

# Developments in Characterization of Mobile Radio Propagation

May 19, 1999
IEEE Santa Clara Valley
Antennas & Propagation Society

Peter S. Rha, Ph.D. (psrha@sfsu.edu) San Francisco State University

1

# Messages to Drive Home with



### Nature of Complexity involved

- Almost Impossible for Analytical or Computer based Solutions
- Thus, Most are Empirical Models based Field Measurements
- Hard to Generalize and Scale based on Few Measurements
- Thus, New Measurements needed Whenever Variables Change
- Statistically Meaning Data takes Extensive Efforts and Costly

# Some Understanding of Mobile Radio Models

- What they are: Mostly Fading and Multi-path Effects
- Mostly Statistical in Nature
- Basic Underlying Theory is not so Hard

# Some Appreciation of Development Progress over the Years

- Key Contributions and Drivers
- Necessity of Models and Relations to Technology Evolution

### **Outline**



- Radio Propagation Fundamentals
  - Spectrum General Considerations
- Mobile Radio Propagation for Cellular/PCS
  - Objectives Dependencies Usage
  - Multi-Discipline Perspectives
- Channel Modeling Framework
  - Underlying Math Models & Reality •
  - Association with Technology Progress
- Channel Models
  - Key Contributions Fundamentals of Path Loss Models for Cellular Engineering • Models for MODEM Engineers Models •
     Attempt for Coherent & Comprehensive Consolidation of Models
- An Example of Recent Propagation Study
- What's Ahead in Mobile Radio Propagation

# **Frequency Spectrum**



| Freq. Band              | Designation | Services                                        | Designation:                          |
|-------------------------|-------------|-------------------------------------------------|---------------------------------------|
| 3-30 kHz                | VLF         | Navigation, sonar                               | <b>V</b> : Very,<br><b>L</b> : Low,   |
| 30-300 kHz              | LF          | Navigational Beacons                            | <b>H</b> : High,<br><b>U</b> : Ultra, |
| 300-3000 kHz            | MF          | AM, Maritime Radio, Direction Finding           | S: Super,<br>E: Extremely,            |
| 3-30 MHz HF             |             | Shortwave, amarture radio, Telephone, Telegraph | <b>F</b> : Frequency                  |
| 30-300 MHz              | VHF         | TV, FM, Mobile Radio, Radar, Air Traffic        |                                       |
| 300-3000 MHz            | UHF         | TV, Microwave Links, Radar, Satellite           |                                       |
| 3-30 GHz                | SHF         | Microwave Links, Satellites, Radar              |                                       |
| 30-300 GHz              | EHF         | Radar                                           |                                       |
| 300-10 <sup>7</sup> GHz | I R/Optics  | Fiber Optical Links                             |                                       |
| -                       |             |                                                 |                                       |

### Cellular

Reverse (MS→BS)

Forward (BS→MS)



### PCS

Reverse (MS→BS)

Forward (BS→MS)

| 1850 | 1      | 865 18  | 70 18  | 85 189 | 0 189 | 95 191 | 0    |
|------|--------|---------|--------|--------|-------|--------|------|
|      | А      | D       | В      | E      | F     | С      | 80   |
|      | 15 MHz | 5       | 15 MHz | 5      | 5     | 15 MHz | ₩MHz |
| 1930 | 1      | 945 195 | 50 19  | 65 197 | 0 197 | 75 199 | 0    |

# Fundamentals of Propagation Classification



- Antenna Locations
  - Terrestrial, Satellite, Airborne,
- Propagation Media
  - Lower Atmosphere, Surface, Ionosphere, Meteor, Underwater
- Propagation Path Obstructions
  - NLOS, LOS, Free Space (Fresnel Zone Clearance)
- Signal Attenuation Mechanisms
  - Spreading, Reflective, Diffractive, Absorptive (moist, rain)
- Signal Propagation Mechanisms
  - Reflection, Diffraction, Scattering, Refraction
- Polarization
  - Vertical, Cross, Horizontal,, Circular
- Terrestrial Channel Features
  - Terrain, Man-Made Obstacles, Waters, Foilage
- \* Those most important for Cellular/PCS indicated in Bold

# Particulars of Propagation for Cellular/PCS



# Modeling Objectives

- Obtain location & time dependent characteristics for <u>optimum</u> <u>spectrum utilization</u>
  - Signal Path Loss
     Signal Impairment
     Interference Statistics

# Modeling Dependencies

- Physical Environment
  - Natural and Man-Made Features
- Signal Type
  - Frequency Signal BW Polarization
- Technology
  - Analog or Digital Modulation/Coding Multiple Access Methods Advancement of Signal Processing Techniques

# Usage of Models

- Cell Planning: Coverage (Outage), Capacity (Interference)
- Control Algorithm Design: Access, Power Control, Handoff
- Receiver/Transceiver Design: Modem, Coding, Interleaving, Equalizer, Rake Receiver, ...

# **Multi-Discipline Perspectives**



|                         | EM Radio Propagation                                                                                                           | Cellular Network                                                                                       | Communications                                                                                             |  |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--|
| Problems of<br>Interest | Physics of Propagation<br>frequency • polarization •<br>antenna type/height •<br>physical & electrical<br>properties of medium | Link Budget path loss • fade margin • diversity gain                                                   | Signal Processing fade rate • Doppler shift coherence BW & time • # of multi-paths • diversity correlation |  |
| Solutions               | Models b/ Phys. Theories Attenuation • Diffraction Reflection • Refraction Scattering • Penetration                            | Radio Network Design cell size • # of cells BS locations • freq reuse antenna type/heights             | Comm. System Design Mod/Demod • Interleaving FEC • Channel Equalizer Rake Receiver • Codes                 |  |
| Goodness of<br>Solution | Analytic./Computer Sol'ns simplicity, applicability & closeness to field measured data                                         | Customer Satisfaction call attempt success rate • call drop rate • handoff success rate • handoff rate | Performance Compliance Minimum E <sub>b</sub> /N <sub>o</sub> • BER FER • Diversity Gain Acquisition Time  |  |
| Ultimate<br>Goals       | <ul> <li>Formulation of<br/>Analytical Models</li> </ul>                                                                       | <ul><li> Minimum Investment</li><li> Customer Satisfaction</li></ul>                                   | Max. Bits/Sec/Hz     Shannon's Limit                                                                       |  |

# Taxonomy of Mobile Radio Propagation



# Propagation Conditions and Network Deployment

- Frequency: Cellular, PCS, MMDS, LMDS, Wireless LAN ...
- Environment: Cluttered City, Urban, Suburban, Rural, Indoors, ...
- Cell Size: Macro-, Micro-, Pico-cell, (Hierarchical)
- Antenna: Height, Directivity, Polarization, Tilt, Spacing
- Coverage: Outdoors, In-Building, Subway, ...
- Mobility: High Speed, City Driving, Pedestrian, Fixed

### Models of Main Interest (Statistics in Nature)

- Network Planning
  - Path Loss and Slow (Long-Term) Fading
  - Diversity Correlation between Sector Antennas, Sectors, and Neighboring Base Stations
- Communication System Design
  - Fast (Short-Term) Fading, Coherence Time, Doppler Frequency
  - Mutipath Delay Profile: RMS Delay, Coherence BW, Correlation
  - Angular Spread: RMS Beamwidth, Correlation

# Main Factors to Propagation Characterization State University

### FCC Spectrum

Cellular Band (8 to 900 MHz) **PCS** Band (1.8 to 1.9 GHz)

### **Cellular Engineering**

Cell Planning: Size, Freq. Reuse Coverage Probability



Radio Network Tech.

Macro-, Mini-, Pico-cell, Networking in Hierarch. Dynamic Freq. Assign. Smart Antenna

Mobile Radio **Propagation Channel Characterization** 

### **Cellular Standards**

AMPS, TDMA, CDMA 1G, 2G, 3G, 4G ...



**Communication Tech.** 

Analog vs. Digital Narrow to Wide BW Adv. Signal Process.

# Mathematical Framework of Models





SO, What's the Dig Deal?

# So, What is the Big Deal?





# Tech. Evolution & Detailed Structures needed





# Propagation Scenario for AMPS & TDMA



Forward Link Signal Reception

Forward Link Interference Scenario for AMPS and TDMA (N=7)



An Example of Importance in Prop. Character Interference level strongly dependent on propagation exponent  $\alpha$ : ~1/r $^{\alpha}$ 

→ Major Impact on Frequency Reuse Efficiency

Six Major Interferers of about equal strength

# **Propagation Scenario for CDMA**



Forward Link Signal Reception and Interference Scenario for CDMA



# Cellular Engineering: Coverage Reliability



**Shadow Fading** Log-Normal Model

$$Y(x) = \frac{1}{\sqrt{2ps}} e^{-\frac{(x-\overline{x})^2}{2s^2}}$$

x:PL,  $\bar{x}$ :mean PL, s:SF Sigma

Typical Objective for Area Coverage = 90 %

### **Contour Reliability**

 $P_{cov}(r_a)$ 

Example for Max PL Allowed = 150 dB (from Link Budget)



# $P_{\text{cov}}(r) = \int_{-\infty}^{x_{\text{max}}} Y(x - \overline{x}(r)) dx$

 $x_{max}$ : Max. PL allowed



### Area Reliability

Fade Margin: F<sub>mq</sub>



$$P_{cov}(A) = 90 \% \Rightarrow F_{mg} = 1.6 \sigma$$

$$P_{\text{cov}}(A) = 2\boldsymbol{p} \, \mathcal{I}_0^{r_a} P_{\text{cov}}(r) r dr$$

1 5

# What do Cellular Engineers care about?



- Path Loss vs. Distance Model ( $\sim 1/r^{\alpha}$ )
  - Cell Coverage Radius: Noise Limited Area [  $\alpha \uparrow \Rightarrow Rc \downarrow$  ]
  - Cell Radius: Interference Limited Area [  $\alpha \uparrow \Rightarrow N_{reuse} \uparrow$  ]
- Shadow Fading Model (Log-Normal with σ)
  - Cell Radius: Link Budget Margin [ $\sigma \uparrow \Rightarrow Rc \downarrow$ ]
  - Correlation over Distance (Exponential) [?] (In HO simulation)
- Fast Fading Model (Rayleigh Fading)
  - Min. Required S/N (Eb/No) or S/I (Eb/Io) [ $\downarrow \Rightarrow$  Rc, Cap.  $\uparrow$  ]
    - Usually already accounted for in numbers given by Comm Eng.
  - Doppler Spreading [typ; mid speed (30 km/hr): Eb/No ↑]
    - Usually already accounted for in numbers given by Comm Eng.
  - Correlation over Distance (Bessel Function;  $\lambda/2$  Decorrelation)
    - Useful for estimating the interval (vs. speed) for averaging out fast fading in the field measured data for local mean PL analyses
- Delay Spread Multi-path Details (Coherence BW & Time)
  - TDMA Equalizer or CDMA Rake Receiver Performance
    - Not usually used, but can provide good area specific information which may be accounted for in cell planning.

### **Evolution of Channel Models**



- 1st Generation Analog
  - Time-Variant Memoryless : <u>time</u>
    - Path Loss, Fast Fading: Doppler Freq., Slow Fading
- 2nd Generation TDMA and CDMA
  - ... Time-Dispersive: (time & delay)
    - + Coherence Bandwidth, Coherence Time
- 2G+ and 3G TDMA and CDMA
  - ... Horizontal Angular Spread: (<u>time</u>, <u>delay</u> & <u>angle</u>)
    - · Beam Profile: effective beam width, correlation
- 3G+, 4G and beyond (???)
  - ... Vertical Angular Spread
  - ... Polarization
  - ... Fixed Cellular with High Frequency and Wide BW
    - Terminal Antenna Directivity and Pointing Direction

# **Key Papers in Mobile Radio Channel**





# Mathematical Model for 1G Analog



### Variable:

Temporal



Model:  $h(t) = c(t) = l(d) \cdot r(t) \cdot s(t)$ 



**Doppler Effects** 

# Mathematical Model for 2G Digital



### Variables:

- Temporal
- Delay Profile

$$h(\boldsymbol{t};t) = c(\boldsymbol{t};t) = \sum_{i} a_{i}(t) \boldsymbol{d}(\boldsymbol{t} - \boldsymbol{t}_{i})$$
 
$$h(t) = \int_{t}^{t_{m}} c(t;\boldsymbol{t}) d\boldsymbol{t}$$





# 2D Time Varying Channel Illustration



# **Illustration**



# Mathematical Model for 2G+



### Variables:

- Temporal
- Delay Profile
- Spatial

System Model



Industry Accepted Model which includes angular domain Yet to Come

h(t) ..... 1D Channel Model

 $h(\tau;\theta;t)$  ...... 3D Channel Model

# What's Ahead for Mobile Radio Propagation State University

### Smart Antenna

- Angular Resolution and Inter-ray Correlation
- Fixed Cellular
  - Revisit of Mobile Channel Models for Terminal
    - Fixed, High Elevation, Directional
- Wider Bandwidth for 3G and Beyond (5, 10,15 MHz)
  - Finer delay resolution needed
  - Present inter-ray correlation models need to be revisited
- Other Channels not addressed in this talk
  - Indoors, and Micro- and Pico-Cells
- Higher Frequency

# Case Study, 1: Fixed Wireless Channel



- Paper: IEEE J. on SA/Com, March 99 (AT&T-Labs)
- Measurement Equipment
  - Frequency = 1.9 GHz; Signal BW = 8 MHz
  - Time Resolution = .125 μsec
  - Measurement setup
    - Where: Suburban areas in NJ and Illinois
    - BS Tx antenna: 65° Beam Width
    - MS Rx antenna: Height = 3 to 10 m, BW = 32° BW and Omni
    - Path length: .5 to 2 km

# Findings

- Directional case: spike-plus-exponential profile
  - Longer delay paths arrive at angles and come through side lobes higher attenuation for longer delay paths makes sense
  - Power ratio between spike to exponential paths ~ K = 8 dB
  - RMS time delay of exponential paths ~  $\tau_o$  = .2  $\mu$ sec +
  - K and  $\tau_0$  essentially not correlated
  - Relatively insensitive to antenna heights and path length
- Omni case: no such structure found

# Case Study, 2: Theory



$$g(\boldsymbol{t};t) = \sum_{i} [A_i + a_i(t)] \boldsymbol{d}(\boldsymbol{t} - \boldsymbol{t}_i) = \sum_{i} A_i \boldsymbol{d}(\boldsymbol{t} - \boldsymbol{t}_i) + \sum_{i} a_i(t) \boldsymbol{d}(\boldsymbol{t} - \boldsymbol{t}_i) = g_F(\boldsymbol{t}) + g_M(\boldsymbol{t};t)$$

A<sub>i</sub> is a fixed amplitude and a<sub>i</sub>(t) is zero mean complex Gaussian

Mean Amplitude

$$E[g(\boldsymbol{t};t)] = E[g_F(\boldsymbol{t})] + E[g_M(\boldsymbol{t};t)] = E[\sum_i A_i \boldsymbol{d}(\boldsymbol{t} - \boldsymbol{t}_i))] \xrightarrow{\text{determinstic}} \sum_i A_i$$

Mean Power

$$E[g^{2}(\mathbf{t};t)] = E[g_{F}^{2}(\mathbf{t})] + E[g_{M}^{2}(\mathbf{t};t)] = E[\sum_{i} A_{i}^{2}] + E[\sum_{i} a_{i}^{2}] = \sum_{i} A_{i}^{2} + \sum_{i} \mathbf{S}_{i}^{2}$$

$$P_{i} = \frac{\left|A_{i}\right|^{2} + \mathbf{S}_{i}^{2}}{\sum_{i} \left|\left|A_{i}\right|^{2} + \sum_{i} \mathbf{S}_{i}^{2}\right|}$$

$$\boldsymbol{t}_{rms}^{2} = \sum_{i} \boldsymbol{t}_{i}^{2} P_{i} - \left\| \sum_{i} \boldsymbol{t}_{i} P_{i} \right\|^{2}$$

# Case Study, 3: Findings and Completeness



General Model

$$g(t;t) = \sum_{i} A_{i} d(t - t_{i}) + \sum_{i} a_{i}(t) d(t - t_{i})$$

### **Directional Antenna Case**

Empirical Model based on Measurements: Spike-plus-exponential

$$g(t;t) = A_0 d(t - t_0) + \sum_{i=0}^{\infty} a_i(t) d(t - t_i) = A_0 d(t - t_0) + b \sum_{i=0}^{\infty} e^{-i\Delta/t_m} d(t - i\Delta t_i)$$

- Strong direct arrival path + many lower strength late arrival paths.
- Strength of late arrival paths decreases exponentially.

### **Completeness in Characterization**

- Distance dependency ? No, based on .5 to 2 km range measurements
- Resolution dependency? Would not show up if BW < 5 MHz or so
  - Finer structure which warrants a different model may exists.
- Environment dependency? Not reported
- Antenna Beam Width Dependency? Not reported.
- Frequency dependency? Not reported.
- Fading distribution of individual paths? Not reported.
- Fading distribution of combined signal? Not reported.
- Correlation between multiple paths? Not reported