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Most of  the previous century could be called a “century of  
undersampling.” 

Walter Munk
Secretary of  the Navy Research Chair in Oceanography, Scripps Institute of  Oceanography, 

UCSD

Testimony to The U.S. Commission On Ocean Policy, 18 April 2002 

On Ocean Observation
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In preparing for battle I have always found that plans are useless, 
but planning is indispensable.

&

Failing to plan is planning to fail.

General David Dwight G. Eisenhower, Supreme Commander Allied Forces, WWII 
and

34th President of  the United States

On Planning
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“We should…send machines and instruments out to sea, not people…”

    David Packard
MBARI Founder

Co-Founder Hewlett-Packard 
&

United States Under-Secretary of Defense, 
Reagan Administration

On Automation
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Key Problems in Ocean Observing

• Tools and techniques are inadequate to understand dynamics of  coastal ocean processes

�“We’ve been doing Oceanography the way Darwin did more than a 100 yrs ago. We need new tools and 
techniques to better characterize our environment, especially the oceans” Marcia McNutt, ex-MBARI 
President/CEO, now Dir. US Geological Survey/Science Advisor Sec. of  Interior

• Often the phenomenon to be observed, cannot be sampled directly

� Use proxy variables (e.g Chl. Fluorescence, backscatter, temperature, salinity) 

• Obtaining power & comms. in the water-column is difficult/non-existent

• Synthetic ocean models are poor predictors of  change

• Persistence presence necessary to understand spatio-temporal variation 

• Sub-sampling the large ocean is expensive and unsustainable

� Ship and labor costs are going up

� Large expeditions with multiple ships/crews are logistically difficult

� Oceanographers prefer “Terra firma”
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Why is Ocean Sciences interesting....now?

• Multi-disciplinary in nature
–Physicists, Chemists, Mechanical, Civil, Electrical Engineering, Biological, 

Physical, Chemical Oceanographers, Environmental Engineering, Computer 
Science, Economists, Numerical Analysts…

• At a cusp:
–Realization that the Oceans are regulators for Global Climate processes

• Synoptic views, not point data can tell us how ocean processes actually work

–Realization of  possible anthropogenic influences on our environment and the 
impact to the oceans

–Advances in sensors, platforms, robotics, control, AI are substantial over ~40 
years

–Large science is slowly coming to the fore in Oceanography
• E.g NSF funded $350 M Ocean Observatory Initiative (OOI)

–Global/Coastal/Regional Cabled Observatories proposed
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Does a domain matter?

T

Space
• Power is not such a big deal (payload 

scaling is the issue)

• Observability is by and large not such a 
big deal

• Communication is generally not a 
problem given observability

• Reachability is definitely an issue

• Launch costs are disproportionally high

• But space has substantial funding 

• embedded in the public’s imagination

The Oceans
• Power is a big deal; you have to carry 

it with you

• Observability is fundamentally 
lacking

• Communication is a huge problem 
given lack of  observability

• Reachability is not as much an issue 
given a support vessel

• Launch costs are disproportionally 
high

• Marine science/engineering has 
nowhere near as much resources
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MBARI:Why is it unique?

• Privately funded 

–By the David and Lucille Packard Foundation

–Dependence on Congress is minimal for for its operation

–By its charter < 25% of  its internal budget for external (NSF, NASA, ONR) 
monies

• Long term view of  Ocean Science and Engineering is strongly encouraged

• Strong applied technology focus for inter-disciplinary science

• Science, Engineering and Operations are in-house

• Scientists and engineers (mostly) free from undue management & budgetary 
interference

–MBARI’s influence in the Ocean sciences in the US is disproportionate to its size

• A strong desire to make an impact in Oceanographic sciences by sharing and 
collaborating with external entities
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MBARI: What niche does it occupy?

Oceanography
For the most part

Pasteur’s Quadrant  
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~200 Staff
•  Science
•  Engineering
•  Operations
•  Outreach
  12 Principal Scientists
  (Biology, Chemistry, Ecology, 

Genetics, Sensors, Platforms, 
Autonomy)

Deep-dive ROVs, 
Test Tank
AUVs & ships
Moorings & buoys

Annual Budget ~$40M

Funded by the David & Lucille 
Packard Foundation

ngggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg
ns
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The MBARI Fleet

R/V  Pt. Lobos: Day boat 
with 1400m rated ROV

R/V Western Flyer: Deep Ocean with 3600m rated ROV R/V Zephyr: Day boat for AUV operations

Funded by the David & Lucille 
Packard Foundation

~200 Staff
•  Science
•  Engineering
•  Operations
•  Outreach
  12 Principal Scientists
  (Biology, Chemistry, Ecology, 

Genetics, Sensors, Platforms, 
Autonomy)

Deep-dive ROVs, 
Test Tank
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Moorings & buoys
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Intermediate Nepheloid Layers (INLs)
• Fluid sheets of  suspended particulatessss. Originate from the sea floor 

through diverse fluid dynamics [McPhee-Shaw 2004].

• Large Horizontal Scales (Kms)

• Small Vertical Scales (meters)

• Patchy

Focus of  Interest: Event Response for Coast Ocean Processes
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Courtesy John Ryan, MBARI

Focus of  Interest: Event Response for Coast Ocean Processes

Algal Blooms
• Regular in episodic 

appearance in coastal waters 
everywhere

• Some are harmful; toxins 
(Demoic acid) generated 
which cause significant impact 
to coastal economy and health
� Econ. impact ~$75 M ’87-00*
� Beach closures
� Large mammal deaths
� Human health impacts

* D. Anderson, P. Hoagland, Y. Kaoru, and A. White, “Economic impacts from harmful algal blooms 

(HABs) in the United States,” tech. rep., Woods Hole Oceanographic Institution Technical 
Report: WHOI 2000-11, 2000.
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Technological Foci

• Adaptation of  a mobile robotic asset in response to 
dynamic signals in the coastal ocean

• Large scale (interruptible) water-column surveys to target 
specific features of  scientific interest

• To track advected patches of  water with specific properties
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Distinction between Autonomy & Automation

• Autonomous Systems:

–Sense-Deliberate-Act cycle is intrinsic

–Machine-based decision making that results in behavior that is 
emblematic of  human behavior 

• Automation:

–Deliberation is not intrinsic

–Machine-based execution of  activities which alleviates human work
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Key Ingredients of  an Autonomous System

• FDIR (Fault Diagnosis Isolation and Recovery)

• Deliberative Planning

• Plan Execution

Deliberative
Planning

Fault Diagnosis

CONTROLLED SYSTEM

EXECUTIVE

Thrust
Goals

Attitude Point(b)

Engine Thrust (b, 200) Off

Delta_V(direction=b, magnitude=200)

Power

Warm Up

meets met_by

contained_by

contained_by

equals

Sensing Real World information

Friday, December 10, 2010



Autonomy: Outer to Inner Space          Kanna Rajan, MBARI 2010

• Communication is not just a bottleneck; its damn difficult in the water-column!

• Powering instruments/platforms is a serious problem

• Costs effectiveness

– Costs associated with ship based science is increasingly prohibitive 
• Given funding profiles, autonomy is a strong leverage to squeeze more science out of  existing 

ocean observing systems

– Need for looking at the next generation of  sampling and observation methods

– Platforms are more robust and increasingly capable

– Longer durations mission will need:
• Goal-based commanding 

• Opportunistic re-planning for adaptability 

• Ability to reason about resources

• Onboard fault diagnosis, isolation and recovery (FDIR)

• Reduce the cognitive burden of  mission operators

• And to do so efficiently (even at 3am in PIs time-zone)

Why is Autonomy important for the Ocean Sciences?
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The Sampling Conundrum
1. Finite Time
2. Finite Energy

3. Finite Sampling Resources 

4. Uncertainty of  occurrence of  
phenomenon

5. Uncertainty of  location, size, shape and 
strength of  feature signal
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ROVs AUVs Gliders

Platforms: Ocean going Robots
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Intellectual/Operational Legacy of  our work
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– Jan 14th 2004 - ongoing
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Lessons Learned from Space Missions

• How (Lessons Learned from DS1 & MER)
– Customer training and buy-in is not a luxury

– Requirements change and change often: learn to live with it

– Test what you fly and fly what you test

– Spiral mode of  development often works well for model-based approaches to s/w engineering

– All or nothing approach = nothing

• Incremental use of  automated approaches is necessary

• Solving an existing problem using a dumb but automated method; ++

• Migrate to more abstract/higher levels of  autonomy but slowly.

– Usability issues should not be ignored

– Mission-critical software requires good systems engineering

• Connecting the pieces in the software puzzle

• Software not developed in isolation to its operating environment

– Work-practice ethnography is very useful

• How do people use tools and processes to get the ‘job done’?

Domain
Model

nggg
Search
Engine

Search
Control

Autonomy
Level

0 100

50
7525

Mars Exploration Rovers/Science Meeting
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Architectural relationships in the AUV domain
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•Abstraction plays a significant role

• all computation on the robot is not equal

• all effort to generate a solution is not equal

• All entities can be seen as Sense/Plan/Act 
(SPA) loops 

• Functional and temporal scope of  
computation can and should be exploited

• Partitioning computation should be a 
necessary and important driver for an agent 
architecture

• Deliberation and execution are intertwined :

• decision of  one actor can be impacted by 
observations of  another

Our Approach for Autonomy

Vehicle

Arm operatorPilot

Scientist
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Asset control (commands)

Navigation 
(where and how to go)
N
(

Science operation 
( payload)

Mission (science objectives, and 
operational constraints)
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Functional Scope

•Abstraction plays a significant role

• all computation on the robot is not equal

• all effort to generate a solution is not equal

• All entities can be seen as Sense/Plan/Act 
(SPA) loops 

• Functional and temporal scope of  
computation can and should be exploited

• Partitioning computation should be a 
necessary and important driver for an agent 
architecture

• Deliberation and execution are intertwined :

• decision of  one actor can be impacted by 
observations of  another

Our Approach for Autonomy
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T-REX: Teleo-Reactive EXecutive

•Abstraction plays a significant role

• all computation on the robot is not equal

• all effort to generate a solution is not equal

• All entities can be seen as Sense/Plan/Act 
(SPA) loops 

• Functional and temporal scope of  
computation can and should be exploited

• Partitioning computation should be a 
necessary and important driver for an agent 
architecture

• Deliberation and execution are intertwined :

• decision of  one actor can be impacted by 
observations of  another

Our Approach for Autonomy
Sense

Plan Act

World
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Partitioning Computation

• Functional scope along the lines of  what

• Temporal scope along the lines of  when

• What does partitioning buy us?

• “Divide and Conquer” in problem solving/
Scalability

• Different search strategies can be encapsulated

• Incremental model development

• Allows targeted commanding at any level of  
abstraction

• For embedded real-world systems, robustness in 
failure

• Identical interfaces making software development 
easier

• Reactor contents are agnostic to the T-REX agent

T-R
EX

A
gent

Iridium interface 

Vehicle Control interface

Mission Manager

Skipper

NavigatorScience

Legend :
Interface reactor

Planning reactor

Goal flow

Observation flow

Vehicle Functional LayerVehicle Functional LayyyyyyerV

Functional Scope
T

em
p

oral Scop
e

look-ahead
�=22hr

latency �=5mins

look-ahead �=5hr
latency �=2mins

look-ahead �=10sec
latency �=1sec

look-ahead �=1hr
latency �=10sec
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• constraints

• restrictions over the tokens 
behavior

• temporal or parametric

• Each reactor is composed of  timelines:
• Internal : represent the state of  the world as viewed 

by this reactor

• External : a view of  a state variable Internal to 
another reactor

• for each External timeline there’s one and only one 
reactor that defines it as Internal

• timelines :
• A sequence of  tokens that describe the evolution of  a 

state variable

• tokens :
• atomic entity describing a predicate that holds over a 

temporal scope 

• start, duration and end can be described as intervals 
(e.g. start=[0, 10])

Definitions

Friday, December 10, 2010

Mission Manager

Volume_Survey (x1,y1,xn,yn 10, 40) 
Goals  

Path  

Navigation  

Command  

Idle 

Transect(Yo-Yo, Min=10, Max=40, x1,y1,xn,yn) 
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• Tokens represent a flexible temporal extant

• Temporal flexibility allows plans to deal with 

• “fail operational” modes

• uncertainty in plan execution

• use of  Allen Algebra for all computation

• Plans are composed of  logical assertions of  
tokens connected by explicit constraints on 
timelines

Definitions
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• Tokens represent a flexible temporal extant

• Temporal flexibility allows plans to deal with 

• “fail operational” modes

• uncertainty in plan execution

• use of  Allen Algebra for all computation

• Plans are composed of  logical assertions of  
tokens connected by explicit constraints on 
timelines

Definitions
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Inactive Surface Localization 

meets meets 

meet_by 

50

Δd = [40, 50]

time 

10 15 25 contains 

Obtain GPS fix

• Tokens represent a flexible temporal extant

• Temporal flexibility allows plans to deal with 

• “fail operational” modes

• uncertainty in plan execution

• use of  Allen Algebra for all computation

• Plans are composed of  logical assertions of  
tokens connected by explicit constraints on 
timelines

Definitions

Teleo-Reactive 
EXecutive
(T-REX)

Functional Layer

ea
utive

EUROPA
Planner

OPA
er

NDDL
Domain Description 

Language
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model
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IdleMoveTo(x,y)

10 120 [121 +inf]
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At(x,y)At(x',y')At(x",y")

118 119 120 [121 +inf]

Position

Autonomy: Outer to Inner Space          Kanna Rajan, MBARI 2010

• Synchronization is the operation during which 

a reactor identifies its current state  

• merging observations with expectations

• computes the current value of  its Internal

timelines

• The Internal state depends on External timelines

• Cannot synchronize unless the reactors it depends on are synchronized

Sensing : Synchronization
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Mission Manager

Navigator

Science

Vehicle Control 
Interface

Skipper

Sy
n

ch
 o

rd
er

• Synchronization is the operation during which 

a reactor identifies its current state  

• merging observations with expectations

• computes the current value of  its Internal

timelines

• The Internal state depends on External timelines

• Cannot synchronize unless the reactors it depends on are synchronized

• Role of  the TREX agent:

• Order reactor synchronization based on their 
dependencies

• Propagate Internal state updates to the 
corresponding External timelines 

Sensing : Synchronization
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Reactor
model

At(base)

120 [121 131]

Navigation

Idle
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Commands

At(x,y)At(x',y')
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Position

MoveooooooooMoMMMMMMMMMMMMMMM At(Loc1)

1 31131131]]]1 1

Move

[211 294] [294 +inf]

MoveTo(x,y)vevvvvvvvvoooooooooMoMMMMMMMMMMMMMMM

131]1

MoveTo(xloc, yloc) Idle

[211 294]

At(xloc,yloc)

[211 294]

...

• Deliberation is purely internal to the reactor 

• find how to alter External states in order to be 

in a desired Internal state

• 2 possible triggers for deliberation :

• a new goal on its Internal state

• External observations contradict reactor’s plan leading to plan repair/failure

• Each reactor defines two important parameters :

• latency �    : maximum time required for producing a plan  

• look-ahead � : how far ahead the reactor needs to look for deliberation

Plan/Deliberate 

Friday, December 10, 2010
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Reactor
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Navigation
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At(xloc,yloc)

[211 294]

...

� �

MoveTo(xloc, yloc)MoveTo(xloc, yloc)MoveTo(xloc, yloc)

• In order to execute its plan the reactor 

should be able to request External timelines 

to change according to its plan

• This dispatching can be done when a planned

state overlaps the planning window of  the owner of  this External state variable

• planning window = [�+�exec, �+�exec+�]

• �exec is the execution latency of  a reactor including :

•  reactor’s deliberation latency (�) 

• and the maximum �exec of  its External states

• A newly dispatched token becomes a goal of  the owner of  this External state (i.e. the 

one declaring it as Internal)

Act : Dispatching
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• In order to execute its plan the reactor 

should be able to request External timelines 

to change according to its plan

• This dispatching can be done when a planned

state overlaps the planning window of  the owner of  this External state variable

• planning window = [�+�exec, �+�exec+�]

• �exec is the execution latency of  a reactor including :

•  reactor’s deliberation latency (�) 

• and the maximum �exec of  its External states

• A newly dispatched token becomes a goal of  the owner of  this External state (i.e. the 

one declaring it as Internal)

Act : Dispatching
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Illustration

• 3 reactors

• Mission Manager : select and order scientific goals to do in the mission

• Navigator : Waypoint based navigation control including operational constraints (surface every 
~30mins for localization, ...) 

• Executive : dispatch commands and collect data from the vehicle
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Nepheloid layer :
suspended material

logs clusters

Nepheloid
layer
detected !

OnOOnnOnO bobobobob araraaa ddddd
clclasasassisisiiii ififififififififiififififififfffff rerrrrrererrrerrererereeeeeee

Feature(s)
detection & 
sampling

• Need a generic way to identify features from sensor data in real-time

• Idea : learn a model from previous missions

• Technique : Use clustering to extract information from raw-data 

Integrating HMM’s with Planning
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Integrating HMM’s with Planning: Next Steps

Objective: To provide the context of  the sequence of  observations to enable state estimation
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Phase I: Processing Raw Sensor Data

I. Partial Labeling II. Semi-supervised 
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III. Cluster Extraction

....
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Outside
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Inside
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Raw Sensor Data

Phase II: Modeling Sensor Dynamics

I. Partial Labeling II. Semi-supervised 
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Raw Sensor aRaR w Sensor Saa

IV. Label 
Propagation

.....

O B I C

C1 C2 C3 Cn

HMM

SOM Clusters
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Integrating HMM’s with Planning: Next Steps

Objective: To provide the context of  the sequence of  observations to enable state estimation

F. Py, S. Celorrio, K. Rajan in review

Friday, December 10, 2010



Autonomy: Outer to Inner Space          Kanna Rajan, MBARI 2010

Gimbaled
Tail-cone

CTD

Vehicle Computers

Batteries

Gulper, USBL Transponder

GPS

MBARI’s CTD* AUV

Speed 4knots Length: 4.3 m (typical), Diameter: 0.53m Endurance ~22hrs

Depth rating 4500m/typical 1000m Missions: Upper water-column, time-series, 
engineering testing

Frequency of use: 4 days/week

CPU: 1 300 Mhz PC-104 
Functional Layer/QNX, 367 Mhz 1 
EPIC EPX-GX500/Fedora RH7

Launch/Recovery: R/V Zephyr

Cost: ~ $1.5 M

HydroScat/HS2, LOPC, LIZT

* Conductivity, Temperature, Depth
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What we can do now

T-REX’s Embodiment
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Gulper : water sampling device. 
Needs AUV adaptability Autonomy 

computer 
stack

Basic AUV 
control stack

T-REX’s Embodiment
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Results:Volume Surveys

INL mapping and sampling survey around M0

• Ability to detect in-situ INLs (Intermediate Nepheloid Layers)

• Reactively takes water sample when needed

• Change the resolution of  the survey

• Mission duration up to 6 hours

• Average CPU load ~20% including execution control, planning and state estimation  

Location: Off  M0 Monterey Bay 
Nov 2009
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Middle/High res. (500~250m)

Results:Volume Surveys

INL mapping and sampling survey around M0

• Ability to detect in-situ INLs (Intermediate Nepheloid Layers)

• Reactively takes water sample when needed

• Change the resolution of  the survey

• Mission duration up to 6 hours

• Average CPU load ~20% including execution control, planning and state estimation  

Location: Off  M0 Monterey Bay 
Nov 2009
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Results:Volume Surveys

INL mapping and sampling survey around M0

• Ability to detect in-situ INLs (Intermediate Nepheloid Layers)

• Reactively takes water sample when needed

• Change the resolution of  the survey

• Mission duration up to 6 hours

• Average CPU load ~20% including execution control, planning and state estimation  

Location: Off  M0 Monterey Bay 
Nov 2009

Friday, December 10, 2010

p(IN
L)

S1

S2

S3

S4

S5

Autonomy: Outer to Inner Space          Kanna Rajan, MBARI 2010

Middle/High res. (500~250m)

Low res. (~750m)

samples taken nearby the 
strongest INL signature

Results:Volume Surveys

INL mapping and sampling survey around M0

• Ability to detect in-situ INLs (Intermediate Nepheloid Layers)

• Reactively takes water sample when needed

• Change the resolution of  the survey

• Mission duration up to 6 hours

• Average CPU load ~20% including execution control, planning and state estimation  

Location: Off  M0 Monterey Bay 
Nov 2009
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Adaptive Sampling: The Role of  Sample Utility
p(IN

L)

S1

S2

S3

S4

S5

• Problem: To determine when and where samples are to be acquired for maximum 
information gain, while respecting spatial and temporal sampling constraints.

• Proposed solution: Use utility functions as a means to inform plan-time decisions

• Weakly Informed: tracking history - past samples

• Mission Aware: plan analysis - time/traverses remaining

• Feature Aware: a priori knowledge of  feature

Purely Reactive
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• Problem: To determine when and where samples are to be acquired for maximum 
information gain, while respecting spatial and temporal sampling constraints.

• Proposed solution: Use utility functions as a means to inform plan-time decisions

• Weakly Informed: tracking history - past samples

• Mission Aware: plan analysis - time/traverses remaining

• Feature Aware: a priori knowledge of  feature
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Adaptive Sampling: The Role of  Sample Utility
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• Problem: To determine when and where samples are to be acquired for maximum 
information gain, while respecting spatial and temporal sampling constraints.

• Proposed solution: Use utility functions as a means to inform plan-time decisions

• Weakly Informed: tracking history - past samples

• Mission Aware: plan analysis - time/traverses remaining

• Feature Aware: a priori knowledge of  feature

Anticipatory (Samples)

Friday, December 10, 2010

Autonomy: Outer to Inner Space          Kanna Rajan, MBARI 2010

Adaptive Sampling: The Role of  Sample Utility

p(IN
L)

S1

S2

S3

S4

S5

• Problem: To determine when and where samples are to be acquired for maximum 
information gain, while respecting spatial and temporal sampling constraints.

• Proposed solution: Use utility functions as a means to inform plan-time decisions

• Weakly Informed: tracking history - past samples

• Mission Aware: plan analysis - time/traverses remaining

• Feature Aware: a priori knowledge of  feature

• Given certain space and a set K of  points in this space, the Voronoi 
region for any ki � K contains all the points of  the space that are closer to 
ki than to any other kj.

• Good indicator of  spatial distribution of  samples

• But spatial distribution is not all that matters:

• large areas could correspond to small probability areas...

• Solution: integral of  the probability of  all the points contained in a certain 
Voronoi region
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 Coefficient of variation: 1.3
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Front identified

Data sent to shore continuously during transect

Results: Following Fronts

Location: Off  M0 Monterey Bay
July 2009
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PR2 control

European Space Agency rover testbed

• T-REX is a general purpose Open Source 
framework (in Google Code)

– Anything that can be described as Sense/Plan/Act can be 
integrated as a reactor 

• T-REX is being used to coordinate multiple  
planners for advanced service robot control (http://
www.willowgarage.com):

• T-REX will be the core controller for ESA rover 
testbed:
– IP-CNR (Italy): APSI Planner

– LAAS (France) : GenoM functionnal layer

– Verimag (France) : BIP compositional Verification 

Results: Other TREX Instantiations 
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Next Steps: CANON- A Controlled, Agile and Novel Observing Network 
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Next Steps: CANON- A Controlled, Agile and Novel Observing Network 

• Mixed-Initiative control from 
shore/ship

• Loosely coupled multiple 
heterogenous vehicles

• Each vehicle has onboard plan 
synthesis capability

• Limited information exchange
• Human as a separate ‘agent’ 

brings substantial cognitive 
capability

• Synoptic views are generated by 
the fusion of  disparate map 
data, combined with onboard 
autonomy
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Decision 
Support 
System 
(DSS) 

for
CANON
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Composite of  tracks of  all 
CANON assets
for sampling blooms
Oct 9th - 22nd 2010
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• The complex coastal ocean requires the ability to sample precisely

–Ocean models are imprecise and require substantial hand-holding

–Embodied robots with statistical models coupled to control add scientific value

• We have demonstrated a formal framework for partitioning a complex control problem into 
multiple Sense-Plan-Act control loops

•  Strong execution semantics

•  Each reactor becomes the executive of  the reactors depending on its state

• Coupled state estimation allows modeling dynamic features in the coastal ocean

•  Future directions:

• shore/ship side DSS

• experiment further system scalability/flexibility

• diverse solvers for deliberation

• multi-vehicle shore side control under limited (lossy) communications

Concluding Remarks

Friday, December 10, 2010
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Backup Material
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Traditional Approaches for Dispatching Timed Programs
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• Does not model uncertainty in action and 
environmental response

• Is brittle in execution
• Is not responsive to environmental 

feedback

handleStart(“Goto(W1)”)

handleStart(“Goto(W2)”)

handleStart(“Surface(W2)”)

handleStart(“Goto(W3)”)

handleStart(“Terminate(W3)”)
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• Flexible start/end times can deal with 
some measure of  uncertainty

• Can be robust to fail-operational 
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What is Constraint-Based Planning?
• CBP systematizes the use of  

– relationships (real or implied)

– provides a sound mathematical framework for representing axiomatic equations

– encapsulates a systematic approach to evolving state

• State-Variable based approaches further decompose the planning problem

– timelines describe state evolution for pre-specified sub-systems

– by merging the representations of  time with state-variables we can use systematic representations to depict state 
evolution realistically while still being discrete

• The essential elements of  timeline based CBP are:

– state variables: describe evolution of  state or a single thread of  execution in a concurrent system

– tokens: describes a procedure which instantiates and maintains state

– timepoints: instances of  time when a significant change in state is likely to occur

– constraints: explicit representation of  relationships between entities within and across timelines 
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What is Constraint-Based Planning?
• CBP systematizes the use of  

– relationships (real or implied)

– provides a sound mathematical framework for representing axiomatic equations

– encapsulates a systematic approach to evolving state

• State-Variable based approaches further decompose the planning problem

– timelines describe state evolution for pre-specified sub-systems

– by merging the representations of  time with state-variables we can use systematic representations to depict state 
evolution realistically while still being discrete

• The essential elements of  timeline based CBP are:

– state variables: describe evolution of  state or a single thread of  execution in a concurrent system

– tokens: describes a procedure which instantiates and maintains state

– timepoints: instances of  time when a significant change in state is likely to occur

– constraints: explicit representation of  relationships between entities within and across timelines 
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What is Constraint-Based Planning?
• CBP systematizes the use of  

– relationships (real or implied)

– provides a sound mathematical framework for representing axiomatic equations

– encapsulates a systematic approach to evolving state

• State-Variable based approaches further decompose the planning problem

– timelines describe state evolution for pre-specified sub-systems

– by merging the representations of  time with state-variables we can use systematic representations to depict state 
evolution realistically while still being discrete

• The essential elements of  timeline based CBP are:

– state variables: describe evolution of  state or a single thread of  execution in a concurrent system

– tokens: describes a procedure which instantiates and maintains state

– timepoints: instances of  time when a significant change in state is likely to occur

– constraints: explicit representation of  relationships between entities within and across timelines 
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How does one build Timelines?
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Plan Formulation Example (NASA’s Deep Space 1)
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What about modeling?
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class Front extends 
AgentTimeline {
  predicate None {}

  predicate Info {
    float temperature;
    DEPTH depth;
    DEPTH mapDepth;
    eq(duration, 1);
  }

  predicate Begin {}

  predicate Search {
    float temperature;
    DEPTH depth;
    NORTHING xTo;
    EASTING yTo;
    bool frontDetected;
    NORTHING xFront;
    EASTING yFront;
  }
  predicate Map {
    NORTHING xFront;
    EASTING yFront;
    float   gulpSeparation;
  }
 }

What about modeling?

Front::Map {
  float distanceToFrom, distanceToTo;
  bool closeToFrom, closeToTo;
  float x1, y1, x2, y2;

  contained_by(FrontTracker.Track trk);

  calcDistance(distanceToFrom, trk.xFrom, trk.yFrom, xFront, yFron
  testLEQ(closeToFrom, distanceToFrom, trk.moveIncrement);
  
  calcDistance(distanceToTo, trk.xTo, trk.yTo, xFront, yFront);
  testLEQ(closeToTo, distanceToTo, trk.moveIncrement);

  if( closeToFrom==false ) {
    float ratioFrom, dxToFrom, dyToFrom, dx2, dy2;
    
    addEq(trk.xFrom, dxToFrom, xFront);
    addEq(trk.yFrom, dyToFrom, yFront);
    addEq(x2, dx2, xFront);
    addEq(y2, dy2, yFront);
    mulEq(trk.moveIncrement, ratioFrom, distanceToFrom);
    mulEq(dx2, ratioFrom, dxToFrom);
    mulEq(dy2, ratioFrom, dyToFrom);
  }
  if( closeToFrom==true ) {
    eq(x2, trk.xFrom);
    eq(y2, trk.yFrom);
  }
..............

Friday, December 10, 2010

Autonomy: Outer to Inner Space          Kanna Rajan, MBARI 2010

class Front extends 
AgentTimeline {
  predicate None {}

  predicate Info {
    float temperature;
    DEPTH depth;
    DEPTH mapDepth;
    eq(duration, 1);
  }

  predicate Begin {}

  predicate Search {
    float temperature;
    DEPTH depth;
    NORTHING xTo;
    EASTING yTo;
    bool frontDetected;
    NORTHING xFront;
    EASTING yFront;
  }
  predicate Map {
    NORTHING xFront;
    EASTING yFront;
    float   gulpSeparation;
  }
 }

Allen Algebra*

What about modeling?

Front::Map {
  float distanceToFrom, distanceToTo;
  bool closeToFrom, closeToTo;
  float x1, y1, x2, y2;

  contained_by(FrontTracker.Track trk);

  calcDistance(distanceToFrom, trk.xFrom, trk.yFrom, xFront, yFron
  testLEQ(closeToFrom, distanceToFrom, trk.moveIncrement);
  
  calcDistance(distanceToTo, trk.xTo, trk.yTo, xFront, yFront);
  testLEQ(closeToTo, distanceToTo, trk.moveIncrement);

  if( closeToFrom==false ) {
    float ratioFrom, dxToFrom, dyToFrom, dx2, dy2;
    
    addEq(trk.xFrom, dxToFrom, xFront);
    addEq(trk.yFrom, dyToFrom, yFront);
    addEq(x2, dx2, xFront);
    addEq(y2, dy2, yFront);
    mulEq(trk.moveIncrement, ratioFrom, distanceToFrom);
    mulEq(dx2, ratioFrom, dxToFrom);
    mulEq(dy2, ratioFrom, dyToFrom);
  }
  if( closeToFrom==true ) {
    eq(x2, trk.xFrom);
    eq(y2, trk.yFrom);
  }
..............

*J. Allen, “Towards a General Theory of  Action and Time,” Artificial Intelligence, vol. 23(2), p. 123154, 1984 
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So how does one execute a (temporal) plan?
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So how does one execute a (temporal) plan?
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