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Part I
● Optimal operation

● Hydraulic, wind and solar variability

● Bellman's recursion and curse

Part II

● ROCF, short-circuit, powerflow 

● DBESS

● The OddFace Investment Optimizer

The keys to the kingdom



The ultimate goal
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Let the tree not hide the forest nor vice versa



Time horizons for operation and analysis
milliseconds: Generator statism - distributed control / Protections.

seconds: Frequency regulation - generator instructions.

minutes: Rotating Operating Reserve (2.1% of Demand)

10 to 20 minutes: Flexible Reserve (2.1% of Demand)

>= 20 minutes: Cold Reserve. (3% of Demand; 20 minutes)

hours: Monitoring of Hourly Demand

days: Scheduling of resource use

months: Reservoir optimization and fuel management

years: Investment optimization

$ Optimization$ Optimization

SecuritySecurity



SimSEE, a simulation platform as a toolbox
Why and for what?

A model is a simplified representation of reality



Nodes, Arcs, Generators and Demands

G2 D2
G1 D1

Arc A

        Arc B
Node 1

Node 2



Energy dispatch programming 
horizons

● Seasonal Programming
  (every 6 months; 1.5 years; weekly time step). 

● Weekly Programming 
  (every week; 10 days; daily and hourly time step). 

● Daily Programming 
  (every day; 10 days; daily and hourly time step). 

● Hourly Programming 
  (every hour; 10 days; hourly time step). 



Resolution of the dispatch in a time 
step in TIME BLOCKS 

(Postes in Uruguay, Patamares in Brasil)

In order to simulate with time steps greater than one hour and try to 
adequately reflect the power balance requirements, it is common to resort to 
subdividing the time step into TIME BLOCKS by reordering the hours of the 
time step by their power requirement.
TIME BLOCKS have been used in almost all power system 
optimization/simulation tools for decades.
Traditionally, the Monotonic Load Curve is constructed (by ordering the 
hours of a typical time step from highest to lowest Demand power) and the 
average of each group is selected as representative of each TIME BLOCK.
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The massive incorporation of Wind and Solar leads to 
the need to consider Net Demand
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Time blocks defined from 
the Load Monotony.

Does it make sense with 
systems with high 
integration of wind and 
solar?

Source: ADME - SCADA ten-minute time series

Just one example, 4 days of july-2018-Uruguay
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SimSEE uses a dynamic time blocks 
definition technique



●  
Operation Policy



Classic example: Merit order

 Resources stacked in order of increasing variable cost
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Stacked generation resources [MW]

Wind+Solar
+(Self Ddisp.Gen.)

Hydro 1

Hydro 2

Biomass

Thermal
(diesel)

rationing

The variable cost of 
hydroelectric plants is 
the result of optimization 
and reflects the future 
value of leaving water 
stored in lakes.



 
Optimal operation of a dynamic system
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Optimal dispatch is a "Stochastic Dynamic Programming 
problem"

Using stored resources (water) today reduces 
operating costs today but increases those 
tomorrow, and vice versa.

An optimal policy is one that reduces the expected 
value of the future operating cost of the system

Min <FC>



System State
Information vector that captures what is 
relevant from the system's past.X (t )=[ x1

x2

...
xn

]
X k+1=f (X k ,uk , rk , k )

sck=c (X k , rk ,uk , k )

Equation of state evolution:

Stage cost:

FC (X ,k )=⟨∑h=k
∞

qh−k sch⟩R ,U
Future Cost:



The Operator and the Operating 
Policy

The System

The Operator

u
k
=OP (Xk

, r
k

, k)

X k+1=f (X k ,uk , rk , k)

rk

uk



rk

X k

uk

X́X́
X́

Optimal Policy for 
the time step k



Dynamic Programming 1957

Bellman's recursion

FC(X , k)=⟨mín
uk

{sc (X , uk , rk , k )+q FC (Xk+1 , k+1 ) }⟩{rk , rk+1 , ...}

Richard Ernest Bellman (1920–1984) 

● If we know the future cost function FC(X,k+1) at the start of step k+1, then we can 
compute the future cost function FC(X,k) at the start of step k. This recursive process, 
backwards in time, allows us to obtain the optimal policy if the FC function were known 
at some future time for every state X of the system. It can be shown that going far into 
the future, it does not matter what value is considered for the function 
FC(X,k_far_future) for determining the present values. 

● The factor q is the discount factor of the money at time step.
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Classic weapons against the 
Bellman curse 

● Chaining of optimizations with different 
horizons and time steps (months, weeks, days, 
hours). Long_Term, Medium_Term and Short_Term.

● In the Long term, HEAVY state variables are 
considered and more volatile variables are 
added in the Medium and Short Term.

● Reducing the state of stochastic processes.
● Subdivision of the time step into Hourly Blocks
● SDDP, Rolling Horizon, 
● Reinforcement learning



The Little Tractor... fighting the Bellman Curse
Reinforcement Learning of the Operation Policy

Learning the optimal joint operation of 
the energy systems of Uruguay, Brazil, 
Paraguay and Argentina

Machine learning applied to the 
operation of fully renewable energy 
systems

https://simsee.org/investigacion/
tractorcito.html



Modeling uncertainty
( Stochastic processes )
Sources of randomness

• Demand

• Water inputs to hydroelectric plants

• Wind speed

• Solar radiation

• Prices in neighboring markets

• Fuel prices

• Fuel availability

• Accidental breakdowns
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Years - Decades

Water contributions for hydroelectric plants

Weeks - Months
Solar and wind

Characterization of variability



CEGH Modelling
• Reproduces amplitude histograms of the series.
• Reproduces correlations between the series and 

with their past data..

Gaussian World
Real Space

Gaussian Space:
● Multi-variable linear system

● fed by vector of
● Gaussian White Noise.

X k+1= ∑
h=0

h=n−1

Ah X k−h+ ∑
h=0

h=m−1

Bh Rk−h

NLT

NLT

NLT

NLT

NLT

NLT

Forecasts
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Gaussian space forecasting treatment with reduction

u=OP
z
(z , r , t)

z=M R X

z

R

A

X=M A (t) z+BA (t )w

P50

P90

P10

t

x1
x2
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P10

t

z1



Robots VATES: Energy dispatch with integration of the NIS status and forecasts on a 
continuous basis.

VATES_MP (every 12 hrs)
(next 3 months with daily step)

VATES_CP
(every hour)
 (next 168 h)

● At ADME we have two Robots that are permanently 
solving the optimal dispatch. 

● Both assimilate the information on the state of the 
system and on the forecasts of rainfall, wind, solar 
radiation and Demand and resolve the optimal 
operation policy.

● One Robot analyzes the next three months with daily 
detail and publishes the results twice a day.

●  The other analyzes the next seven days with hourly 
detail and publishes the results every hour.

● Both robots use the Bellman Recursion, which condemns 
us to not be able to continue adding state variables 
and details to the system model. 

● This led us to develop a new generation of Robots 
based on Artificial Intelligence techniques to try 
to escape the Bellman Curse.

VATES_CP: https://latorrex.adme.com.uy/vates/
VATES_MP: https://latorrex.adme.com.uy/vatesmp/



PART II

● RoCoF, Powerflow and Voltage stability
● Operationg DBESS 
● Optimizing the long-term investment plan



Risk of loss of inertia due to increase in 
Variable Renewable Energy (VRE)



Rotational inertia determines the ROCOF at the beginning of 
the frequency response to a contingency.

● Lower limit frequency

● Initial response time (Tr): 2s

● Total response time (Te): 15s

● RoCoF limit proposed: 0.5 Hz/s

It is desirable to have sufficient rotating inertia to limit the RoCoF to values ​​that 
give sufficient time for the primary frequency control to operate in the face of the 
Most Severe Single Contingency expected at any given time.



Typical values of H[s]

H = ( ½ J w² ) / (MVA) 

● In the resolution of the energy 
dispatch in SimSEE, it is 
allowed to impose conditions 
that guarantee a certain 
rotating inertia, impossing a 
minimum value of the Net 
Demand. Its has two mode of 
control (static or dynamic).

● Technologies are changing rapidly 
and power electronics devices 
that allow the generation of 
Synthetic Inertia are already being 
tested. In the future, the rotating 
inertia in windmills, the energy 
stored in the DC bus capacitors of 
inverters and battery banks will 
provide the synthetic inertia that 
will allow the continued 
incorporation of VRE without 
problems.



Static RoCoF  (fixed minimum Net-Demand)

During the process of assembling the time blocks into which the time step will be 
subdivided, the Net Demand is calculated.
In each block, the cuts to the VRE generation that are necessary to satisfy a given 
minimum Net Demand value are applied, thus forcing the dispatch of synchronous 
generation units, providing inertia to the system.



Dynamic RoCoF control  (variable minimum Net-Demand)

[0] Calculate VRE availability
[1] Calculate VRE constraints
[2] Solve step dispatch
[3] Calculate rotating inertia
[4] Determine the Most Severe Single Contingency 
[5] Calculate the time for the primary control action
[6] Calculate Response Time Margin
[7] If Margin is significant (5%)

[7.1] If Margin > 0
+ Reduce minimum Net Demand requirement

[7.2] If Margin < 0
+ Increase minimum Net Demand requirement

[7.3] I need to ITERATE

[8] If I need to iterate and the maximum number of iterations was not reached, return to [1]

● Setting minimum net demand

● Incorporation into the RoCoF compliance optimization/simulation loop



Representation of power flow restrictions 
in energy dispatch resolution

● Cutting restrictions

r LB≤∑
k

αk P k+α0≤rUB

αk

P k

Actor k cut participation factor

Power dispatched from actor k



Dispatch requirement for voltage stability
Short-Circuit Power Scoring Constraint

∑
k

sk ak≥∑
k

Dk β k+s0

sk short circuit score assigned to each 
unit of the generator k

ak Indicates the number of units of the 
generator k that are coupled in the 
energy dispatch of the hour

Dk power required to demand k

β k factor MW to score of Demand k

s0
minimum score



DBESS
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OddFace
Genetic optimizer applied to investment planning
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OddFace
Optimizador distribido de Funciones de alto 

costo de evaluación

Distributed Optimizer for High Evaluation Cost 
Functions

mín
IP

⟨FC ( IP )⟩

IP∈D

many variables + uncertainties

Genetic algorithms

Principle of 
Natural 
Selection
( 1859 )

BRUTE FORCE
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Generation expansion options
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OddFace result (The winning IP) 
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DNA and OP Learning
( Cultural heritage )

Using the same concept of chronic 
evaluation, the “learning opportunity” 
was implemented.

The same DNA has had as many 
evaluation opportunities as simulations 
and associated with the DNA it then has 
a FC(X,k) corresponding to its OP.

When individuals are crossed and a 
new one is created (which has not yet 
been evaluated) it is “born” with the 
FC(X,k) of its parent with fewer 
evaluations. In this way, “what has been 
learned” is transmitted from generation 
to generation.

When using SimSEE in conjunction with El Tractorcito it is possible to use this functionality.



Thank you very much for your attention!

... agile so as not to miss the train and slow so as not to get on the wrong one ...
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