· | | . . | | . CISCO

Status of CISPR 32 & CISPR 35

Andy Griffin, December 2014

Why am I here ?

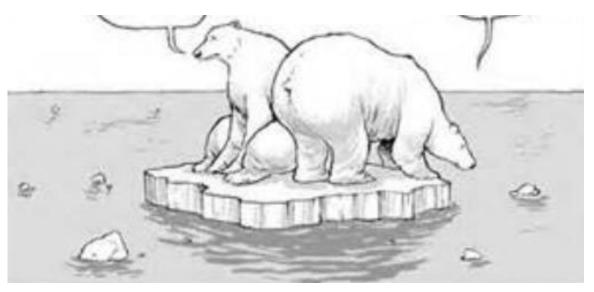
Experience	EMC industry for 25+ years (Cisco for the last 18)
Member of various committees 	Chair H WG1 Co-chair CISPR I WG4 Main editor if CISPR 32 (CISPR I WG2) CISPR I (WG 2 & 4) Co-chair CISPR I/A Task Force ANSI C63 (many sub committees) ETSI ERM EMC, STAN in South Africa CENELEC TC210 / TC209
Writing Standards	I have a passion for editing standards? And it is fun? basically get bored during meeting, hence I have to add something stimulating to make them bearable. always the good/bad/ugly !

The Good...

Jackson Hole

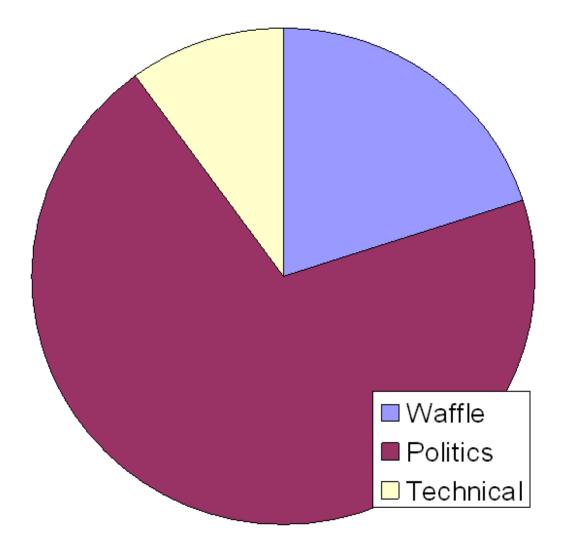
3

The Bad..



"STRESS"

IEC 1906 Award


The Ugly..

Q JH

Standards development...

Its just about trying to generate the best standard?

Lets not forget

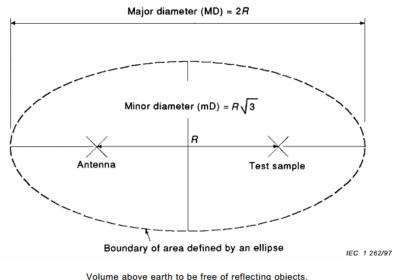
IEC standards making process

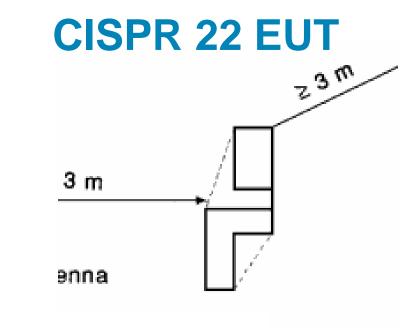
		
NP	Typically from SC (SC I) There needs to be enough NC support / nominated experts.	
Work MCR/RR	Typically from WG, From (NC/WG member) approved by NCs (thru SC)	Ŧ
CD Committee Draft	Basic ideas are established. Iterative process and many different CD s can be developed prior to the document going to vote.	
CDV Committee Draft for Vote	CD needs to be vary stable before it goes out for vote. CDV s often pass because of NCs which just vote yes. Hence there is a reluctance to send out CDV s.	↓ ←
FDIS	Final Draft International Standard.	
Adoption by country regulation	CISPR standards are usual adopted worldwide with minimal change	

CISPR 32 Process

TimingStarted 2002 / 2003Clean sheet? FAR was the original prop		
Process 2 step process was finally adopted		
Controversial Bits Not in edition 1	FAR (Full Anechoic Room) RVC (Reverberation chamber) / GTEM Measurement Uncertainty Satellite receiver (DISH) testing	
Badly Written	So CISPR 32 is very much CISPR 22 … but CISPR 22 does have a few holes?	
Published	2012 (being adopted worldwide)	
FDIS 2 nd	Expected in the next few months MU (failed, not included). RVC/GTM (Informative annex)	

CISPR 32 Key Points


CISPR 32	MME Emission Standard				
CISPR 22 + CISPR 13	CISPR 22 with a Broadcast Rx tuner port Test				
Class A/B	As CISPR 22 (CISPR 13 was only class B)				
3m / 10m	10m Has 3m/10m limits (10dB offset) 3m size based upon NSA Volume				
CISPR 13 CISPR 32 is a system test, not a component test !!					
Network Port	More coverage of network ports				
TV /VDU	Not scrolling H's ! For most displays				
Other bits					


CISPR 32 Different Voltage

Testing at a nominal voltage of 230 V (\pm 10 V) and 110 V (\pm 10 V), using a frequency of 50 Hz or 60 Hz, is normally sufficient for an EUT which is intended to operate over this approximate range of voltage and frequency.

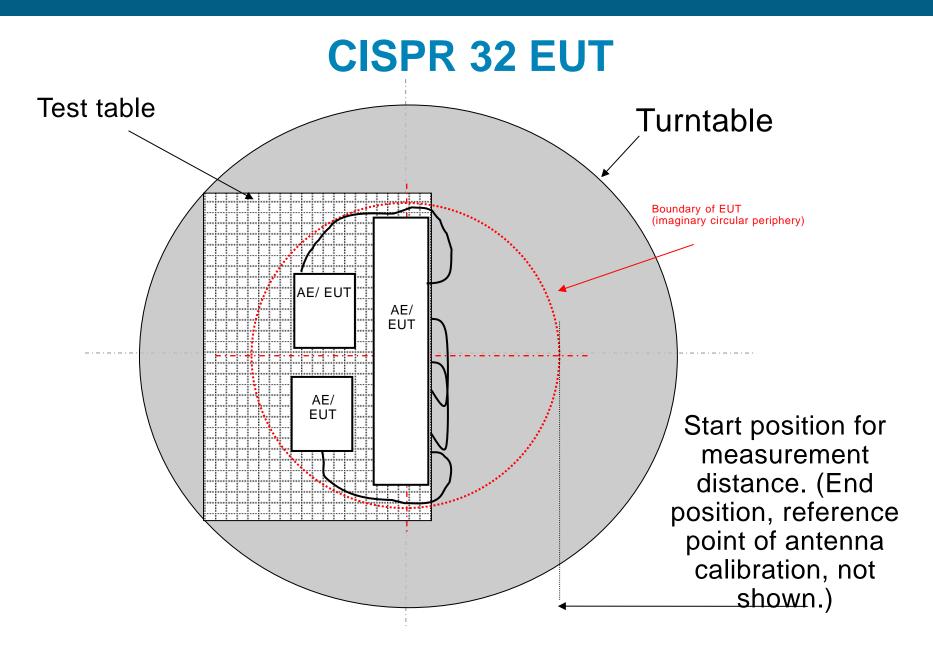
CISPR 32, 10 BaseT

For Ethernet interfaces, measurements are required at the highest data rate supported by the interface except for interfaces supporting a maximum rate of 10Base-T, which shall be measured at a representative data rate only. The data rate shall be recorded in the test report.

Volume above earth to be free of reflecting objects.

NOTE Characteristics of test site described further in 10.4. See also Clause 6 for the value of R.

Limits for radiated disturbance 6


6.1 Limits below 1 GHz

The EUT shall meet the limits of Table 5 or Table 6 when measured at the measuring distance R in accordance with the methods described in Clause 10. If the reading on the measuring receiver shows fluctuations close to the limit, the reading shall be observed for at least 15 s at each measurement frequency; the highest reading shall be recorded, with the exception of any brief isolated high reading, which shall be ignored.

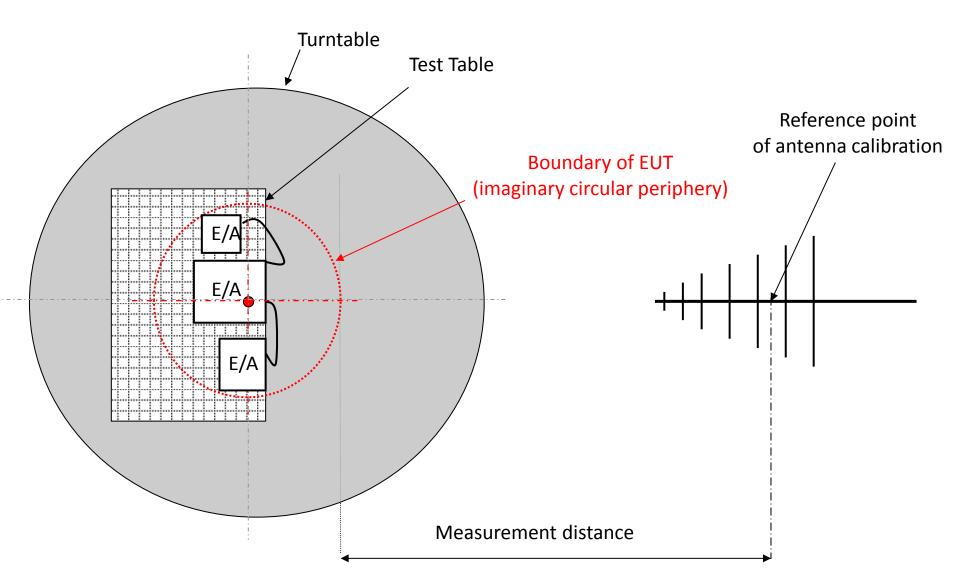
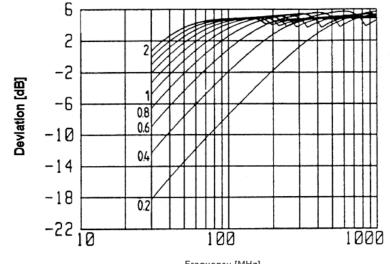

Table 5 – Limits for radiated disturbance of class A ITE at a management distance of 10 m

Table A.1 – recommend

at a measuring distance of 10 m				
	R (m)	3	3	
	h ₁ (m)	1	2	
	h ₂ (m)	1 to 4	1 to 4	1
E Contraction of the second				

CISPR 32 EUT

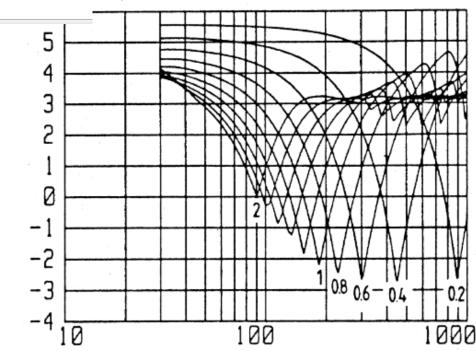


CISPR 32 FAR Limits

Table	Frequency	Ме	Class B limits		
clause range MHz		Facility (see Table A.1)	Distance m	Detector type / bandwidth	dB(uV/m)
A4.1	30 – 230	OATS/SAC	10		30
	230 – 1 000	OATS/SAC	UA13/3AC 10	Quasi Peak / 120 kHz	37
A4.2	30 – 230	OATS/SAC 3	3		40
	230 – 1 000			47	
A4.3	30 – 230	FAR	10		32 – 25
	230 – 1 000		10	Quasi Peak /	32
A4.4	30 – 230		2	120 kHz	42 – 35
	230 – 1 000	FAR	3		42

Apply only table clause A4.1 or A4.2 or A4.3 or A4.4 across the entire frequency range.

Table top equipment only (Class A, 10dB difference)



CISPR 32 FAR Limits

Frequency [MHz]

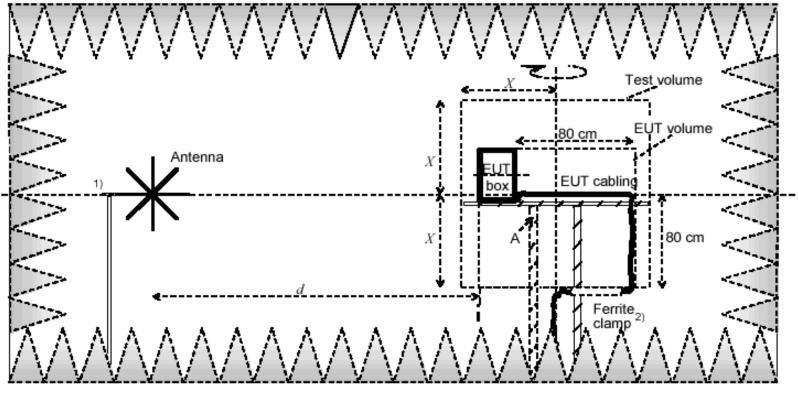
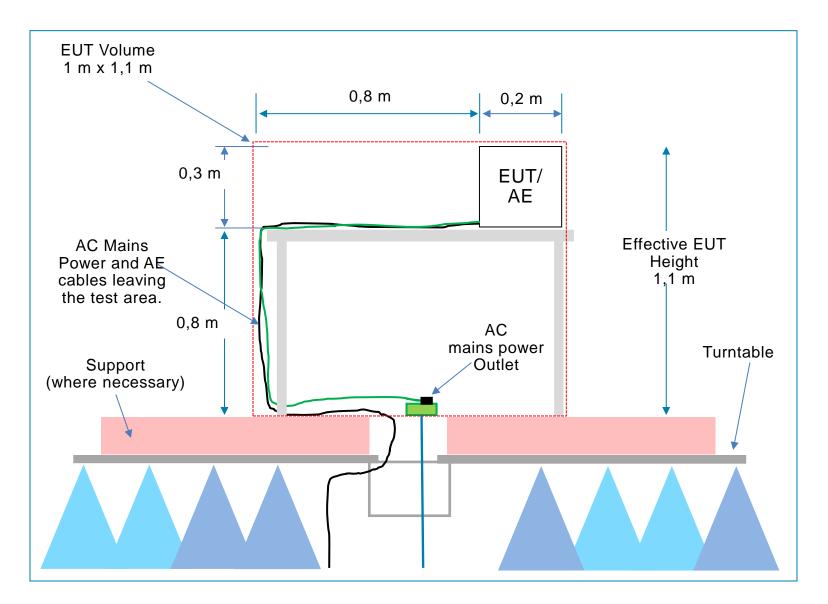

NOTE: the numbers within the graph, is the position of the source above the ground plane on an OATS

Figure A6 - 3 m distance, horizontal polarization, calculated differences for an electrically short straight wire above the ground plane on an OATS compared with a FAR (EOATS - EFAR)

Devlation [dB]


CISPR 32 EUT

IEC 1855/03

- A = turntable and EUT-support
- 2X = 1,5 m; 2,5 m, 5 m
- d = 3 m; 5 m or 10 m (for 3 m, 5 m, or 10 m test distance, respectively)
- 1) The antenna cable layout shall be the same as in the validation procedure (see Figure 6).
- 2) Ferrite clamps are to be used in accordance with the applicable product standard. Their possible use (if required) must be documented in the test report.

CISPR 32 EUT

CISPR 35 Key Points

CISPR 35	MME Immunity Standard (few years later start)			
CISPR 24 & CISPR 20	CISPR 24 with functional based Annexes test applied to the port whilst monitoring the function. <i>Informative annex on how to apply the standard</i>			
Mistake	Failed the FDIS? Should followed CISPR 32 model ! Passed in the EU? Korea have adopted the CDV			
Reason	4% Step size (double the voltage) Includes CO equipment 30 V/m for CO equipment (above 1GHzspot test) Relaxation for Inject RF 3V-1V Above 1GHz Immunity			
CDV	4% Step size (double the voltage) 30 V/m for CO equipment (above 1GHzspot test) Includes CO equipment Relaxation for Inject RF 3V-1V (with info annex) Above 1GHz Immunity			

CISPR 35 Key Points

CISPR 35	MME Immunity Standard (few years later start)
CISPR 24 & CISPR 20	CISPR 24 with functional based Annexes test applied to the port whilst monitoring the function. Informative annex on how to apply the standard. Only primary functions need to be tested.
Mistake	Failed the FDIS? Should followed CISPR 32 model ! Passed in the EU? Korea have adopted the CDV
Reason	4% Step size (double the voltage) Includes CO equipment 30 V/m for CO equipment (above 1GHzspot test) Relaxation for Inject RF 3V-1V Above 1GHz Immunity
CDV	4% Step size (double the voltage) 30 V/m for CO equipment (above 1GHzspot test) Includes CO equipment Relaxation for Inject RF 3V-1V (with info annex) Above 1GHz Immunity

CISPR 35, Above 1GHz Immunity?

Spot Freq	Spot frequencies only, Radio's are only source. Why do a test, where the EUT will pass.
Levels	3V/m is the requirement
Range	No need to sweep the range of the threat

1.3	Continuous RF electromagnetic field disturbances,	Frequency (±1 %)	800, 900 1 800, 2 600, 3 500, 5 000	MHz
	spot test	Field strength (table clause) See ^a and Table I.1	3 (l.1.1) 4 (l.1.2) 6 (l.1.3) 12 (l.1.4) 30 (l.1.5)	V/m

CISPR 35, Above 1GHz Immunity?

Table I.1 – Guidance on the selection of immunity levels to common wireless communication devices

		Calculated RF field strength in V/m for frequencies and protection distances simulating different radio transmission types, assuming a given ERP						
		LTE/UMTS	GSM		WiMAX/3G (1,26 W)	WiMAX (1,26 W)	WiFi (1 W)	Maximum RF field strength at
Approximate protection Table distance clause (m)	(0,2 W)	(2 W)	(1 W)					
		800 MHz	900 MHz	1,8 GHz	2,6 GHz	3,5 GHz	5 GHz	any frequency
I.1.1	3,0	0,6	1,8	1,3	1,5	1,5	1,3	3
I.1.2	1,5	1,2	3,7	2,6	2,9	2,9	2,6	4
I.1.3	1,0	1,7	5,5	3,9	4,4	4,4	3,9	6
I.1.4	0,5	3,3	10,5	10,5	11,8	11,8	10,5	12
I.1.5	0,2	8,3	26,4	26,4	29,6	29,6	26,4	30

The protection distance is not the test distance as defined in IEC 61000-4-3, but the shortest expected operating distance between the EUT and the interfering wireless communication device at which the immunity performance criteria will be satisfied.

CISPR 35, Injected RF relaxation

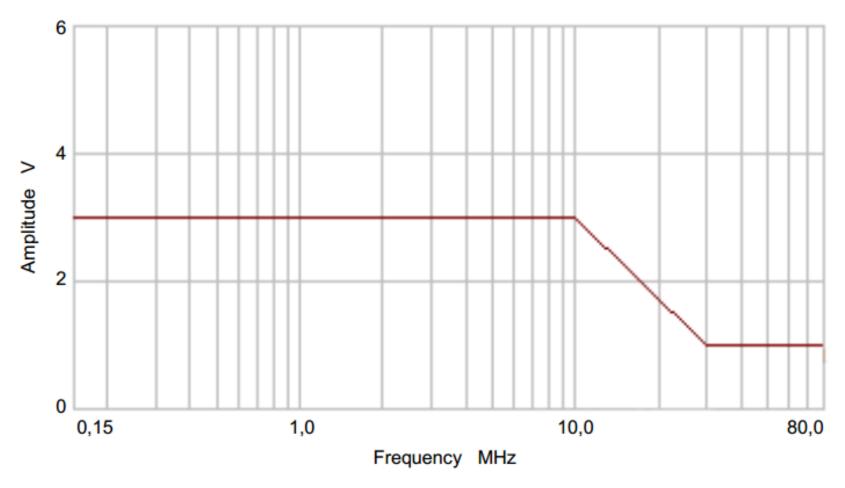


Figure 3 – Graphical representation of the continuous induced RF disturbances levels defined in table clause 2.1

··II··II·· CISCO

The story continues.....

