Seminar

Modeling and Simulation of Dynamical Systems

Presented by the IEEE Control Systems Society Santa Clara Valley

Sunnyvale, 5 February 2011

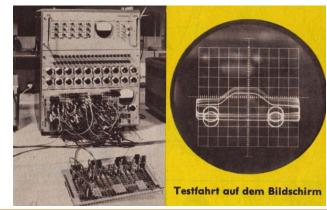
Program

Welcome	08:45 – 09:10am	Coffee and bagels, Seminar kickoff at 9:00am
Session 1	09:10 – 10:00am	Mathematical models of dynamical systems Dr. P.K. Menon, Optimal Synthesis
Session 2	10:10 – 11:00am	System Identification - Theory and Practice Dr. Mark B. Tischler, Ames Research Center
Session 3	11:10 – 12:00am	Visualization and Virtual Environments Dr. Hadi Aggoune, Cogswell Polytech. College
Lunch	12:00 – 12:40pm	Sandwiches, sodas, discussions and product demos
Session 4	12:40 – 01:30pm	Applications of Hardware-in-the-Loop Simulators Christoph Wimmer, National Instruments
Session 5	01:40 – 2:30pm	Simulation with Software Tools Elliot English, Dr. Martin Aalund, Dr. Karl Mathia

Session 5

Simulation Software Tools


Martin Aalund


Historical Simulation Tools

Historically dynamical systems were often simulated with:

- Scaled Models
 - Such as the Antikythera mechanism used by the Greeks to calculate astronomical positions in 100 BC
- Mechanical Analogue Computers
 - French physicist Gaspard-Gustave Coriolis designed a mechanical device to integrate differential equations of the first order in 1839
 - Differential Analyzers such as the Thomson Disk and Sphere analyzer used to simulate tides
- Simplified Systems Lumped models
 - Spring as Capacitor
 - Damper as Resistor
 - Inertia as Inductors
- Analog Computers (Gained Popularity in 1940s)
 - Use Active circuits integrate, differentiate and scale signals.
 - Can model complex electro mechanical systems.
 - Real time operation and reprogrammable

From Wikipedia

Current State of the Art

- Analog Solutions were
 - Hard to setup,
 - problem size limited,
 - must carefully scale problems,
 - Have limited dynamic range
- Advent of Modern Computers and Advanced Software have replaced analog computers in most cases
 - Allow for unlimited size of model
 - Reusable models
 - Large choice of tools available
 - Domain Specific
 - Commercial
 - Free

Simulation SW (Open/Free)

Octave

http://www.gnu.org/software/octave/

- Matlab like language
- Numerical Computations
- Linear and Non-linear solvers
- SciLab

http://www.scilab.org/products/scilab/features

- 2d and 3d Visualization
- Numerical Computation
- Data Analysis
- Xcos: hybrid dynamic systems modeler and simulator
- Maxima <u>http://maxima.sourceforge.net/</u>
 - manipulation of symbolic and numerical expressions
- Euler Math Toolbox <u>http://eumat.sourceforge.net/</u>
 - Built on Maxima
 - Provides notebook style interface
 - Advanced Graphics, Numerical functions
- Sage

http://www.sagemath.org/

- Open source alternative to Magma, Maple, Mathematica and Matlab.
- Web Based Interface

Simulation SW (commercial)

- Matchcad <u>http://www.ptc.com/products/mathcad/</u>
 Visual Interface WYSIWYG
 Symbolic and numerical simulations
 MapleSim <u>http://www.maplesoft.com/products/maplesim/#</u>
 Based on Maple Symbolic Computation technology
 Multi-Domain Systems
 Matlab/Simulink <u>http://www.mathworks.com/products/simulink/</u>
 Powerful modeling and simulation capability
 Can generate code based on models
 Anykode/Marilou <u>http://www.anykode.com/marilou.php</u>
 Modeling and simulation tools for mobile robotics
- Microsoft Robotics Studio <u>http://www.microsoft.com/robotics/</u>
 - Simulations and development environment
 - Contains Physics models for Gravity
- PHYSX

http://www.nvidia.com/object/physx_new.html

Free commercial Physics engine from NVIDIA

MathCad Demo

Can Solve Equations Symbolically

 $x^2 - 3x + 2$ Can find the derivative by highlighting variable

Next we can solve for the value.

 $f(x) \rightarrow x^2 - 3 \cdot x + 2$

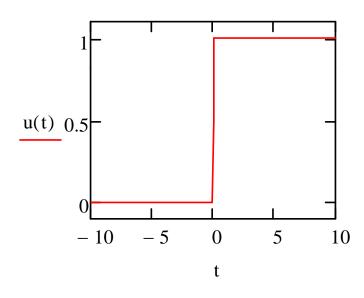
we can also define a function

 $f(x) := \begin{pmatrix} 2 \\ x^2 - 3x + 2 \end{pmatrix}$ Press Ctr period to insert symbolic equal sign and factor

Can also differentiate by hitting ? or CTR Shit /

 $\frac{d}{dx}f(x) \rightarrow 2 \cdot x - 3$

Press Crtl Shift period and type keyword


Symbolic					×
\rightarrow	$\bullet \rightarrow$	Modifiers	float	rectangular	assume
solve	simplify	substitute	factor	expand	coeffs
collect	series	parfrac	fourier	laplace	ztrans
invfourier	invlaplace	invztrans	$M^{T} \rightarrow$	$M^{-1} \rightarrow$	m →
explicit	combine	confrac	rewrite		

Demo Continued

Can define functions and plot them

 $u(t) := \Phi(t)$

we can use built in functions to find the laplace transform

$$U(s) := u(t) \text{ laplace } \rightarrow \frac{1}{s}$$

We can define a function in s domain and do an inverse transform

$$H(s) := \frac{\omega}{s^2 + \omega^2}$$

$$\operatorname{H}(\mathbf{t}) := \operatorname{H}(\mathbf{s}) \text{ invlaplace } \rightarrow \sin(3 \cdot \mathbf{t})$$

Other Open SW for simulation

FreeMat

http://freemat.sourceforge.net/

- JMathLib Java Clone http://www.jmathlib.de/
 - Octave, SciLab and Matlab functionality
- Mathnium <u>http://www.mathnium.com/</u>
 - Numerical Computing, Data Analysis, and Graphics
- TeLa <u>http://www.geo.fmi.fi/prog/tela.html</u>
- Algae <u>http://algae.sourceforge.net/</u>
 - Language For Large Systems
- Lush <u>http://lush.sourceforge.net/</u>
 - Lisp Based for Large scale numerical and graphical applications
- Yorick

http://yorick.sourceforge.net/

Rlab

http://rlab.sourceforge.net/

http://www.python.org/

- Python Extensions
 - NumPy
 http://sourceforge.net/projects/numpy/
 - SciPy <u>http://www.scipy.org/</u>
- The R Project <u>http://www.r-project.org/</u>
 - Statistical Computing

Other Open SW for simulation

Delta3D

- http://www.delta3d.org/
- 3D visualization and simulations
- Dynamic Engine based on ODE
- ODE<u>http://ode.org/</u>
 - Open Dynamics Engine
 - Simulation of Ridged body dynamics
- Physics Abstraction Layer

http://www.adrianboeing.com/pal/index.html

- Fluids
- Dynamics
- Actuators, Sensor

Sponsors

NATIONAL INSTRUMENTS http://www.ni.com

Applimotion, Inc.

http://www.applimotion.com

http://www.willowgarage.com

http://www.cogswell.edu

http://www.asme.org

