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Overview of my Ph.D. research project

Joint project between:

- Systems and Control Group, Delft University of
Technology, The Netherlands.

- Philips Research Laboratories.

e [ heoretical side:

Development of LMI algorithms for analysis and

synthesis of control systems.

e Practical side:

Application to a Compact Disc Player system:

- Multi-objective design.

- Gain-scheduling design.



Outline

Theoretical part
e LMIs in control theory.

e Gain-scheduling for LPV systems.

Application
e Gain-scheduling design for CD player.
e Experimental set-up.

e Implementation results.

Conclusions and discussion.



What are LMIs?

A generic Linear Matrix Inequality is:

F(x) <0
r € R™, F(x) is a real symmetric matrix

F'(.) is an affine mapping

'<’ means negative definite.

Form with matrix variables:

X1 T
Y o— [ 42

L3 L4

AXB+B'X'A+C <0

Solving an LMI is a convex optimization problem:

mint

Mnaz(A'XB+ B'X'"A+C) <t



Relevance in Control Theory: examples

Lyapunov stability criterion

r= Ax is asymptotically stable iff

X >0, AX+XA<0

Bounded Real Lemma
The system

r = Ar + Bu
y=Cx
has Hso norm smaller than 1 iff
X >0, AX+XA4+XBB'X+C'C<0

iff

A X+ XA+C'C XB)
X >0, i , i < 0
B'X .y




H~ loopshaping: S scheme

Disturbance attenuation
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Ho loopshaping: S/K S scheme

Disturbance attenuation with bounded control
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Benefits of LMI formulation

e Recent development of powerful interior point

methods for convex optimization (1994).

Available software packages:
LMI Toolbox for Matlab: Gahinet, Nemirovskij,
Laub, Chilali

SP: Boyd, Vandenberghe

LMITOOL: El Ghaoui, Delebecque, Nikoukhah
SDPpack: Overton, Alizadeh et al.

e Through LMIs it is possible to numerically solve

problems otherwise unsolvable.

Multi-objective Control

Linear Parametrically Varying Control



Motivation

Gain scheduling: design controller for nonlinear

systems using linear design tools.

e Classical approach:

- linearize the system at various operating points
- design linear controller at each point

- interpolate to get a 'global’ controller

Drawback: no systematic way to perform

Interpolation.

e LPV approach:
- systematic design method
- no need for interpolation step

- based on LMI techniques



From nonlinear to LPV systems

Given the nonlinear system
z = a(z,q1) + bi(z, q)w + ba(z, q1)u
z =iz, q1) + di(z, q)w + da(z, q1)u
y = clz, q) + d(z, q)w

Suppose = = 0 is an equilibrium for all ¢;.

Rewrite
z = Alz,q1)r + Bi(z, q1)w + Ba(z, q1)u
z = Ci(z,q1)x + Di(x, q1)w + Do, q1)u
y = C(z,q1)r + D(z, q)w

Arrive at LPV system:

- Replace x by ¢9

- Define p = 1 e 1l
42



From nonlinear to LPV systems

LPV system
lpv © = A(p(t))x + Bi(p(t))w + Ba(p(t))u
z = C1(p(t))x + Di(p(t))w + Da(p(t))u
y = C(p(t))z + D(p(t))w.
where p(t) € I for all .

Example:

T= x sin(x)
can be transformed into

r=px, péeE[—1,1]



Analysis result for LPV systems

The LPV system
o(t) = Alp(t))z(t) + B(p(t))w:(t)
z1(t) = C(p(t))z(t) + D(p(t))wi(t)

Is exponentially stable and has Lo gain w; — 27

smaller than -y if

3 Lyapunov matrix X > 0 s.t. Vp € Il

| A(p) X + X A(p) XBi(p) Ci(p)
By(p)'X —yI  Di(p) | <0
Ci(p) Dy(p) —I |

Infinitely many LMI's in X'. Two ways to proceed:
e Gridding techniques

e Introduction of scalings



LFT representation of LPV systems

"Pulling out” the parameter p:

X
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Controller synthesis

Controller with same structure of the plant
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Synthesis algorithms based om LMI techniques



The CD player system

\' A

i
LASER beam

photo diodes ——b=

DC-motor

<«——— LASER



Specs for the CD

track

spot '+ error

[ K P \_/

e Disturbance suppression
max. track eccentricity: 100 um
max. allowable position error: 0.1 um

= Factor 1000 time-domain attenuation

e Relatively small bandwidth
avoid high power consumption
no amplification of audible noise

robustness



Plant characteristics

Amplitude of P at a fixed track position
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Disturbance characteristics

Spectrum of the disturbance at a fixed track

10°

Disturbance spectrum
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Location of harmonics vary with rotational

frequency.

New high-performance applications require higher
rotational frequency (30 Hz)
= necessity of adaptive selective disturbance

suppression.



LPV model of the CD

2y W w1
¢ ply plg
Wy
_|_
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_|_ —
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Scheduling parameter is p = 27 f,ot, with
25 Hz S frot S 35 Hz.

P is scheduled for gain variations.

Performance filter ¥ models frequency-varying
notches

2 2 o2 2
s“+2Cps+p° s+ 4(ps+ 4p
Wi(s,p) =

52+ 2Cpps + p? 52 + 4Cpps + 4p?

Filter W5 for robustness issues.



Results: " Frequency domain”

Amplitude of controller and sensitivity for the five
"frozen” values fot=25, 27.5, 30, 32.5, 35 Hz:
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Experimental set-up

"Old” Philips audio CD Player
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Set-up with two dSpace systems:

e C40 to measure rotational frequency.

e Multiprocessor (C40 and Alpha) to implement

the controller.



Implementation scheme

Problems:
e Implementation of unstable controllers

e Bumpless switch from internal to external

controller

. C'omputer

Ki'nt

(G stabilizes K.,+ during the start-up procedure

e High order controllers

e High sampling rate (20 kHz)



Experimental results

Comparison with a high performing LT controller.

Peak of tracking error for several fixed values of

the rotational frequency
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Ts=50us
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Experimental results: fast parameter transition
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Experimental results: fast parameter transition
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Conclusions

e LPV techniques allow to design controller with
stability and performance guarantees over the

whole operative range of the plant.

e Experimental set-up based on dSpace systems

to implement LPV controllers.

e L PV controller improves performance of the CD
player servosystem as required by high-demanding

applications.



