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Background
• A UAV is an uninhabited, reusable aircraft that is

controlled:
– Remotely,
– Autonomously by pre-programmed on-board equipment,

– Or a combination of both methods

• Currently >241 UAV systems developed by 31 countries
are operational or in test

• Numerous missions, current and proposed:
– Military

– Civilian
– Space

Source: Bob Keith, NATO UAV C2 Workshop 1999 (Unclassified).
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Background

• Many vehicle configurations, but rotary-winged
vehicles form a significant and growing portion

• Hover-capable UAVs offer unique capabilities, but
come with unique challenges
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Background

• Significant industrial and military expertise exists in fixed-
wing UAV development.

• Initial work on rotary-wing UAVs did not exploit the
capabilities of the configuration:
– Lack of familiarity with rotorcraft issues

– Inability to foresee problem areas

• NASA involvement in rotorcraft UAV development
sought to take performance to a new level.



UAV Control Design

Background

• Ames is NASA rotorcraft center:
– Army / NASA Rotorcraft Division

• NASA: Aerospace Directorate

• Army: Aviation & Missile RD&E Center

– Flight Control and Cockpit Integration Branch

• Expertise in rotorcraft:
– Flight control
– Modeling
– Simulation

• Design tools developed in-house
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Design Tools

• CIFER®

– Comprehensive Identification from Frequency
Responses

• CONDUIT
– CONtrol Designer’s Unified InTerface

• RIPTIDE
– Real-time Interactive Prototype Technology

Integration/Development Environment



UAV Control Design

Design Tools

• CIFER®

– Extraction of mathematical
description of vehicle dynamics
from test data

– “Inverse” of simulation

– Robust software, widely used in
aerospace industry
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Design Tools

• CONDUIT
– Evaluation and analysis of any

modeled system
• Linear model from CIFER
• Non-linear simulation code

– Control system design
• Simulink or SystemBuild block-

diagram modeling

– Control system optimization
• User-selected specifications

• Multi-variable, multi-objective FSQP
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Design Tools

• RIPTIDE
– Real-time simulation

environment
– Can use models from

CIFER, CONDUIT, or
stand-alone code

– Can use control system
designs from
CONDUIT

– Hardware-in-the-loop
capability
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Design Tools

RIPTIDE
SHARED
MEMORY

A/C Model

Controller

Auto Code

Cockpit Displays

Out-the-window Displays

Pilot Inceptors

Matlab
SIMULINK

Math
Model

Development

Cockpit
Display

Development

CONDUIT

Elements of RIPTIDE real-time simulation environment
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Design Methods

Design

Simulation

Flight Test

Development

Specifications

Flight Vehicle
Development Cycle
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Design Methods

• Typical sequence of control system development:
– Collect data from vehicle

– Extract linear math model using CIFER

– Design control system using CONDUIT

– Optimize control system gains using CONDUIT

– Shakedown tests in RIPTIDE

– Fly control system on vehicle
• If modeling done correctly, vehicle response should match

model predictions.
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UAV Programs

• VTUAV
• LADF
• R-50/R-MAX
• BURRO

Ames participation in:
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Example: BURRO

• USMC demonstration program
•  Broad-area

 Unmanned
 Responsive
 Re-supply
 Operations

• UAV to pick up loads from
moving ship, deliver
autonomously to inland troops
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Introduction

• Kaman Aerospace K-MAX
– In production
– Designed for load-lifting
– 6,000 lb vehicle
– 6,000 lb slung load capacity
– Synchropter configuration
– Servo-flap rotor
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Introduction

• Army/NASA CRDA with Kaman to support
FCS development

• Three integrated tools
– CIFER® : System identification
– CONDUIT: Control system modeling, analysis,

optimization
– RIPTIDE: Desktop real-time simulation
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Introduction
Design

Simulation

Flight Test

Analysis

Manual
Little or no optimization
Stop when "good enough"

Not real time
Not "pilot in the loop"

Manual
Subjective
Guesswork

Slow
Expensive
Risky Design

Simulation

Flight Test

Analysis

CONDUIT
Multi-objective optimization

CONDUIT (NRT)
RIPTIDE (RT, piloted)

CIFER
Automated
Accurate
Objective

Fewer hours required
Higher initial confidence

Traditional

State-of-the-Art
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Introduction

• Scope:
– Hover / low-speed
– Unloaded
– Ground operator control
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Aircraft Modeling

• Start with piloted
frequency sweeps of
unaugmented K-MAX

• 8-DOF (rigid-body + 2
rotor states) linear
state-space model
identified from flight
data using CIFER®
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Aircraft Modeling

• Verified in time domain
using CIFER®

Ref: Jason Colbourne, et al., American Helicopter
Society Forum, May 2000.
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Aircraft Modeling

• Sensor dynamics
– Equivalent delays estimated

from manufacturer specs (25ms)
– 2nd-order Padé approximations

• Actuator dynamics
– Identified from bench-test

frequency sweeps
– 2nd-order systems

(ω=20 r/s, ζ=.5)

– Rate- and position-limiting
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Aircraft Modeling

• Aircraft, actuator and sensor models
implemented in Simulink block-
diagram

1

Aircraft response

Sensor models

Linearized 8DOF
Aircraft dynamics

Flight control
laws Actuator models

1

Control input
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Control Law Development

• Inner Loops
– Attitude Command / Attitude Hold

• PID controller

– Heading Command
• PD controller

– Altitude Rate Command
• PD controller

• Outer Loops
– Translational Rate Command

• PI controller (or position feedback)

• Modeled in Simulink

3

Attitude Rate

2

Attitude

1

Translational
Rate

Sensor models

PID
Attitude

controller

PI
Translational

Rate
controller

Actuator
 input

Velocity

Attitude

Attitude rate

Linearized 8DOF
Aircraft dynamics

Actuator model
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Control input
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Control Law Development

Attitude
Command

Mode

Velocity
Command

Mode
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• Complete Simulink model:
– 22 inputs
– 32 outputs
– 331 states (continuous and discrete)

– 27 tunable gains (“design parameters”)

• Includes nonlinear
elements:

– Limited integrators

– Authority limits

– Mode switching

Lateral controller shown
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Control Law Development
• CONDUIT Optimization Engine:

– Multi-objective optimization using FSQP

– Adjusts design parameters (system gains)
to meet requirements of specifications

– Specifications represented graphically, 3
regions based on level of performance

• Categorizes specifications:
– Hard

• must be met

– Soft
• should be met, without violating Hard

specs

– Objectives
• minimized after all specs satisfied
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Control Law Development

• Specification selection
– Stability

– Performance and “Handling Qualities”
– Objectives

• Rationale
– Airframe originally designed as a manned vehicle
– Safety pilot on board demonstrator vehicle

– Ground operator control will be VFR / simple tasks
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Control Law Development

• Stability Specifications (Hard constraints)
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Control Law Development

• Performance Specifications (Soft constraints)
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Control Law Development

• Handling Qualities Specifications (Soft constraints)
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Control Law Development

• Objective Specifications
– Spec selection reduces actuator sizing,

component fatigue, and noise sensitivity

Actuator RMS

Actuator RMS

0 0.5 1

Crossover Frequency [rad/sec]

 (linear scale)
Crossover Freq.
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Control Law Development

• Control system gains tuned
using CONDUIT
– Initial tuning:

• 27 parameters
• 33 specifications

– All specifications satisfied
(Level 1)

– RMS actuator position and
crossover frequency
minimized
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Control Law Development

• Conditionally stable lat & lon

• Model predicts stable, well-
damped responses
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Flight Test

• First flight test with CONDUIT-tuned gains
• Aircraft responses did not agree with model

(lon and lat)
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Flight Test

• Looking for source of discrepancy:
– Lon and lat doublets flown closed-loop
– CIFER® used to extract frequency responses
– Actual sensor and actuator dynamics identified

• Equivalent time delay greater than originally
estimated
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Flight Test

Component
Estimated 

Delay (ms)
Actual Delay 

( m s )

Actuators 5 0 107
Sensors 2 5 5 3

Computer 2 0 6 0
Filters 0 7 0

TOTAL 9 5 2 9 0
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Flight Test

• Updated Simulink model with identified delays
• Added delay results in highly constrained

system
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Flight Test

• Added lead filter to lon
& lat attitude feedback

• FCS gains re-tuned
with CONDUIT

• CONDUIT successfully
traded off phase
margin for gain margin
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Flight Test

• CONDUIT tuning results

GM [db] 

P
M

 [d
eg

] 

 (rigid-body freq. range)
Gain/Phase Margins

0 5 10 15 20
0

20

40

60

80

GM [db] 

P
M

 [d
eg

] 

 (rigid-body freq. range)
Gain/Phase Margins

0 5 10 15 20
0

20

40

60

80

Actuator Rate Saturation 

A
ct

ua
to

r 
P

os
iti

on
 S

at
ur

at
io

n 

Actuator Saturation

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Actuator Rate Saturation 

A
ct

ua
to

r 
P

os
iti

on
 S

at
ur

at
io

n 

Actuator Saturation

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Bandwidth [rad/sec] 

P
ha

se
 d

el
ay

 [s
ec

] 

Bandwidth & Time Delay (pitch)

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

Bandwidth [rad/sec] 

P
ha

se
 d

el
ay

 [s
ec

] 

Bandwidth & Time Delay (roll)

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

LON (ACAH) LAT (ACAH)

LON LAT

PITCH ROLL

After CONDUIT tuning

Baseline gains



UAV Control Design

Flight Test

CONDUIT results:

– Level 2 (8 specs)

– Reduced bandwidth
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Flight Test

• Roll response much
improved; model
responses agree well
with flight results
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Flight Test
• BURRO successfully demonstrated to USMC nine

months after start of development
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Conclusions

•• Design space is very limitedDesign space is very limited
– Aircraft dynamics

– Control system hardware
– CONDUIT was able to extract the best achievable

performance within design limitations

•• High frequency dynamics were key driver of closed-High frequency dynamics were key driver of closed-
loop performanceloop performance
– CIFER was useful in identifying system elements

•• Advanced design tools allowed rapid developmentAdvanced design tools allowed rapid development
of a successful UAVof a successful UAV
– 9 month time span
– Recovery from added delay
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Current and Future Work

• Build 1 of K-MAX BURRO UAV
successfully demonstrated to
USMC

• Build 2 now in development

• 2000-lb loaded hover
– 10-DOF EOM and CIFER ident

complete
– FCS design complete

• 5000-lb case in development

• Envelope expansion to 70 KTAS
in progress
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Questions?

For additional information:

http://caffeine.arc.nasa.gov

http://uavinfo.homepage.com


