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Silicon Nanomembranes
(pnc-Si - porous nanocrystalline silicon)

Thinner = faster transport and less sample loss

A. van den Berg and M. Wessling, Nature 445, 726, 2007

15nm thick
5-80 nm pores

Friday, May 22, 2009



NRG 2009

Chris Striemer*

Bioengineeing Group Materials Group

Tom Gaborski* 

Jess Snyder (Protein separations)
Anant Agrawal (Cellular studies)
Barrett Nehilla (Cell applications)
Henry Chung (Microfluidics)
Crowe, Hoffman, Summers (undergraduates)

Dave Fang (Material development)
Maryna Kavalenka (Air permeability)

Jim McGrath Philippe Fauchet

SiMPore Inc.* 

JP Desormeaux
Karl Reisig

Nakul Nataraj 

Rick Richmond
Jamie RoussieFunding

NSF, NIH, CSTI,
 J&J, NYSTAR, CEIS

Collaborations

Shigeru Amemiya, PITT

Nanomembrane Research Group

RIT: SMFL

Bill Bernhard, URMC

Friday, May 22, 2009

http://Nanomembranes.org
http://Nanomembranes.org


NRG 2009

Outline

Overview of pnc-Si 

Transport 

Separations

Cell Culture

Other Applications
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Fabrication

Striemer, C.S, et al. 2007, Nature, 445:749-53
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Fabrication RAPID = SECONDS

Striemer, C.S, et al. 2007, Nature, 445:749-53
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Fabrication RAPID = SECONDS

Striemer, C.S, et al. 2007, Nature, 445:749-53
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physical vapor deposition
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physical vapor deposition

6

20 nm sputtered SiO2

15 nm α-Si

frontside

amorphous Si
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rapid thermal anneal

7

20 nm sputtered SiO2

15 nm α-Si

amorphous Si

frontside
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20 nm sputtered SiO2

15 nm pnc-Si

rapid thermal anneal

7

700 °C – 1000 °C < 5 min
pnc-Si

frontside
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variety of formats

8
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Sharp Cut-offs and 
Tunable Pore Sizes

T = 715C

T = 729C

Striemer, C.S, et al. 2007, Nature, 445:749-53

NANOCRYSTALS

NANOPORES
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pore size & density – rtp temperature

10

20 nm sputtered SiO2

15 nm pnc-Si
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pore size & density – rtp temperature
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700 C

20 nm sputtered SiO2

15 nm pnc-Si
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pore size & density – rtp temperature

10

800 C

20 nm sputtered SiO2

15 nm pnc-Si
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pore size & density – rtp temperature

10

850 C

20 nm sputtered SiO2

15 nm pnc-Si
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pore size & density – rtp temperature

10

1000 C

20 nm sputtered SiO2

15 nm pnc-Si
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pore size & density – rtp temperature

10

1100 C

20 nm sputtered SiO2

15 nm pnc-Si
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controlling morphology – thickness
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Mechanically Robust

200 µm

Striemer, C.S, et al. 2007, Nature, 445:749-53
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Mechanically Robust

200 µm

15 PSI

Striemer, C.S, et al. 2007, Nature, 445:749-53
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Mechanically Robust

200 µm

15 PSI 0 PSI

Striemer, C.S, et al. 2007, Nature, 445:749-53
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Key Biological Sizes

small
solutes

1 nm 10 nm 1 um

proteins virus bacteria

10 um

eukaryotic
cells
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Key Biological Sizes

small
solutes

1 nm 10 nm 1 um

proteins virus bacteria

10 um

eukaryotic
cells

PNC-SI (5-80 NM)
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Key Biological Sizes

small
solutes

1 nm 10 nm 1 um

proteins virus bacteria

10 um

eukaryotic
cells

PNC-SI (5-80 NM)
@ 0.1%-15%
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3 L fluorescent mixture 
(PBS)

glass
 co

ve
rsl

ipPBS buffer

15 nm thick
nc-Si membrane

Species 1 -

50 m silica 
spacer

Species 2 -

~ 500 m
microscope

experimental
field of view

t = 0 min

100 m

Striemer, C.S, et al. 2007, Nature, 445:749-53

Size Based Separation
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Alexa dye - charge = 2-
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Scalable, flexible, 
economical fabrication
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Production Flow

PATTERNING DEPOSITION THERMAL 
ANNEALING

ETCHING TESTING & 
APPLICATIONS

PAST

Friday, May 22, 2009



NRG 2009

Production Flow

PATTERNING DEPOSITION THERMAL 
ANNEALING

ETCHING TESTING & 
APPLICATIONS

PAST

NEAR 
FUTURE

ALL FABRICATION TESTING & 
APPLICATIONS

Friday, May 22, 2009



NRG 2009

Production Flow

PATTERNING DEPOSITION THERMAL 
ANNEALING

ETCHING TESTING & 
APPLICATIONS

PAST

NEAR 
FUTURE

ALL FABRICATION TESTING & 
APPLICATIONS

MADE POSSIBLE BY 
PURCHASE OF NEW SYSTEMS 

• SURFACE PREP
• ANNEALING 
• DEPOSITION
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UR’s Nanoscience Center
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UR’s Nanoscience Center

MCGRATH LAB
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UR’s Nanoscience Center

MCGRATH LAB

SURFACE PREP, DEPOSITION 
AND 

ANNEALING
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UR’s Nanoscience Center

MCGRATH LAB

SURFACE PREP, DEPOSITION 
AND 

ANNEALING

LITHOGRAPHY
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Manufacturing Possibilities 
and Challenges

4” wafer

CURRENTLY: 68 
INSERTS PER WAFER
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Manufacturing Possibilities 
and Challenges
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6” wafer

> 500 INSERTS PER WAFER
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Manufacturing Possibilities 
and Challenges
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• LESS THAN 1% OF AREA IS 
CURRENTLY ACTIVE

• MADE NECESSARY BY ETCHING, 
MECHANICS, AND DEFECT 
FREQUENCY
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Manufacturing Possibilities 
and Challenges

0.004 CM2

0.33 CM2

• LESS THAN 1% OF AREA IS 
CURRENTLY ACTIVE

• MADE NECESSARY BY ETCHING, 
MECHANICS, AND DEFECT 
FREQUENCY

200 microns
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Ultrathin SiN membranes
Tong, et al. (2004). Silicon Nitride Nanosieve Membrane. 
Nano Letters 4, 283-287

SiN - 10 nm thick but elaborate 
and impractical

No demonstrated separations

Appreciated all the potential and 
issues (air flow, water permeability, 
and mechanics)
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10 µm-diameter tip Ru(NH3)6
3+ in 0.1 M KCl

High Diffusive Permeability
Instrinsic permeability of 5.2 
x 10-2 cm/s measured using 
Scanning Electrochemical 
Microscopy.

Experimental results & pore 
histograms are consistent 
with theory that neglects 
pore resistance

Between 2-3 orders higher 
than small molecule 
diffusion permeability of 
reconstituted cellulose or 
PES. 

Kim et al. 2008, JACS 130:4230-4231

Shigeru Amemiya
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High Diffusive Permeability
Instrinsic permeability of 5.2 
x 10-2 cm/s measured using 
Scanning Electrochemical 
Microscopy.

Experimental results & pore 
histograms are consistent 
with theory that neglects 
pore resistance

Between 2-3 orders higher 
than small molecule 
diffusion permeability of 
reconstituted cellulose or 
PES. 

Kim et al. 2008, JACS 130:4230-4231

Shigeru Amemiya

k = 2DNr
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Higher Permeability =  
Smaller ...

For current devices: active area is 1.8 m2 and 
transmembrane water flow is ~10 ml/min @ 3 psi.

 1000x improved permeability would require only 18 
cm2. So 10 dime-sized membranes with mostly (~80%) 
active area could support both transmembrane flow and 
match dialysis in the same period of time. 
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… or faster?
Alternatively a 6” wafer of 
mostly active membrane  
could achieve the same 
dialysis in 1/10th of the time. 
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… or faster?
Alternatively a 6” wafer of 
mostly active membrane  
could achieve the same 
dialysis in 1/10th of the time. 

THE MATERIAL PROVIDES THE 
POTENTIAL 

REALIZING THIS POTENTIAL IS AN 
ENGINEERING CHALLENGE
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Cellular Transwell Devices
CO-CULTURE
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Cellular Transwell Devices
CO-CULTURE

DRUG PERMEATION
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Microfluidics
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Conclusions
Pnc-Si is a new ultrathin nanoporous membrane material. 
Small membranes can be manufactured on a large scale and 
incorporated into practical separation devices.

Primary application is to small scale separation of biologicals

High air and liquid permeabilities w/ demonstrated ability to 
fractionate proteins, nanoparticles, etc. 

Viable as a cell-culture substrate. Cell behavior on 
membranes is normal.   

Microfluidics, arrayed membranes for screening applications, 
electrokinetics, and more … 
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