

System Identification - Theory and Practice

Dr. Mark B. Tischler Senior Scientist Us Army Aeroflightdynamics Directorate

Mr. Kenny K. Cheung Principal Flight Control Software Engineer University Affiliated Research Center (UARC) University of California, Santa Cruz

Outline

- AFDD flight control technology group and key design tools
- Background on system identification
- Key roles for flight simulation and flight control development
- Demonstration of CIFER®
- Questions

- UAV control laws with any level of autonomy or cooperation
- Advanced system control modes (INav&FC) and displays (HMDs)
- Hardware-in-the-loop (HIL) simulation and on-board-monitoring
- Basic launch platform for evaluating advanced concepts
- => Successfully applied to CH-47F DAFCS, AH-64D MCLAWS, CH-53X, UH-60M, ARH, Fire Scout, improving accuracy and speed of design

AFDD Design Tool Application

Background

- What is aircraft system identification?
- Determination of a mathematical description of aircraft dynamic behavior from measured aircraft motion

· What are system identification results used for?

- Wind tunnel vs. flight test measured characteristics
- Simulation model development / validation
- Subsystem hardware/software modeling
- HQ specification compliance
- Optimization of automatic flight control systems

What are the special problems that arise in applying system ID to aircraft?

- High level of measurement noise
- High order of dynamical system
- High degree of inter-axis coupling
- Unstable vehicle dynamics

Nonparametric and Parametric Modeling

- · Nonparametric modeling: no model structure or order is assumed
- frequency-response (frequency-domain)

Bode plot format: Log-mag (db) and phase (deg) of input-to-output ratio vs. freq.

Applications: bandwidth, time-delay, pilot-in-the-loop analysis, math model validation, parametric model structure and order

- · Parametric modeling: model order and structure must be assumed
- transfer-function: pole-zero representation of individual freq. response pairs
- state-space description: aerodynamic stability and control derivative representation

Applications: control system design, wind-tunnel and math model validation

7

How will SID Support the Development Process?

Frequency-Response Method Features (Cont)

Number of unknowns greatly reduced relative to time-domain solution

$$\dot{x} = Fx + Gu(t-\tau) + bias$$

 $y = Hx + ju(t-\tau) + yref$
 $T(s) = (H[sI-F]^{-1}G + j) e^{-\tau s}$

6 dof model:

number of unknowns in F, G, tau = 64 time-domain soln: 8 bias terms + (9 outputs x 4 records) = 44 extra terms

- Data points in cost function greatly reduced relative to time-domain soln
 => Well suited to identification of coupled rigid body/structural dynamics
- Applicable to identification of unstable systems
 => TD integration errors make this very difficult for long data records.

- Well suited to complex problems:
 - Multiple overlapping modes, unstable systems, low signal-to-noise
- Frequency-responses are nonparametric characterizations obtained without first determining state-space model structure
- Broken-loop & closed-loop responses provide important "paper trail"
- Feedback stability and noise amplification determined from broken-loop frequency-response => crossover freq., gain/phase margins, PSD
- Command tracking based on end-to-end closed-loop response
 => bandwidth, phase delay, and lower-order equiv. systems

Payoffs:

- * HQ/AFCS/Vib testing accounts for 37% of all flight testing
 - (Ref. Crawford, "Potential for Enhancing the Rotorcraft Development / Qualification Process using System Identification," RTO SCI Symposium on System Identification for Integrated Aircraft Development and Flight Testing," 5-7 May 1998, Madrid, Spain.)
- ***** Modern FBW flight test programs cost approx. **\$50K/flight-hr**

CIFER[®]

Comprehensive Identification from FrEquency Responses

Key features of the CIFER® approach are:

- Integrated databasing and screen-driven commands
- Unique ID and analysis algorithms highly-exercised on many flight projects (r/c and fixed-wing)
- MIMO frequency-response solution
- Highly-flexible and interactive definition of ID model structures.
- Very reliable, systematic, and integrated model structure procedure
- Integrated model verification in the time-domain

13

Frequency-Domain SID Maneuvers

- · Identification maneuver: Frequency-Sweep
 - Well suited to freq.-domain SID
 - Even distribution of spectral content
 - Input and output are roughly symmetric
 - Frequency-range is strictly controlled during test
 - Very safe and well established method.
- Verification maneuver: Doublet
 - Characteristic of realistic pilot input
 - Symmetric response keeps aircraft within flight condition used in the SID tests
 - Different form than sweeps guards against overtuning of identification

Instrumentation Requirements for Aircraft Application

- Sample rate:
 - All signals at same sample rate and filtering
 - Desired rate is 25x modes of interest
 - » 50 hz for rigid body response
 - » 100 hz for structural response to 4 hz
- Piloted control inputs
- Aerosurface deflections
- SAS command inputs
- Aircraft response:
 - Alpha, beta
 - p, q, r
 - Phi, theta
 - ax, ay, az
- Structural response:
 - Wing tip accelerometers
 - Fuselage accelerometers

Overlapped Averaging

- Chirp z Transform allows FFT over freq. Range of interest with flexibility and high resolution
- Random error is inversely proportional to sqrt of # of windows

$$\mathbf{\Gamma}_{\mathbf{m}}(\mathbf{s}) = \mathbf{H}_{\mathbf{m}}(\mathbf{s}) \left[\mathbf{s}\mathbf{I} - \mathbf{M}_{\mathbf{m}}^{-1}\mathbf{F}_{\mathbf{m}} \right]^{-1} \mathbf{M}_{\mathbf{m}}^{-1}\mathbf{G}_{\mathbf{m}} \boldsymbol{\tau}_{\mathbf{m}}(\mathbf{s})$$

3b-20

Frequency-Response Cost Function

The unknown parameters (state-space matrices) are determined by minimizing the

weighted cost function J:

$$\mathbf{J}(\boldsymbol{\Theta}) = \sum_{n=1}^{n_{\boldsymbol{\omega}}} \boldsymbol{\varepsilon}^{\mathrm{T}}(\boldsymbol{\omega}_{n}, \boldsymbol{\Theta}) \mathbf{W} \boldsymbol{\varepsilon}(\boldsymbol{\omega}_{n}, \boldsymbol{\Theta})$$

 ω_1 , ω_2 ,..., $\omega_{n_{\omega}}$: freq. points for each input/output pair; range is selected based on individual range of good coherence and overall applicability of model structure

e : vector of magnitude and phase errors between the identified MISO (composite) frequency-responses T(s) and the model responses $\ T_m\!(s)$

W: weighting function at each freq. and for each FR pair; comprised of:

- relative magnitude / phase weighting (nominal: 7.57 deg: 1dB)
- coherence weighting

=> Nonlinear minimization using Secant pattern search to find (local) minimum of J

XV-15 Tilt-Rotor Identification Results (Hover)

 $\dot{x} = Fx + Gu$ y = Hx + ju

	XVMOD4				
Derivative	Param Value	C.R. (%)			
Yv	-0.1102	6.271			
Y_{r}	-1.422	12.46			
Yr	0.000 +				
G	32.17 †				
Lv	-3.775E-03	6.084			
Lp	-0.2775	15.64			
Lr	-0.8726	13.17			
Nr	6.337E-04	7.425			
N _p	0.02914	30.20			
N _r	0.000 +				
Kin	1.000 t				

G	-	r	1a	IT	rı	X

	XVMOD4				
Derivative	Param Value	C.R. (%)			
Ye.	-0.04584	5.925			
Ys.	0.000 +				
Le.	-0.06094	3.039			
Le.	0.000 +				
No	5.909E-03	4.802			
Ns.	0.01238	4.650			
Tail	0.000				
Trud	0.000				

+ Eliminated during model structure determination

Fig. 1. Sikorsky-Ames Gen Hel UH-60 real-time simulation model.

Actuator Response Determination from Bench Tests

Sensor locations

MH53J Stability Margin Results

Ref: C. Acree, M. Tischler, "Identification of XV-15 Aeroelastic Model Using Frequency Sweeps," Journal of Aircraft, Vol 26, No. 7, July 1989, pg 667-674.

 $[\zeta_1 = 0.049; \omega_{n_1} = 19.4 \text{ Hz}] \quad [\zeta_2 = 0.031; \omega_{n_2} = 30.1 \text{ Hz}]$

Demonstration of CIFER®

Questions?