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Outline
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§ Introduction to Frequency Selective Surfaces (FSSs) and FSS-based 
sensing

§ Similar technologies
§ FSS-based sensor designs

ØConcurrent temperature and strain sensing 

§ Practical challenges and solutions
ØSensor resolution and key parameters
ØSensor cell analysis and localized sensing
ØPerformance improvement by FSS miniaturization

§Concluding remarks



What is a Frequency Selective Surface?
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Sample Elements Array Frequency ResponseModel



Why FSS-Based Sensing? 

§ FSS Sensor Advantages:
ØPassive sensing
ØWireless (remote) 

interrogation
ØSensitive to geometrical and 

physical parameters
ØDistributed sensing
ØExtreme design flexibility –

the sky is the limit!!
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Example FSS Sensing Applications
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§ 1D/2D strain
§ Temperature
§ Pressure
§ Layered structure 

evaluation
§ Moisture detection
§ Multi-functional 

sensing (i.e. concurrent 
temperature and strain)

§ Etc……
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Why Microwave Frequencies?

§Microwave/millimeter wave components are commercially available and 
low-cost

§ Interrogation systems are safe, low power, and easy to use
§Antenna size is inversely proportional to frequency.

ØBecomes prohibitive, along with the FSS element/unit cell size, for lower 
frequencies

ØLimits the resolution (all related to wavelength)
§Resolution can be improved with increasing frequency

ØEventually (beyond mm-wave), increasing system cost/complexity is of concern 
(i.e, THz, optics/laser….)
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Similar Technologies - Metamaterials

7Ekmekci, Evren, and Gonul Turhan-Sayan. "Multi-functional metamaterial sensor based on a broad-side coupled SRR topology with a multi-layer substrate." Applied Physics A 110.1 
(2013): 189-197.
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Temperature Sensor by Resonator 
Integration

§ Substrate is a temperature-dependent dielectric 
material.

§ Resonant frequency of the sensor decreases from 
5.12 GHz to 4.74 GHz for 50 °C to 1000 °C.

§ This corresponds to a relative permittivity of 9.7 to 
11.2 for the alumina substrate. 

8Cheng, Haitao, Siamak Ebadi, and Xun Gong. "A Low-Profile Wireless Passive Temperature Sensor Using Resonator/Antenna Integration Up to 1000˚C”, IEEE Antennas and Wireless 
Propagation Letters 11 (2012): 369-372.



FSS in the THz Regime 

§ Biomedical and chemical applications
§ THz FSSs interrogated with THz subwavelength optical fibers

Ø Used for monitoring optical properties of thick films

9
Girard, Martin, and Maksim Skorobogatiy. "Terahertz multiparameter sensor using fiber-interrogated frequency selective surface." arXiv preprint arXiv:1311.6390 (2013).

Film Thickness Sensing Humidity Content Sensing



FSS for Structural Health Monitoring (SHM)

§Concrete column formed around a hollow steel core.
ØStructural stability is comparable to traditional solid concrete columns, but with 

reduced weight.

§Additionally, a fiber-reinforced polymer (FRP) layer surrounds the 
concrete.
ØServes as a casing during casting and provides protection from the environment.
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FSS for SHM – Curved Surfaces
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FSS for SHM
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Active FSS for Strain Sensing
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Substrate: Rogers 5880, 20 mils, Ɛr = 2.2, tanδ = 0.0009
Mahmoodi, Mahboobeh, and Kristen M. Donnell, “Active frequency selective surface for strain sensing,” Antennas and Propagation & USNC/URSI National Radio 
Science Meeting, 2017 IEEE International Symposium on. IEEE, 2017.
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2D In-Plane Normal Strain Sensor

x

y

D = 
18 mm
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ØFlexibility to monitor 2D strain 
using dual-polarized FSS design

ØProvide reflection response using 
a slot-based element

ØStrain in each direction can be 
characterized by measuring the 
reflection response polarized  
perpendicular to the strain 
direction



Frequency Response of  the Sensor
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Frequency Response of  the Sensor
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Frequency Response of  the Sensor
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Concurrent Temperature & Strain Sensing

Mahmoodi, Mahboobeh, and Kristen M. Donnell, “Novel FSS-based sensor for concurrent temperature and strain sensing,” Antennas and Propagation & USNC/URSI 
National Radio Science Meeting, 2017 IEEE International Symposium on. IEEE, 2017.
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Concurrent Temperature & Strain Sensing

1 12r Te = µ
Case #1:

2 26r Te = µ
Case #2:

Parallel Reflection ResponsePerpendicular Reflection Response

Mahmoodi, Mahboobeh, and Kristen M. Donnell, “Novel FSS-based sensor for concurrent temperature and strain sensing,” Antennas and Propagation & USNC/URSI 
National Radio Science Meeting, 2017 IEEE International Symposium on. IEEE, 2017.
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Simulated Sensor Performance

Temperature Strain
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Improved Temperature & Strain Sensor

ØUpgraded to a grounded FSS in order to remove the effect of background material(s) on the 
sensor performance.

ØOperating frequency band has been increased to Ku-band (12.4 – 18 GHz) to improve resolution.
ØImproved sensitivity to temperature.

X-band Design Ku-band Design

21



Simulated Ku-Band Sensor Performance
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Experimental Setup for Strain Measurement

Load cell

Servo-
hydraulic 

piston

Grips 
(top/bottom)

Test 
specimen

Test 
specimen

HornWaveguide 
Adapter

VNA

Illumination 
Distance
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Measurements Prior to Load Testing

Background

Entire FSS

Background Subtracted
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FSS Measurement Under Load
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FSS Sensor Response Under Load

Calculated strain from frequency shift in 
(second) strain-sensing resonance vs. strain 

gauge measurement and theory.
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Other Practical Considerations

§Delamination of the sensor from the test structure is an ongoing concern.
ØCurrently investigating adjusting the shape of the sensor to reduce the chances of a 

lamination failure (particularly at the sensor corners).

§High (extreme) temperature applications will also be challenging due to 
thermal concerns related to bonding material, temperature-sensitive 
dielectric, etc.

§Cross sensitivity to other environmental parameters such as humidity, 
substrate effects (primarily thermal properties), dust contaminants…. 

§ Substrate effects (thermal properties): temperature dependence of 
permittivity (er) and coefficient of thermal expansion (a)

27



Temperature Dependence due to er
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Temperature (°C) First resonant 
frequency (GHz)

Frequency Shift 
(GHz)

Second resonant 
frequency (GHz)

Frequency Shift 
(GHz)

25 14.11 - 16.1 -

-50 14.12 0.01 16.12 0.02

150 14.08 -0.03 16.07 -0.03

At 25°C ε *= 3.38
At -50°C ε *= 3.36986
At 150°C ε *= 3.3969



Temperature Dependence due to a
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Direction of Length 
Change

1st Resonant 
Frequency (GHz)

Frequency Shift 
(GHz)

2nd Resonant 
Frequency (GHz)

Frequency Shift 
(GHz)

Nominal 14.11 - 16.1 -

X 14.09 -0.02 16.08 -0.02

Y 14.13 0.02 16.09 -0.01

Z 14.11 0 16.1 0



FSS Sensing Challenges - Infinite to Finite

Infinite FSS
§ Finite array of elements 
§ Non-uniform excitation
§ Edge effect on frequency response 
§ Importance of number of unit cells
§ Comprehensive vs. localized 

illumination – resolution!!!

Finite FSS
§ Infinite array of elements 
§ Uniform excitation
§ Comprehensive frequency 

response (low resolution)

30



Ideal FSS Response

 
Infinite FSS responseLoop unit cell 

Substrate: FR-4, Ɛr = 4.3, tanδ = 0.023
L = 10 mm, a = 4.95 mm, w = 0.4 mm, t = 32 mils

Mahmoodi, Mahboobeh, and Kristen M. Donnell, “Effect of illumination pattern on FSS-based sensor resolution,” 2018 IEEE International Instrumentation and Measurement 
Technology Conference (I2MTC). IEEE, 2018.
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Sensing Resolution

𝑡𝑎𝑛𝜃𝑒 =
𝐷
2ℎ

D

hθe

Standoff (h): 2λ0 (6 cm) 5λ0 (15 cm)

§ Parameters that affect sensor resolution:
ØIllumination footprint (size) on the sensor.
ØSensor cell size.
ØNumber of elements within a sensor cell.

Horn 20 cm

20 cm

Mahmoodi, Mahboobeh, and Kristen M. Donnell, “Effect of illumination pattern on FSS-based sensor resolution,” 2018 IEEE International Instrumentation and Measurement 
Technology Conference (I2MTC). IEEE, 2018.

D: sensor cell size;
h: illumination distance from 
sensor.
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Localized Sensing Measurements
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Measurement Results
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Localized Sensing – Simulated Strain
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Sensor A Sensor B Sensor C



Localized Sensing - Measurements 
5×5 Elements

Strained area = Sensor cell area
3×3 Elements

Strained area < Sensor cell area
9×9 Elements

Strained area > Sensor cell area

35



Sensor Improvement by Miniaturization 

D = 10 mm = λ0/3

D = 5 mm = λ0/6

FR-4 Substrate: t = 32 mils t = 15 mils

Ideal FSS Response (Simulation)Original FSS Miniaturized FSS

36Mahmoodi, Mahboobeh, and Kristen M. Donnell, “Improvement in FSS-Based Sensor Sensitivity by Miniaturization,” Antennas and Propagation & USNC/URSI National Radio 
Science Meeting, 2019 IEEE International Symposium on. IEEE, 2019.



Effect of  Anomaly on the Sensor Response
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Mahmoodi, Mahboobeh, and Kristen M. Donnell, “Improvement in FSS-Based Sensor Sensitivity by Miniaturization,” Antennas and Propagation & USNC/URSI National Radio 
Science Meeting, 2019 IEEE International Symposium on. IEEE, 2019.



§ Effect of strain is 
modeled by increasing 
sensor dimensions by 
5% in strained direction.

§ Interrogating 
polarization is parallel 
to direction of strain.

§ Similar frequency shift 
since element 
dimensions of both 
sensors are similar.
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Concluding Remarks

§ FSS-based sensors have strong potential as a solution for numerous 
sensing needs
ØWireless interrogation and flexible resolution provides unique capabilities

§ Extreme design flexibility
§Highlighted a number of successful applications including multi-

parameter (temperature and strain) sensing
§ Some practical challenges remain, but the future for FSS-based sensing 

continues to progress and expand…...
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Thank You
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