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Overview of my Ph.D. research project

Joint project between:

- Systems and Control Group, Delft University of

Technology, The Netherlands.

- Philips Research Laboratories.

• Theoretical side:

Development of LMI algorithms for analysis and

synthesis of control systems.

• Practical side:

Application to a Compact Disc Player system:

- Multi-objective design.

- Gain-scheduling design.



Outline

Theoretical part

• LMIs in control theory.

• Gain-scheduling for LPV systems.

Application

• Gain-scheduling design for CD player.

• Experimental set-up.

• Implementation results.

Conclusions and discussion.



What are LMIs?

A generic Linear Matrix Inequality is:

F (x) < 0

x ∈ Rm, F (x) is a real symmetric matrix

F (.) is an affine mapping

’<’ means negative definite.

Form with matrix variables:

X :=

[
x1 x2

x3 x4

]

A′XB +B′X ′A + C < 0

Solving an LMI is a convex optimization problem:

min t

λmax(A
′XB +B′X ′A + C) < t



Relevance in Control Theory: examples

Lyapunov stability criterion

.
x= Ax is asymptotically stable iff

X > 0, A′X +XA < 0

Bounded Real Lemma

The system

.
x = Ax +Bu

y = Cx

has H∞ norm smaller than 1 iff

X > 0, A′X +XA +XBB′X + C ′C < 0

iff

X > 0,

[
A′X +XA + C ′C XB

B′X −I

]
< 0



H∞ loopshaping: S scheme

Disturbance attenuation
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|W1(jω)|, for all ω ∈ IR.
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H∞ loopshaping: S/KS scheme

Disturbance attenuation with bounded control
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|W1(jω)S(jω)|2 + |W2(jω)K(jω)S(jω)|2 ≤ γ, ∀ ω ∈ IR.
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Benefits of LMI formulation

• Recent development of powerful interior point

methods for convex optimization (1994).

Available software packages:

LMI Toolbox for Matlab: Gahinet, Nemirovskij,

Laub, Chilali

SP: Boyd, Vandenberghe

LMITOOL: El Ghaoui, Delebecque, Nikoukhah

SDPpack: Overton, Alizadeh et al.

• Through LMIs it is possible to numerically solve

problems otherwise unsolvable.

Multi-objective Control

Linear Parametrically Varying Control



Motivation

Gain scheduling: design controller for nonlinear

systems using linear design tools.

• Classical approach:

- linearize the system at various operating points

- design linear controller at each point

- interpolate to get a ’global’ controller

Drawback: no systematic way to perform

interpolation.

• LPV approach:

- systematic design method

- no need for interpolation step

- based on LMI techniques



From nonlinear to LPV systems

Given the nonlinear system

.
x = a(x, q1) + b1(x, q1)w + b2(x, q1)u

z = c1(x, q1) + d1(x, q1)w + d2(x, q1)u

y = c(x, q1) + d(x, q1)w

Suppose x = 0 is an equilibrium for all q1.

Rewrite

.
x = A(x, q1)x +B1(x, q1)w +B2(x, q1)u

z = C1(x, q1)x +D1(x, q1)w +D2(x, q1)u

y = C(x, q1)x +D(x, q1)w

Arrive at LPV system:

- Replace x by q2

- Define p =

(
q1

q2

)
∈ Π



From nonlinear to LPV systems

LPV system

llpv
.
x = A(p(t))x +B1(p(t))w +B2(p(t))u

z = C1(p(t))x +D1(p(t))w +D2(p(t))u

y = C(p(t))x +D(p(t))w.

where p(t) ∈ Π for all t.

Example:

.
x= x sin(x)

can be transformed into

.
x= p x, p ∈ [−1, 1]



Analysis result for LPV systems

The LPV system

.
x(t) = A(p(t))x(t) +B(p(t))w1(t)

z1(t) = C(p(t))x(t) +D(p(t))w1(t)

is exponentially stable and has L2 gain w1 → z1

smaller than γ if

∃ Lyapunov matrix X > 0 s.t. ∀p ∈ Π
A(p)′X +XA(p) XB1(p) C1(p)

′

B1(p)
′X −γI D1(p)

′

C1(p) D1(p) −γI


 < 0

Infinitely many LMI’s in X . Two ways to proceed:

• Gridding techniques

• Introduction of scalings



LFT representation of LPV systems

”Pulling out” the parameter p:


.
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 =


 A B1 B2

C1 D1 D12

C2 D21 D2




 xw1
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 , w2 = ∆(p)z2

where ∆(.) is continuous
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Controller synthesis

Controller with same structure of the plant


.
x

u

zc


 =


 Ac Bc1 Bc2

Cc1 Dc1 Dc12

Cc2 Dc21 Dc2




 xy
wc


 , wc = ∆c(p)zc

w2

�

�(p)

w1

�c(p)

K

z1

z2

yu

zc wc

aa

!!

aa

!!

aa

!!

aa

!!

aa

!!

aa

!!

aa

!!

Synthesis algorithms based om LMI techniques



The CD player system



Specs for the CD
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• Disturbance suppression

max. track eccentricity: 100 µm

max. allowable position error: 0.1 µm

⇒ Factor 1000 time-domain attenuation

• Relatively small bandwidth

avoid high power consumption

no amplification of audible noise

robustness



Plant characteristics

Amplitude of P at a fixed track position
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Disturbance characteristics

Spectrum of the disturbance at a fixed track
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Location of harmonics vary with rotational

frequency.

New high-performance applications require higher

rotational frequency (30 Hz)

⇒ necessity of adaptive selective disturbance

suppression.



LPV model of the CD
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Scheduling parameter is p = 2πfrot, with

25 Hz ≤ frot ≤ 35 Hz.

P is scheduled for gain variations.

Performance filter W1 models frequency-varying

notches

W1(s, p) =
s2 + 2ζzps + p2

s2 + 2ζpps + p2
s2 + 4ζzps + 4p2

s2 + 4ζpps + 4p2

Filter W2 for robustness issues.



Results: ”Frequency domain”

Amplitude of controller and sensitivity for the five

”frozen” values frot=25, 27.5, 30, 32.5, 35 Hz:
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Experimental set-up

”Old” Philips audio CD Player

Set-up with two dSpace systems:

• C40 to measure rotational frequency.

•Multiprocessor (C40 and Alpha) to implement

the controller.



Implementation scheme

Problems:

• Implementation of unstable controllers

• Bumpless switch from internal to external

controller
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Computer

G stabilizes Kext during the start-up procedure

• High order controllers

• High sampling rate (20 kHz)



Experimental results

Comparison with a high performing LTI controller.

Peak of tracking error for several fixed values of

the rotational frequency
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Experimental results: fast parameter transition
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LPV tracking error:



Experimental results: fast parameter transition
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Conclusions

• LPV techniques allow to design controller with

stability and performance guarantees over the

whole operative range of the plant.

• Experimental set-up based on dSpace systems

to implement LPV controllers.

• LPV controller improves performance of the CD

player servosystem as required by high-demanding

applications.


