Silicon nanomembranes (pnc-Si): Molecular and Cellular applications

James L. McGrath Biomedical Engineering University of Rochester Nanomembrane Research Group

EMBS @ SYRACUSE UNIVERSITY APRIL 23, 2009

Silicon Nanomembranes (pnc-Si - porous nanocrystalline silicon)

15nm thick 5-80 nm pores

Thinner = faster transport and less sample loss

A. van den Berg and M. Wessling, Nature 445, 726, 2007

Nanomembrane Research Group

Bioengineeing Group

Jim McGrath Tom Gaborski*

Jess Snyder (Protein separations)DateAnant Agrawal (Cellular studies)MatBarrett Nehilla (Cell applications)Henry Chung (Microfluidics)Crowe, Hoffman, Summers (undergraduates)

Materials Group

Philippe Fauchet Chris Striemer*

Dave Fang *(Material development)* Maryna Kavalenka *(Air permeability)*

SiMPore Inc.*

Rick Richmond Jamie Roussie JP Desormeaux Karl Reisig Nakul Nataraj

Collaborations

Shigeru Amemiya, PITT Bill Bernhard, URMC

RIT: SMFL

Funding

NSF, NIH, CSTI, J&J, NYSTAR, CEIS

Outline

- *** Overview of pnc-Si**
- * Transport
- * Separations
- * Cell Culture
- * Other Applications

Fabrication

0

frontside

0

frontside

0

frontside

0

frontside

0

frontside

20 nm sputtered SiO₂ 15 nm α-Si

0

frontside

rapid thermal anneal

0

frontside

rapid thermal anneal

frontside

700 °C – 1000 °C < 5 min

0

pnc-Si

variety of formats

0

Sharp Cut-offs and Tunable Pore Sizes

0

700 C

Nanomembrane Research Group [NRG]

800 C 8 25 Avg. Dlameter [nm] 20 6 Porosity [%] 15 20 nm sputtered SiO_2 4 10 15 nm pnc-Si 2 5 O n 600 800 1000 1200 RTP Temp [C] Nanomembrane Research Group [NRG] 0 10

850 C

1000 C

Friday, May 22, 2009

Avg. Dlameter [nm]

1100 C

Avg. Dlameter [nm]

controlling morphology – thickness

0

Nanomembrane Research Group [NRG]

||

controlling morphology – thickness

Mechanically Robust

Striemer, C.S, et al. 2007, Nature, 445:749-53

Mechanically Robust

• NRG 2009

Mechanically Robust

Striemer, C.S, et al. 2007, Nature, 445:749-53

Key Biological Sizes

Key Biological Sizes

Key Biological Sizes

Striemer, C.S, et al. 2007, Nature, 445:749-53

• NRG 2009

• NRG 2009

Striemer, C.S, et al. 2007, Nature, 445:749-53

Striemer, C.S, et al. 2007, Nature, 445:749-53

• NRG 2009

MEMBRANE A

Striemer, C.S, et al. 2007, Nature, 445:749-53

Scalable, flexible, economical fabrication

Production Flow

PAST

Production Flow

PAST

Production Flow

PAST

UR's Nanoscience Center

UR's Nanoscience Center

4" wafer

CURRENTLY: 68 INSERTS PER WAFER

- LESS THAN 1% OF AREA IS CURRENTLY ACTIVE
- MADE NECESSARY BY ETCHING, MECHANICS, AND DEFECT FREQUENCY

Ultrathin SiN membranes

a) Si frame holding a microsieve

Tong, et al. (2004). Silicon Nitride Nanosieve Membrane. Nano Letters 4, 283-287

SiN - 10 nm thick but elaborate and impractical

* No demonstrated separations

* Appreciated all the potential and issues (air flow, water permeability, and mechanics)

Shigeru Amemiya

- Instrinsic permeability of 5.2 x 10⁻² cm/s measured using Scanning Electrochemical Microscopy.
- Experimental results & pore histograms are consistent with theory that neglects pore resistance
- Between 2-3 orders higher than small molecule diffusion permeability of reconstituted cellulose or PES.

Kim et al. 2008, JACS 130:4230-4231

• NRG 2009

Shigeru Amemiya

- Instrinsic permeability of 5.2 x 10⁻² cm/s measured using Scanning Electrochemical Microscopy.
- Experimental results & pore histograms are consistent with theory that neglects pore resistance
- Between 2-3 orders higher than small molecule diffusion permeability of reconstituted cellulose or PES.

Kim et al. 2008, JACS 130:4230-4231

Shigeru Amemiya

- Instrinsic permeability of 5.2 x 10⁻² cm/s measured using Scanning Electrochemical Microscopy.
- Experimental results & pore histograms are consistent with theory that neglects pore resistance
- Between 2-3 orders higher than small molecule diffusion permeability of reconstituted cellulose or PES.

Kim et al. 2008, JACS 130:4230-4231

• NRG 2009

Shigeru Amemiya

- Instrinsic permeability of 5.2 x 10⁻² cm/s measured using Scanning Electrochemical Microscopy.
- Experimental results & pore histograms are consistent with theory that neglects pore resistance
- Between 2-3 orders higher than small molecule diffusion permeability of reconstituted cellulose or PES.

Kim et al. 2008, JACS 130:4230-4231

Higher Permeability = Smaller ...

* For current devices: active area is 1.8 m² and transmembrane water flow is ~10 ml/min @ 3 psi.

1000x improved permeability would require only 18 cm². So 10 dime-sized membranes with mostly (~80%) active area could support both transmembrane flow and match dialysis in the same period of time.

Higher Permeability = Smaller ...

* For current devices: active area is 1.8 m² and transmembrane water flow is ~10 ml/min @ 3 psi.

1000x improved permeability would require only 18 cm². So 10 dime-sized membranes with mostly (~80%) active area could support both transmembrane flow and match dialysis in the same period of time.

... or faster?

* Alternatively a 6" wafer of mostly active membrane could achieve the same dialysis in 1/10th of the time.

... or faster?

* Alternatively a 6" wafer of mostly active membrane could achieve the same dialysis in 1/10th of the time.

THE MATERIAL PROVIDES THE POTENTIAL

REALIZING THIS POTENTIAL IS AN ENGINEERING CHALLENGE

• NRG 2008

Cellular Transwell Devices

Cellular Transwell Devices

Microfluidics

counterflow dialysis

cell/cell Interactions

microbioreactor

chemotaxis

Conclusions

- * Pnc-Si is a new ultrathin nanoporous membrane material. Small membranes can be manufactured on a large scale and incorporated into practical separation devices.
- * Primary application is to small scale separation of biologicals
- * High air and liquid permeabilities w/ demonstrated ability to fractionate proteins, nanoparticles, etc.
- * Viable as a cell-culture substrate. Cell behavior on membranes is normal.
- Microfluidics, arrayed membranes for screening applications, electrokinetics, and more …