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Model: Intuitive Definition

Real Boeing 787

Desktop Model of Boeing 787

• Captures certain desirable characteristics 
of the physical system (Geometric 
proportions, in the case of Desktop model)

• Provides a more easily manipulatable
form for conceptualization, experimentation 
and design

• Desktop model Scaling Law: d
200

1
dm 

Flight Simulator Model of 
Boeing 787
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Mathematical Models…

Symbolic Expressions, Data Tables and Computer Programs that describe 
certain features of a physical system can be considered as Mathematical 
Models

280w)6w( 
'20length,'14width 

Model:

maF Model:

Since acceleration a is the time rate of change of velocity v, and v is the rate of 
change of displacement x, this model can also be written as:

vm
dt

dv
mF  xm

dt

xd
mF

2
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Word Problems- The basis for building all Mathematical Models

1. Joe wants to build a rectangular deck which is 6 feet longer than it is wide, 
covering an area of 280 feet. What are the dimensions of his deck?

2. Newton’s Second Law: The product of the acceleration a experienced 
by the body with its mass m, is equal to the applied force F.

Define: Width W, Length L, From Geometry: Area = Length×Width
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Control Systems Engineering is based on “Input-Output” Models, 
describing the relationship between Causes we can “choose” and the 
Effects we are interested in.

Mathematical Models

Volume Control

(Input)
Sound(Output)

Carrier Frequency, Temperature, 

Fan speed, Current in the devices…

(Internal “States” of the Radio)

Mathematical model relates the inputs to the system states, and the 
system states to the outputs.

- Static Model: The system output response to inputs and starting values of the 
states do not depend on time

- Dynamic Model: The system response to inputs and starting values of the 
states depend on time



7

Steps in Mathematical Modeling

 Identify Inputs, Outputs and States

 Identify the Physical Laws/ Operating 
Principles/ Heuristics(such as analogies)
that relate the Inputs, States and the 
Outputs

 Translate these into Logical / Algebraic / 
Differential/Difference expressions 

 Convert to Manipulatable Form 

 Analyze the system
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Static Models: Used in “Slow” Control Problems

 Logic Models
 Assembled using “And, Or, Not, Exclusive Or, Nand, Nor” Logic

 Described by “Truth Tables”

 “Fuzzy” Logic Models
 Assembled from “Membership” functions

 Inputs are classified as belonging to different classes to certain 
degrees: Input is 80% Cold, 15% Warm, 5% Hot...(Fuzzification)

 If-then-else conditions are used to select from a set of fuzzy logic 
rules: If input is 80% Cold, then heating coil must be at 90%, or if 
input is 15% Warm, heating coil must be at 50%...

 A rule combining algorithm is used to arrive at a final decision on 
the control action

 Algebraic Models (Generally derived from experimental data)

 Inputs and outputs are related through algebraic functions

A

B

D

G

C
E F

H

 axtanhy  For large a, x≠0, Approximates a switch: 

if x>0, y=1else  if x<0, y=-1

A B C D E F G H
0 0 0 0 0 1 1 1

1 0 0 1 1 0 0 0

0 1 0 1 1 0 1 0

1 1 1 1 1 0 1 0

0 0 0 0 0 1 0 0
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Dynamic Models: Spring-Mass-Damper

 Input: Force, Output: Displacement, States: Displacement, Velocity

 Physical Laws: The resistance to a longitudinal force applied at the tip 
of a spring-mass-damper assembly is the sum of the product of spring 
stiffness and spring deflection, the product of viscous damping 
coefficient and the rate of spring deflection, and the inertia.

2

2

dt

xd
m

dt

dx
bkxF 

x

F

Spring stiffness: K
Damping Coefficient: B

Resistive
Force

Displacement: x, rate: dx/dt, acceleration: d2x/dt2, force: F

Mass: m

Fxbkxxm  

2

2

dt

xd
mInertia:

Resistance 
from Spring:

kx
Resistance from 
Damper: dt

dx
b

Putting it all together:

More Concisely:

“Linear” differential equation, with forcing function (input) F. 
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 Input: u, Outputs: x, y  

States:

Dynamic Models: An Aerospace Example

 Mercury Launch Vehicle in ascent 

Thrust T

XB

YB

XI

YI

Thrust 

Vector Angle u
l

 Resolve the forces in the XB, YB Coordinate     
System to XI, YI Coordinate system

  ,,y,y,x,x

lTuusinlTM

TuusinTFTucosTF YBXB





TucosTusinTF

gTgsinTucosTF

YI

XI





J

luT

m

Tu
y

m

gT
x 


 

J: Moment of 
Inertia about an 
axis through O 
perpendicular to 
the plane of the 
paper , m: vehicle 
mass

O

“Linear” differential equations, with forcing 
function (input) u. 

 Physical Laws: Newton’s (Euler’s) Law

 Newton’s (Euler’s) Law:

 Resolve the thrust in the XB, YB coordinate 
system
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Dynamic Models: A Passive Electric Circuit

Inductor
Symbol

Resistor

Battery

i

L

RV

 Input: Voltage V, Output: Current, State: Current, 

 Physical Laws: 

 The product of the rate of change of current 
through an inductor and its inductance is equal to 
the potential difference. 

 The potential difference across resistor is the 
product of the current through the resistor and its 
resistance. 

 Kirchoff’s voltage law

VRi
dt

di
L 

 RiV
L

1

dt

di
Or
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Dynamic Models: DC (PM) Motor

 Input: Voltage V, Output: Motor shaft position, States: Current, Motor speed, Motor shaft 
position  (we will assume perfect commutation)

 Physical Laws: 

 The product of the rate of change of current through an inductor and its inductance is 
equal to the potential difference; The potential difference across resistor is the product of 
the current through the resistor and its resistance; Kirchoff’s voltage law

 Back EMF is proportional to the motor speed (Lenz’s law/Faraday’s law of induction)

 Torque acting on the armature (rotor) is proportional to the field current

 Euler’s law: Angular acceleration is equal to the ratio of Torque and the moment of 
inertia

 Viscous friction in the bearings is proportional to the shaft speed

V
dt

d
kRi

dt

di
L v 




i L

R

V


Moment of 
inertia J

Back EMF 
constant kv







 




dt

d
Bik

J

1

J

T

dt

d
T2

2

  
vkRiV

L

1
i

   Bik
J

1
T
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Dynamic Models: Liquid Level in a Tank

 Input: Fluid inflow Qi, Output: Liquid level in the tank, State: Liquid level in the tank (Fluid out 
flow from the tank Q2 through the fixed orifice is assumed to be given, non-viscous liquid) is 
assumed to )

 Physical Laws: 

 Law of conservation of mass

 Bernoulli’s equation (conservation of energy)

 2i QQ
A

1
h Conservation of Mass:

Bernoulli’s Equation:

2

2
21

2
1 p

g2

v
h

p

g2

v


211 pp,0v 
gh2v2 

2o2 vACQ Outflow:

Valve Discharge 
Coefficient: C

 gh2ACQ
A

1
h oi 

System Model (Nonlinear)
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Dynamic Models: State Variable Description

 So far, the dynamic models were given in the form of differential equations. 

 Any nth Order Differential Equation can be expressed by n-first order differential equations. 

x
m

b
x

m

k

m

F
x  Second-Order Ordinary Differential Equation 

describing the spring-mass-damper

Let: xx,xxxx,xx 22121  

The  System can be expressed by: 21221 x
m

b
x

m

k

m

F
x,xx  

 If the system is linear (Products and Powers of the Dependent Variables {outputs or 
states} do not appear in the model), the set of first-order differential equations can be 
represented in Vector-Matrix form

F
m/1

0

x

x

m/bm/k

10

x

x

2

1

2
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1

x

x
01y

 In addition to being compact, the system model in this form can be readily 
manipulated using linear algebra. Software packages such a Scilab©, MATLAB®
provide numerical methods to carryout these operations
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Dynamic Models: Transfer Functions

 Transfer Function is another representation of the dynamic model, useful for analysis 
and design 

)t(u5x2x3x  
 Given a differential equation with all initial conditions set to zero:

 Use the Laplace (or Heaviside-Laplace) Transform to change the independent 
variable from time t to the complex variable s=+j

 
s

1
)t(uL Unit Step Function:









0t,0

0t,1
)t(u

Exponential Function: tae  
as

1
eL ta




Monomial in Time: 0n,t n   
1n

n

s

!n
tL 

Sine Function: tsin  
22s

tsinL
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0
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Dynamic Models: Transfer Functions

 Transform the differential equation :

2s3s

5

)s(U

)s(X
2 

 After algebraic manipulations:

)s(U5)s(X2)s(sX3)s(Xs2 

Transfer Function

 The Transfer Function form of the dynamic model can be readily converted to the 
State Variable form and vice versa.

Differentiation:

Integration:

)0(f...)0(fs)0(fs)s(Fs
dt

)t(fd
L )1n()1(2n1nn

n

n
 













n

t

0

t

0
1n1

t

0 s

)s(F
dt.....dtd)(f.....L

1 2 n









    

)t(u5x2x3x  

To the form:
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Heaviside-Laplace Transforms

  dte)t(f)t(fL)s(F
0

ts




http://www-gap.dcs.st-and.ac.uk/~history/Mathematicians/Heaviside.html

Oliver Heaviside (1850-1925) Piere-Simon Laplace (1749-1827)

  dte)t(f)t(fL)s(F ts
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Dynamic Models: Solutions

 The dynamic models are given in the form of differential equations. 

 Linear ODE Can be “Solved” for any given input and any set of initial 
conditions using Laplace (Heaviside) Transforms

    2s1ss

ss5

2s3ss

ss5
)s(X

2

2

2










)t(u5x2x3x  

Linear,

Time-Invariant

ODE

H-L

Transform

H-L

Transform
Algebraic

Manipulations

Algebraic

Manipulations
Inverse

Transform

Inverse

Transform

Solution

2)0(x,1)0(x  
)2s(2

3

1s

5

s2

5
)s(X







t2t e
2

3
e5

2

5
)t(x  

 This process is difficult if the inputs have complicated forms, and impossible if the 
dynamic models are nonlinear (as in the case of the liquid level example)

 Numerical solutions can be obtained using computers 
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Dynamic Models: Numerical Solution (Simulation)

 Numerical integration techniques are used to set up computer Simulations. 

 Euler Integration Example

 Some Popular Numerical Integration Techniques:

 Euler’s Method

 Runge-Kutta Methods 

 Adams-Bashforth Integration Formulas

ubxax 3  x(0), u(t) Given

 Use Finite Difference approximation to the derivative:

t

)t(x)tt(x
x




 For “small” t

 Rewrite the differential equation as a “Difference Equation”:

)t(ub)t(xa
t

)t(x)tt(x 3 


  )t(ub)t(xat)t(x)tt(x 3 Or

Recursive “Marching” formula
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Dynamic Models: Numerical Solution (Simulation)

 If due care is exercised in the selection t, this technique can be used to simulate 
most dynamic systems

 Runge-Kutta and Adams-Bashforth techniques can deliver higher accuracy for the 
same t. However, the computational effort will be much higher.

 A “For – Next” loop can be written to evaluate the recursive formula for a desired 
time interval

0t

t,t),t(u),0(x f





StopStop

ttt 

 )t(ub)t(xat)t(x)tt(x 3 

?tt f
Yes

No
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Dynamic Models: Discrete Time

 If the difference equations describing the dynamic model is linear, we can use “z”
transforms to obtain solutions (similar to the H-L transform in continuous time)

 Loosely speaking, the idea is to use the symbol z to denote a “Unit Time 
Advance”, and z-1 to denote a “Unit Time Delay”. Consider an example, with initial 
condition x(0) = 0:

 We “Converted” a differential equation to a “Difference Equation” by assuming that the 
time can be “Sliced” into “Discrete Chunks”.

 Effectively, we converted “Continuous Time” into “Discrete Time”.

 Since Digital Computers operate based on a “Clock”, dynamic models 
based on discrete time are more natural representations.

    )t(utb)t(xta1)t(ub)t(xat)t(x)tt(x 

Let   tb,ta1  )t(u)t(x)tt(x 

z Transform:     )z(Uz)z(XzzX)z(U)z(XzXz 11  

 
1

1

z1

z

)z(U

zX







Discrete-time Transfer Function:

Note: Difference equations can also be represented in State Variable form.
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Dynamic Models: Discrete-Time Systems

 Just as in the case of Continuous Time linear differential equations,

 Linear Difference Equations can be “Solved” for any given input and any 
set of initial conditions using the z-Transforms

2z3z

z
)z(X

2 


0)t(x2)tt(x3)t2t(x 

Linear,

Time-Invariant

Difference Equation

z

Transform

z

Transform
Algebraic

Manipulations

Algebraic

Manipulations
Inverse

Transform

Inverse

Transform

Solution

1)1(x,0)0(x 
11 z21

1

1z

1
)z(X  






...,2,1,0k,)2()1()k(x kk 

 This process is difficult if the inputs have complicated forms, or impossible if the 
dynamic models are nonlinear

 Numerical solutions can always be obtained using computers 
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Discrete Time Model: Dynamic Model of a Portfolio
































































i

i

i

i

i

i

1i

1i
1

P

m)(1
Pm)(11

S

C

d)(10

0r)(1

S
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A cash/security model is given by:

Ci Cash available on day i

Si Number of security shares held on day i

Pi Security price on day i

i Buy command on day i

i Sell command on day i

r Interest rate on cash holdings

d Dividend rate on security holdings

m Transaction commission

 Input: Buy/Sell securities, State: Cash position, securities position, Output: Portfolio 
value

 Facts (Laws): Cash in the portfolio earns a daily interest rate of r, the securities 
provide a daily dividend rate of d. Every security buy/sell decision involves a 
commission rate of m
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Discrete-Time Dynamic Systems: Finite 
Impulse Response Representation

 Transfer functions such as:

 
1

1

z5.01

z6.02

)z(U

zX









are called Infinite Impulse Response (IIR) systems because the effect of an input impulse 
will persist in the system for infinite time (theoretically)

 Engineers in the Signal Processing area are fond of using “Finite Impulse Response” (FIR) 
Transfer Functions due to their interesting properties. An IIR Transfer Function can be 
converted to an FIR Transfer Function using long division (Numerical methods are also 
available)

1z5.01 
1z6.02 

1z2 

...z05.0z1.0z2.0z4.0z8.0z6.12 654321  

1z6.1 
21 z8.0z6.1  

2z8.0 

...z4.0z8.0 32  



 
...z05.0z1.0z2.0z4.0z8.0z6.12

)z(U

zX 654321  

Truncate to retain any desired number of terms to 
obtain the FIR Transfer Function of the system
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Discrete-Time, Discrete-State Dynamic Models

 We “Converted” a differential equation to a “Difference Equation” by assuming that the 
time can be “Sliced” into “Discrete Chunks”.

)t(u)t(x)tt(xbuaxx
...t2,t,0t






 In many applications, the model will have to be evaluated on computers with limited 
precision.  In those cases, the dependent variable x as well as the input u will be 
“Quantized” into few, finite number of levels

Quantization 
Function

m,...5,4,3,2,1n,xn 

 The dynamic model can only transition between these “Finite” states. 
A discrete time equation can still be written, but the variables will be 
integers, and the process of addition and multiplication will be
governed by the rules of integer arithmetic.

 Such dynamic models are called “Finite State Machines” and their 
behavior is generally characterized by “State (transition) Diagrams”, and 
by Truth Tables in the case of systems governed by Binary (two state) 
arithmetic.

j,...5,4,3,2,1i,ui 
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Discrete-Time, Discrete-State Models

 An example of a finite state machine

 State Diagram

1,0u4,3,2,1,0x),k(u)k(x)1k(x 

3)0(x 

0 1 2 3 4

0

1 1 1 1

4)1(x 
1)0(u 
1)1(u 

0)2(x  1)2(u 



 If the machine is linear, D-Transform methods can be used to investigate 
its characteristics without exhaustive enumeration

1
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Summary

Presented a birds-eye-view of mathematical modeling 
process. Discussed:

Static models: Logic/Fuzzy Logic, Algebraic

Dynamic models: Spring-mass-damper, rocket, passive 
electric circuit, DC motor, liquid level in a tank 

State variable and transfer function representations, 
solution using H-L transform, numerical solution 
methodology

Discrete-time model, transfer functions based on z-
transform, Finite Impulse Response model

Finite state machine
We did not discuss: Models described by partial 
differential/difference equations, stochastic models.
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Session 1: Mathematical Models

Q & A
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Program

Simulation with Software Tools
Elliot English, Dr. Martin Aalund, Dr. Karl Mathia

01:40 – 2:30pmSession 5

Applications of Hardware-in-the-Loop Simulators
Christoph Wimmer, National Instruments

12:40 – 01:30pmSession 4

Sandwiches, sodas, discussions and product demos12:00 – 12:40pmLunch

Visualization and Virtual Environments
Dr. Hadi Aggoune, Cogswell Polytech. College

11:10 – 12:00amSession 3

System Identification - Theory and Practice
Dr. Mark B. Tischler, Ames Research Center

10:10 – 11:00amSession 2

Mathematical models of dynamical systems
Dr. P.K. Menon, Optimal Synthesis

09:10 – 10:00amSession 1

Coffee and bagels, Seminar kickoff at 9:00am08:45 – 09:10amWelcome
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