

IEEE Santa Clara Valley Control Systems Society Technical Meeting September 21, 2000

Flight Control System Design and Test for Unmanned Rotorcraft

Chad R. Frost

Flight Control and Cockpit Integration Branch Army/NASA Rotorcraft Division NASA Ames Research Center Moffett Field, CA

Overview

- Background
- Design Tools
- Design Methods
- UAV programs
- Example

- A UAV is an uninhabited, reusable aircraft that is controlled:
 - Remotely,
 - Autonomously by pre-programmed on-board equipment,
 - Or a combination of both methods
- Currently >241 UAV systems developed by 31 countries are operational or in test
- Numerous missions, current and proposed:
 - Military
 - Civilian
 - Space

Source: Bob Keith, NATO UAV C2 Workshop 1999 (Unclassified).

- Many vehicle configurations, but rotary-winged vehicles form a significant and growing portion
- Hover-capable UAVs offer unique capabilities, but come with unique challenges

- Significant industrial and military expertise exists in fixedwing UAV development.
- Initial work on rotary-wing UAVs did not exploit the capabilities of the configuration:
 - Lack of familiarity with rotorcraft issues
 - Inability to foresee problem areas
- NASA involvement in rotorcraft UAV development sought to take performance to a new level.

- Ames is NASA rotorcraft center:
 - Army / NASA Rotorcraft Division
 - NASA: Aerospace Directorate
 - Army: Aviation & Missile RD&E Center
 - Flight Control and Cockpit Integration Branch
- Expertise in rotorcraft:
 - Flight control
 - Modeling
 - Simulation

• Design tools developed in-house

• CIFER®

 Comprehensive Identification from Frequency Responses

CONDUIT

CONtrol Designer's Unified InTerface

RIPTIDE

 Real-time Interactive Prototype Technology Integration/Development Environment

• CIFER®

- Extraction of mathematical description of vehicle dynamics from test data
- "Inverse" of simulation
- Robust software, widely used in aerospace industry

CONDUIT

- Evaluation and analysis of any modeled system
 - Linear model from CIFER
 - Non-linear simulation code
- Control system design
 - Simulink or SystemBuild blockdiagram modeling
- Control system optimization
 - User-selected specifications
 - Multi-variable, multi-objective FSQP

RIPTIDE

- Real-time simulation environment
- Can use models from CIFER, CONDUIT, or stand-alone code
- Can use control system designs from CONDUIT
- Hardware-in-the-loop capability

Elements of RIPTIDE real-time simulation environment

Design Methods

- Typical sequence of control system development:
 Collect data from vehicle
 - Extract linear math model using CIFER
 - Design control system using CONDUIT
 - Optimize control system gains using CONDUIT
 - Shakedown tests in RIPTIDE
 - Fly control system on vehicle
 - If modeling done correctly, vehicle response should match model predictions.

UAV Programs

Ames participation in:

- VTUAV
- LADF
- R-50/R-MAX
- BURRO

Example: BURRO

- USMC demonstration program
- Broad-area
 Unmanned
 Responsive
 Re-supply
 Operations
- UAV to pick up loads from moving ship, deliver autonomously to inland troops

Introduction

- Kaman Aerospace K-MAX
 - In production
 - Designed for load-lifting
 - 6,000 lb vehicle
 - 6,000 lb slung load capacity
 - Synchropter configuration
 - Servo-flap rotor

Introduction

- Army/NASA CRDA with Kaman to support FCS development
- Three integrated tools
 - CIFER® : System identification
 - CONDUIT: Control system modeling, analysis, optimization
 - RIPTIDE: Desktop real-time simulation

Introduction

- Scope:
 - Hover / low-speed
 - Unloaded
 - Ground operator control

- Start with piloted frequency sweeps of unaugmented K-MAX
- 8-DOF (rigid-body + 2 rotor states) linear state-space model identified from flight data using CIFER[®]

 Verified in time domain using CIFER[®]

Ref: Jason Colbourne, et al., American Helicopter Society Forum, May 2000.

- Sensor dynamics
 - Equivalent delays estimated from manufacturer specs (25ms)
 - 2nd-order Padé approximations
- Actuator dynamics
 - Identified from bench-test frequency sweeps
 - 2nd-order systems $(\omega=20 \text{ r/s}, \zeta=.5)$
 - Rate- and position-limiting

 Aircraft, actuator and sensor models implemented in Simulink blockdiagram

- Inner Loops
 - Attitude Command / Attitude Hold
 - PID controller
 - Heading Command
 - PD controller
 - Altitude Rate Command
 - PD controller
- Outer Loops
 - Translational Rate Command
 - PI controller (or position feedback)
- Modeled in Simulink

Complete Simulink model: Lateral controller shown - 22 inputs 6 Command_Mode Velocity 2 = Attitude] - 32 outputs The state - 331 states (continuous and discrete) CC State 4 Trim_Right ensitivity (righ 27 tunable gains ("design parameters") 3 stick sensitivity deg > rac trim sensitivity (left) Control Mixe Holds input value 2 Stick Input [stu] CC State = Active (1 imited windur Attitude limit Velocity +/ .523 rad Command -Lateral Servo Command [stu] Proportional dai Roll angle stu/rad (5) dpp al Roll rate Feedback time constant rad/(rad/sec) stick sensitivity ft/sec per stu Includes nonlinear ۲ discrete latch elements: Holds input value FCC State = Active (1) Limited integrators Authority limits Proportional gain rad/(ft/sec)

 \bullet

Mode switching _

- CONDUIT Optimization Engine:
 - Multi-objective optimization using FSQP
 - Adjusts design parameters (system gains) to meet requirements of specifications
 - Specifications represented graphically, 3 regions based on level of performance
- Categorizes specifications:
 - Hard
 - must be met
 - Soft
 - **should** be met, without violating Hard specs
 - Objectives
 - minimized after all specs satisfied

GM [db]

Gain/Phase Margins

- Specification selection
 - Stability
 - Performance and "Handling Qualities"
 - Objectives
- Rationale
 - Airframe originally designed as a manned vehicle
 - Safety pilot on board demonstrator vehicle
 - Ground operator control will be VFR / simple tasks

• Stability Specifications (Hard constraints)

Performance Specifications (Soft constraints)

Handling Qualities Specifications (Soft constraints)

- Objective Specifications
 - Spec selection reduces actuator sizing, component fatigue, and noise sensitivity

- Control system gains tuned using CONDUIT
 - Initial tuning:
 - 27 parameters
 - 33 specifications
 - All specifications satisfied (Level 1)
 - RMS actuator position and crossover frequency minimized

Lateral Stability Margins (Initial): PM = 46.8 deg. (ω_{c} = 3.75 rad/sec) Conditionally stable lat & lon • GM = 9.7 dB, (ω_{180} = 11.23 rad/sec) Model predicts stable, well-• 20 damped responses 0 Gain (dB) -20 Roll response -40 Attitude (deg) 0 -100 -200 -300 -300 -400 0 10 1 6 Time (sec) Frequency (rad/sec)

- First flight test with CONDUIT-tuned gains
- Aircraft responses did not agree with model (lon and lat)

- Looking for source of discrepancy:
 - Lon and lat doublets flown closed-loop
 - CIFER[®] used to extract frequency responses
 - Actual sensor and actuator dynamics identified
- Equivalent time delay greater than originally estimated

Component	Estimated Delay (ms)	Actual Delay (ms)
Actuators	50	107
Sensors	25	53
Computer	20	60
Filters	0	70
TOTAL	95	290

- Updated Simulink model with identified delays
- Added delay results in highly constrained system

- Added lead filter to lon & lat attitude feedback
- FCS gains re-tuned with CONDUIT
- CONDUIT successfully traded off phase margin for gain margin

CONDUIT results:

- Level 2 (8 specs)
- Reduced bandwidth

 Roll response much improved; model responses agree well with flight results

Time (sec)

BURRO successfully demonstrated to USMC nine months after start of development

Conclusions

- Design space is very limited
 - Aircraft dynamics
 - Control system hardware
 - CONDUIT was able to extract the best achievable performance within design limitations
- High frequency dynamics were key driver of closedloop performance
 - CIFER was useful in identifying system elements
- Advanced design tools allowed rapid development of a successful UAV
 - 9 month time span
 - Recovery from added delay

Current and Future Work

- Build 1 of K-MAX BURRO UAV successfully demonstrated to USMC
- Build 2 now in development
- 2000-lb loaded hover
 - 10-DOF EOM and CIFER ident complete
 - FCS design complete
- 5000-lb case in development
- Envelope expansion to 70 KTAS in progress

For additional information: http://caffeine.arc.nasa.gov http://uavinfo.homepage.com