A

−T/2 T/2

f(t)

t

−W/2 W/2

2AT               nπtrf               nπW 

n2π2trf                 T                        T
an =                    sin(             )  sin(           )

  Freq 
(MHz) 

1
2
3
4
5
6
7
8
9

10
25
51

103
201
301

 an (dBµV)
trf = 0

116
−−−
107
−−−
102
−−−
99

−−−
97

−−−
88
82
76
70
67

 an (dBµV)
trf = 1 nsec

116
66

107
66

102
66
99
66
97
66
88
82
75
68
61

 an (dBµV)
trf = 5 nsec

116
80
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80

102
80
99
80
97
80
87
78
45
24
17

These go up     while     these go down

tr  = trf  = tf



Symmetrical 1 MHz Trapezoidal Pulses
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Asymmetrical  1 MHz Trapezoidal Pulses

A

−T/2 T/2

f(t)

t

−W/2 W/2

tr tf

  Freq 
(MHz) 

1
2
3
4
5
6
7
8
9

10
101
201
301

 Mag (dBµV)
tr /tf = 1/1 ns

116
66

107
66

102
66
99
66
97
66
75
68
61

 Mag (dBµV)
tr /tf = 1/10 ns
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81

107
81
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81
99
81
97
81
70
63
59

 Mag (dBµV)
tr /tf = 10/10 ns

116
86

107
86

102
85.9
99
86
97
86
36
24
17

Only very high frequencies are substantially affected 



Asymmetrical  1 MHz Trapezoidal Pulses
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Trapezoidal Pulses  With Over/Under Shoots
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Rectangular Pulse

What if the waveform was not 
centered about t = 0??

A

−T/2 T/2

f(t)

t

−W/2 W/2

Harmonic
Amplitude

an

DC
Term

Σ 2A/nπ  sin(nπW/T) cos(2nπt/T)f(t) = AW/T + 

oo

n=1

Frequency
of

Harmonic

−T/2 T/2

f(t)

t

−W/2 W/2

A

−T/2 T/2

f(t)

t

−W/2 W/2

A



A Little Black Magic!!

−10−6

1.0

0.5

10−6

0.0

120 dbµ_

−0.5

−1.0

Throw away anything less than −120 dB

Mag of bn
in direction  θ = π/2

n

20Log(bn): θ = π/2

20Log(|−bn|): θ = 3π/2

20Log(an): θ = 0

20Log(|−an|):  θ = π

114 dbµ_

114 dbµ_

120 dbµ_

0 dbµ_

Mag of an,bn
in direction  θ = 3π/2



Offset Rectangular Pulse

A

−T/2 T/2

f(t)

t
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−T/2 T/2

f(t)

t
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t
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A

n

20Log(bn)

20Log(|−bn|)

20Log(an)

20Log(|−an|)

Σ an cos(2nπt/T) + bn sin(2nπt/T)f(t) = a0 + 
oo

n=1 sin(x) = cos(x+π/2)
−sin(x) = sin(x+π)



Harmonic Analysis of Differential Signals

f(t) − f(t) = Σ   cn e jnω0t  − cn e jnω0t  = 0
n = − ∞

n = ∞

Sig+ = f(t)

Sig− = − f(t)

f(t) = Σ    cn e jnω0t           − f(t) = Σ   − cn e jnω0t

n = − ∞

n = ∞

n = − ∞

n = ∞

Consider a differential signal pair [Sig+, Sig−] represented by 
the Fourier Series [f(t), − f(t)] .

If we ignore for the moment the fact that the two conductors 
are not physically located in the same space, one can intuitively 
see that the two signals should "cancel each other out". 



If, however, the Sig− signal is delayed in time by a small value, τ, 
(for example if Sig− is derived from Sig+ via an inverter, or the 
propagation time for Sig+ and Sig− is not the same) there will 
not be complete cancellation.

Harmonic Analysis of Differential Signals

When e −jnω0τ = 1,  Sig+/Sig− will cancel.  

When e −jnω0τ = −1,  Sig+/Sig− will be additive.

For other values of e −jnω0τ,  Sig+/Sig− will partially 
cancel.

= Σ   cn e jnω0t  (1 − e −jnω0τ)
n = ∞

n = − ∞

f(t) = Σ   cn e jnω0t       − f(t−τ) = Σ   − cn e jnω0(t−τ)

n = − ∞

n = ∞

n = − ∞

n = ∞

f(t) − f(t−τ) = Σ   cn e jnω0t  − cn e jnω0(t−τ)  
n = − ∞

n = ∞

= Σ   cn e jnω0t  − cn e jnω0t  e −jnω0τ

n = − ∞

n = ∞



Harmonic Analysis of Differential Signals

For nτ/T = 0, 1, 2, 3, ....
  cos([nτ/T]2π) = 1,  sin([nτ/T]2π) = 0,  1 − e −jnω0τ = 0

For nτ/T = 1/2, 3/2, 5/2, ....
  cos([nτ/T]2π) = −1,  sin([nτ/T]2π) = 0,  1 − e −jnω0τ = 2

 1 − e −jnω0τ =  1 − cos(nω0τ) + j sin(nω0τ)

=  1 − cos(2nπf0τ) + j sin(2nπf0τ)         [ω0 = 2πf0]

=  1 − cos([nτ/T]2π) + j sin([nτ/T]2π)   [f0 = 1/T]

[nτ/T]2π

 Magnitute of 1 − e −jnω0τ

0 + j

0 − j

 2 + 0j
 0 + 0j



Harmonic Analysis of Differential Signals

If Sig− shifts by 180 then Sig− is in phase with Sig+

= Σ   cn e jnω0t  (1 − e −jnω0τ)
n = ∞

n = − ∞

f(t) − f(t−τ) = Σ   cn e jnω0t  − cn e jnω0(t−τ)  
n = − ∞

n = ∞

nω0τ Mag[1 − e −jnω0τ] 20log10(Mag[1 − e −jnω0τ])

0° 0 − ∞
5° 0.087 −21.2 dB

10° 0.174 −15.2 dB

20° 0.347 −9.19 dB

30° 0.518 −5.71 dB

40° 0.684 −3.29 dB

60° 1.000 0.00 dB

120° 1.732 4.77 dB

180° 2.000 6.02 dB



Harmonic Analysis of Differential Signals

Freq T 5° [−20 dB] 30° [−6 dB] 60° [0 dB]
(MHz) (nsec) (psec) (psec) (psec)

100 10.00 138.9 833.3 1666.6

200 5.00 69.4 416.7 833.0

300 3.33 46.3 277.8 555.6

500 2.00 27.8 166.7 333.3

700 1.40 19.8 119.0 238.1

1000 1.00 13.9 83.3 166.7

1500 0.67 9.3 55.6 111.1

2000 0.50 6.9 41.7 83.3

Highest FCC measurement frequency if 
108 MHz  <  F0   <  500 MHz

If the harmonic at 2000 MHz is delayed by more than
83.3 psec, then Sig+ and Sig− no longer cancel each
other out.  For typical PCB prop delay = 175 psec/in
      6.9 psec  ≈  0.04 in (routing ∆’s around connectors)
      88.3 psec  ≈  0.5 in
      5 nsec (inverter)  ≈  29 in



Harmonic Analysis of Differential Signals

Sig+
Trace

Sig+
Trace

♦ P1

♦ P2

tpd
+ = tpd

−

   Sig+ and Sig− arrive at the same time
      (cancelling each other out)

tpd
+  ≠  tpd

−

Sig+ and Sig− do not arrive at the same time
(complete cancellation does not take place)

Propagation velocity in air ≈ 113 psec/in.
(0.10 in connector pin spacing = 11.3 psec delay.)



Asymmetrical  1 MHz Trapezoidal Pulses

A

−T/2 T/2

f(t)

t

−W/2 W/2

tra tfa

A

−T/2 T/2

f(t)

t

−W/2 W/2

Result

f = 1 MHz /T = 1 usec, tr = 2 nsec, tf = 8 nsec, A = 1,W =  0.5 nsec

trbtfb

tra = tfb                tfa = trb



Asymmetrical  1 MHz Trapezoidal Pulses

Viewed on end
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trbtfb

tra = trb                tfa = tfb



Asymmetrical  1 MHz Trapezoidal Pulses

Result

A

−T/2 T/2

f(t)

t

−W/2 W/2

tra tfa

A

−T/2 T/2

f(t)

t

−W/2 W/2

trbtfb

tra = trb                tfa = tfb



Asymmetrical  1 MHz Trapezoidal Pulses

Viewed on  End (500 Harmonics) ......



Asymmetrical  1 MHz Trapezoidal Pulses

Resultant Levels (500 Harmonics) ......


