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AFDD Flight Control Technology Group
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Upgrades of Army fielded systems: AH64, CH47F, UH-60 FBW
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System Identification

Applications:

+ Improved handling qualities of new and current aircraft

+ UAV control laws with any level of autonomy or cooperation

+ Advanced system control modes ( INav&FC) and displays (HMDs)
* Hardware-in-the-loop (HIL) simulation and on-board-monitoring

+ Basic launch platform for evaluating advanced concepts

=> Successfully applied to CH-47F DAFCS, AH-64D MCLAWS, CH-53X, UH-60M,
ARH, Fire Scout, improving accuracy and speed of design 4




AFDD Design Tool Application

Background
+ What is aircraft system identification?

- Determination of a mathematical description of aircraft dynamic behavior
from measured aircraft motion

Assumptions Model Simulation |—— Predicted
Aircraft Motion

Physical

Understanding [’ Model . System | Measured

Identification Aircraft Motion

+ What are system identification results used for?

Wind tunnel vs. flight test measured characteristics
Simulation model development / validation
Subsystem hardware/software modeling

HQ specification compliance

Optimization of automatic flight control systems

* What are the special problems that arise in applying system ID to aircraft?

- High level of measurement noise - High degree of inter-axis coupling
- High order of dynamical system - Unstable vehicle dynamics 6




Nonparametric and Parametric Modeling
* Nonparametric modeling: no model structure or order is assumed
- frequency-response (frequency-domain)
Bode plot format: Log-mag (db) and phase (deg) of input-to-output ratio vs. freq.
Applications: bandwidth, time-delay, pilot-in-the-loop analysis,
math model validation, parametric model structure and order
* Parametric modeling: model order and structure must be assumed
- transfer-function: pole-zero representation of individual freq. response pairs

- state-space description: aerodynamic stability and control derivative
representation

Applications: control system design, wind-tunnel and math model validation

How will SID Support the Development Process?




Frequency-Response Method for System ID

Frequency Data Compatibility Multi-variable
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. e . Freq.-Response +
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Sensitivity Analysis
&
v Model Structure
Dissimilar flight Determination
data not used in Verification
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L——»] APPLICATIONS: FCS design, Handling-Qualities, Simulation validation 9

Key Features of Frequency-Response Approach
for System Identification

* Frequency-response calculation eliminates uncorrelated process
and output measurement noise effects:

- Gyy
Frequency-response: H=_"~>

XX

» Parametric models are obtained by matching the nonparametric
frequency-response in frequency-range where the data is most accurate:

2 [Gyyl
Coherence: Y xy = GxxX)(,;‘yy

- Time delays can be identified directly:

o = -0T
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Frequency-Response Method Features (Cont)

* Number of unknowns greatly reduced relative to time-domain solution
x = Fx + Gu(t-t) + bias
y = Hx + ju(t-t) + yref

T(s) = (H[sL-F]'G +j) e ™

6 dof model:

number of unknowns in F, G, tau = 64

time-domain soln: 8 bias terms + ( 9 outputs x 4 records ) = 44 extra terms
+ Data points in cost function greatly reduced relative to time-domain soln

=> Well suited to identification of coupled rigid body/structural dynamics

+ Applicable to identification of unstable systems
=> TD integration errors make this very difficult for long data records.

Frequency-Domain SID Methods are Especially Well-Suited
to Flight Control System Development and Validation

Well suited to complex problems:
— Multiple overlapping modes, unstable systems, low signal-to-noise

+ Frequency-responses are nonparametric characterizations obtained without first
determining state-space model structure

Broken-loop & closed-loop responses provide important “paper trail”

Feedback stability and noise amplification determined from broken-loop
frequency-response => crossover freq., gain/phase margins, PSD

Command tracking based on end-to-end closed-loop response
=> bandwidth, phase delay, and lower-order equiv. systems

Payoffs:
* HQ/AFCS/Vib testing accounts for 37% of all flight testing

(Ref. Crawford, “Potential for Enhancing the Rotorcraft Development / Qualification Process
using System Identification,” RTO SCI Symposium on System Identification for Integrated Aircraft
Development and Flight Testing,” 5-7 May 1998, Madrid, Spain.)

* Modern FBW flight test programs cost approx. $50K/flight-hr
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CIFER®
Comprehensive Identification from FrEquency Responses

Key features of the CIFER® approach are:
+ Integrated databasing and screen-driven commands

+ Unique ID and analysis algorithms highly-exercised on many flight projects
(r/c and fixed-wing)

+ MIMO frequency-response solution
+ Highly-flexible and interactive definition of ID model structures.
+ Very reliable, systematic, and integrated model structure procedure

* Integrated model verification in the time-domain
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Frequency-Domain SID Maneuvers

PILOT INPUT

+ Identification maneuver: Frequency-Sweep
- Well suited to freq.-domain SID
- Even distribution of spectral content
- Input and output are roughly symmetric UL L W
- Frequency-range is strictly controlled during test
- Very safe and well established method.

Tt pILOT INPUT

+ Verification maneuver: Doublet
- Characteristic of realistic pilot input i-

- Symmetric response keeps aircraft within flight
condition used in the SID tests

- Different form than sweeps - guards against
overtuning of identification

4a-14




Instrumentation Requirements for Aircraft Application

+ Sample rate:
— All signals at same sample rate and filtering
— Desired rate is 25x modes of interest

» 50 hz for rigid body response
» 100 hz for structural response to 4 hz

+ Piloted control inputs

+ Aerosurface deflections
+  SAS command inputs

+ Aircraft response:

— Alpha, beta

- Pqr
— Phi, theta

- ax, ay, az

« Structural response:
— Wing tip accelerometers
— Fuselage accelerometers
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Overlapped Averaging

Chirp z Transform allows FFT over freq. Range of interest with flexibility and
high resolution

Random error is inversely proportional to sqrt of # of windows

16




Importance of Multi-Input Solution for Coupled System ID
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COMPOSITE Window Especially Important
for Structural Response ID
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Frequency-Response Matching Procedure

* The state-space model is formulated in general as:

M,x = F_ x + G_u
y =H_ x+ jyu

The elements of M, . F, ., G, H,, j. are the unknown s&c derivatives
=> some elements may be known from physical considerations or TF models

* Taking Laplace transform:

-1
T, (s)=H,[sI-M.F.] MaG, +ij.

- Incorporate a matrix of time delay functions T_(s) and eliminate jn by
allowing H,, to be a function of s:

T,(8) = Hy(s) [ST- Mo Fi ] Mok Gt (9)

3b-20




Frequency-Response Cost Function

The unknown parameters (state-space matrices) are determined by minimizing
the
weighted cost function J:

JO) = % sT(oon,@)) We(w,,0)

n=1

w,, 0,,..., o, : freq. points for each input/output pair; range is selected based
on individual range of good coherence and overall applicability of model structure

e : vector of magnitude and phase errors between the identified MISO (composite)
frequency-responses T(s) and the model responses T, (s)

W: weighting function at each freq. and for each FR pair; comprised of:
+ relative magnitude / phase weighting (nominal: 7.57 deg: 1dB)

+ coherence weighting

=> Nonlinear minimization using Secant pattern search to find (local) minimum of J
3b-21

Stability and Control Derivative Model ID
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XV-15 Tilt-Rotor Identification Results

(Hover)
x = Fx + Gu
y = Hx + ju
F-matrix G-matrix
AXVMOD4 XV'NMOD4

Derivative | Param Value TC.R. (%) Derivative | Param Value | C.R. (%)
Yv -0.1102 6.271 Y, -0.04584 5.925
Y, 1422 12.46 Y. 0.000 +
Y, 0.000 + Ls, -0.06094 3.039
G 3207 ] s Ly, 0.000 +
Ly -3.775E-03 6.084 N;, 5.909E-03 4.802
L,, -0.2775 15.64 Ns. 0.01238 4.650
L. 08726 13.17 Tait 0.000
Ny 6.337E-04 7425 Trud 0.000
N, 0.02914 30.20
N- 0.000+ | ..
Kin 1.000F | ...

+ Eliminated during model structure determination
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Key Roles of CIFER System ID
for Flight Simulation
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=> Perceptual fidelity: end-to-end frequency response
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Validation of Simulator Visual and Motion Systems
(VMS, Ames)

Visual System Response
Includes McFarland Compensation
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Component Type Model
(GenHel)

TAIL ROTOR

Thrust, Torque ™, /=
f

4 RIGID BLADES
Flapping, Lagging, Rotor speed DOF
Lag Dampers

Yawed flow

Blade element aerodynamics
Pitt/Peters Inflow

Rotor downwash on
empennage and tail rotor

Fuselage blockage
and wake influences
on empennage

moving stabilator

v
<
e
Pt 4 =
A CONTROL SYSTEM

- * Control linkages
* Mixing
® Primary servos
* Sersors
. FPS

* SAS

DRIVE TRAIN

* T700-GE-700 Engine (X2)

* Hydromechanical control
unit (x2)

® Electrical control unit (X2)

& Owerrunning cluteh (X2)

® Bleed power

® Main and tail rotor
transmissions

Fig. 1. Sikorsky-Ames Gen Hel UH-60 real-time simulation model.
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Verification of Simulation Dynamics
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Figure 3: Feedback loops to maintain attitude during Figure 2: Typical computer generated frequency sweep input
frequency sweep including white noise

Ref: H. Mansur and M. Tischler, “An Empirical Correction Method for Improving Off-Axis Response in Flight Mechanics Helicopter Models,”  5q
AHS Journal Vol 43, No. 2, April 1998.

Comparison of Higher-Order Nonlinear Response with
6DOF Perturbation (LINMOD) Model
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Simulation Model Fidelity Assessment
(XV-15 cruise)
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Block Diagram for Full Envelope Simulation Model
from ID Results (1Al Bell 206)
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Full Envelope Simulation Model from ID Results
(1Al Bell 206)

208 roll doublot at haver - Flight data

06 roll doublet at hover - Model data
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- Efficient and very accurate approach to developing piloted/engineering sim

Simulink Model Validation

Full RASCAL control laws
Nonlinear actuators
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Extraction of linearized (perturbation) model from SIMULINK model using “LINMOD”
function is often inaccurate
=> control system design will not respond as expect in flight.




Computer Generated Sweep
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Validation of SAS Implementation and Linmod
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Actuator Response Determination from Bench Tests
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LOES Results From Sweep (M=1.9)

Cat B (gradual maneuvering)

Para EE/OF CIFER
meter Estimate Estimate
(Std. (% error)
Error)
by 0.353 0.380
0.011)  (5.8%)
bo 0.106 0.1072
(0.006) (12.32%)
a 0.932 1.040
(0.035) (11.61%)
ag 1.970 2.103
(0.0335)  (6.3%)
T, 0.194 0.192
0.014)  (6.9%)
1/, 0.30 0.28
Esp 0.33 0.36
©sp 1.40 1.45

Excellent agreement of results for
two ID approaches (OE and CIFER)
for this simple (rigid body) model

10.0

5.0
s pTﬁz

1.0

0.5

0.1

HQ Parameters
C,, =036
w,,=1.45r/s

T, =5.18rad

@splo,

Ref: E. A. Morelli, AIAA-2000-3902, AFM, Aug, 2000, Denver, Co.
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Time Delay Limits
Level 1: t<0.10
Level 2:t <0.20
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=> Level 2 handling-qualities
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Ref: Crawford, “Potential for Enhancing the Rotorcraft Development / Qualification Process using System Identification,” RTO SCI

-Stability margin:
direct calculation: f(s) / e(s)

*Handling-qualities: (1/s)[q(s)/d(s)]

—
INPUT l SENSORS
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LOOP SWITCH
S AFCS
%y\ AMPLIFER
¢ NOUTPUT SIGNAL
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Symposium on System Identification for Integrated Aircraft Development and Flight Testing,” 5-7 May 1998, Madrid, Spain.




MH53J Stability Margin Results
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XV-15 Flutter Envelope Clearance Testing
68 C. W. ACREE JR. AND M. B. TISCHLER 1. AIRCRAFT
SYMMETRIC SYMMETRIC
BEAM MODE By TORSION MODE
{
1, =848 Hz
£, =175%
ANTISYMMETRIC ANTISYMMETRIC
.. BEAMMODE 5 _._ TORSION MODE
1, =647 Hz f, =829 Hz
£ 20% L= 17%
Fig. 2 XV-15 wing modes, with structural frequencies and damping.
Ref: C. Acree, M. Tischler, “Identification of XV-15 Aeroelastic Model Using Frequency Sweeps,” Journal of Aircraft, Vol 26, No. 7, 22

July 1989, pg 667-674.




Modal Identification

INPUT: FLAPERONS —— FRESPID CALCULATIONS
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Fig.5 Input and output time histories for one symmetric flaperon sweep (beam mode) Fig. 6 Symmetric beam mode frequency response and fitted second-

order model.

*Sum and difference processing of symmetric measurements significantly improves signal/noise
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Coupled Rigid Body/Structural ID
(AV-8B Harrier)
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Demonstration of CIFER®
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