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Conventional through-wire solutions Proposed inductive power transfer

Solid metal box Solid metal box

Holes

No contact

Through Metal Energy Harvesting
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 Drilling holes cause leakage and reduce structural integrity.

 No contact allowed with metallic plate.

 Inductive power coupling can transfer power through common metals, but efficiency is very 

poor.



System requirements

 Sensor enclosed in metal box of 3mm thick aluminium.

 No batteries allowed inside sensor box: power up entirely from outside.

 Simultaneous power and data transmission is required

 No contact allowed with metallic box, i.e. no PZTs or EMATs.

 Bidirectional communications between inside and outside units.

 Received power should be >3W.

 Very high efficiency: PTE>2%

 Data rate >4.8 kbps.

 Coil/size limitations:

 Diameter < 50mm

 Height < 76mm
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Proposed IPT system

Solid metal box

No 

contact

TRx



State of the art performance of IPT systems through metal

Design Frequency (Hz) Structure
Tx/Rx coil outer diameter 

(mm)
Metal thickness 

Skin depth 

(mm) 

@50Hz

PTE (%) Data rate (bps)

[1] 50
Solenoid with 

ferrite
211/234 5 mm stainless steel pipe 59 10 NA

[2] 50-50000 Solenoid 24/30 14 mm stainless steel pipe 59 Not provided Not provided

[3] 50 Loop coil 120/120 12 mm steel open disk 59 4.6 NA

[4] 50-3000 Helix 220/220 3.1 mm aluminium plate 12 4 NA

[5] 30-1000 Stacked Helix 150/50 3.1 mm aluminium tank 12 3.4 NA

[This work] 200
Stack and Flat 

Coil
195/195 3.1 mm aluminium tank 12 9 4800
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 Most of the research focuses on poor conductive materials such as stainless steel or tin.



System Overview

 Novel Stack-Flat Coil structure for high PTE and data rate.

 Custom designed Power Amplifier, Power Management Module and ASK TRx allows 

bidirectional 4800 bps communication link.

 PTE=9%.
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POWER TRANSFER

MSc. Juan Romero - Microwave Microsystems 

Laboratory



Power Coils

 Coil requirements:

 Diameter < 50mm

 Height < 76mm

 Rx Power > 3W

 PTE > 2%

 3mm thick Al

 To meet the 

requirements a 

custom helix stacked 

coil with ferrite core

was designed. 
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Helix 1 (Rx)
(~ 635 turns AWG 17)

Without ferrite With ferrite

Helix 2 (Tx)
(~ 514 turns AWG 17)

70 mm

51 mm

16 Rods

4 rods

Ferrite

rout< 50 mm



Coils Parameters (without ferrite)

 Coil measured parameters comply with expected values.

 Helix 1 without ferrite: L= 3.9 mH, Q= 2.456 at 120 Hz

 Helix 2 without ferrite: L= 3.62 mH, Q= 2.578 at 120 Hz

 Parameters not enough to comply with the requirements → Ferrite Core is critical!
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f: 100- 5000 Hzf: 100- 1000 Hz



Effect of Ferrite Core on Coils Parameters

 Using ferrite core tremendously improves inductance and quality factor of helix stacked coils. 

 >6.5x Inductance and >3x Quality factor.

 However, the effect of the metal plate has not been considered.
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Coil parameters
Helix 1 

No ferrite

Helix 1

Ferrite

Helix 2 

No Ferrite 

Helix 2 

Ferrite

Inductance (L) 3.90 mH 25.7 mH 3.62 mH 23.533 mH

Quality factor (Q) 2.456 9.502 2.578 9.001

DC resistance (R) 1.202 Ω 2.0352 Ω 1.040 Ω 1.976 Ω

Coil turns 635 635 514 514

Ferrite type None Rods None Rods and bar
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Parasitic Effect of Metal Plate

 The metal barrier will increase in the parasitic resistance of the coil which decreases the 

quality factor and decreases the PTE.

 ↑Rs, ↓Q, ↓PTE

 Ferrites are required to counteract the parasitic effect of the metal plate and meet the 

requirements of PTE and Prx.
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Coil implementations Q L (mH) ESR (Ω)

Helix 1 with ferrite in air 9.502 25.698 2.039

Helix 1 with ferrite on metal 3.858 23.461 4.592

Helix 2 with ferrite in air 9.001 23.533 1.976

Helix 2 with ferrite on metal 3.168 21.304 5.071



 To enhance power transfer capability the coils need to be 

compensated capacitively.

 Higher PTE.

 Resonant effect ~filter

Resonant Capacitors
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10 Hz to 1 kHz

1 kHz to 10 kHz

 Capacitors allowed for easier impedance matching while maintaining PTE.



Blocking effect for data transfer

 Interference from power signal to data signal is considerable.

 Even when fc=4 kHz for data transfer → shift to 8 kHz.

 Resonant capacitors serve as LPF so PTE@ 3.9 kHz is only 0.00032 %.
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Power

LSB USB



Power Transfer Efficiency

 Efficiency does not necessarily translates to more harvested power but must aim to max PTE.

 Higher PTE allows to keep input power moderately low, reduce the effect of parasitic and simplify 

circuit design. E.g. +/- 2% PTE ~ +/- 20 W Pin

13

 Output power linearly increases with input current. 

 Output power is more than 3.5 W and efficiency peaks ~12%. 



Power transfer through metal

 Custom coil design allowed high PTE at very high Pin.
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DATA TRANSFER
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System requirements

 Simultaneous power and data transfer.

 No batteries allowed on the inside.

 No contact with metal allowed, i.e. no PZTs or EMATs.

 Data rate > 4.8 kbps.

 Goal:

 Maximize bandwidth to achieve highest data rate.

 High SNR to enable error free communications.

 Proposal: 

 Helix technology of large BW and good PTE.

* theoretical estimations 

[1] Zangl H., Fuchs A., Bretterklieber T., Moser M., Holler G. An Investigation on Wireless Communication and Power Supply Through Metal Tank Walls; Proceedings of the 

2008 IEEE Instrumentation and Measurement Technology Conference Proceedings; Victoria, BC, Canada. 12–15 May 2008; pp. 1452–1457.

[2] Graham D.J. Ph.D. Thesis. University of Newcastle upon Tyne; Newcastle upon Tyne, UK: 2012. Investigation of Methods for Data Communication and Power Delivery 

through Metals.
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Design Metal thickness Data rate (bps)

[1] 0.5 mm tin tank 20000 *

[2] 20 mm stainless steel pate >100

State of the art data rate for IPT systems



Coils prototypes

Helix 1 (AWG 16) Helix 2 (AWG 16) Helix 3 (AWG 18)

Helix 4 (AWG 16) Solenoid (AWG 16)

 Higher bandwidth coils: compromise between a low Q and moderate PTE.

 Helix flat coils proved to be the most efficient coils for this application.
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Coil designs Helix 1

(Dout=195 mm)

Helix 2

(Dout=150 mm)

Helix 3

(Dout=150 mm)

Helix 4

(Dout=120 mm)

Solenoid

(Dout=131 mm)

Peak efficiency (%) 2.16 1.36 1.52 0.141 0.06

PTE of Data Flat Coils

 Flat coils designed at UC 

Davis provide advantages 

for data transmission:

 Moderate PTE.

 Larger Bandwidth.

 Critical to achieve higher 

data rate.



Flat Coils performance with different materials

Stainless-steel: 12.7 mm thick

Composite carbon: 5 mm thick

Materials Aluminum Steel Carbon

Conductivity (MS/m) 38 2.1 1

Peak efficiency (%) 2.68 6.25 34

Optimal frequency 200 Hz 230 Hz 480 Hz
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 Even higher performance for other 

materials.



Data and Power Simultaneous Transmission

Designs Wire size Din Dout Ntx Nrx

Helix 2 AWG 16 44 mm 195 mm 63 63

 Coils had to be modified to create combined structure for simultaneous power and data 

transfer.

 Din=44mm → Din=55mm. 

 Reduce interference of power signal.



Summary: Performance of Helix 195mm for Data Transfer

 Flat Coils were resonated for 8 KHz operation

 Flat response around BW of interest: 5-9 kHz → higher data rate.
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New Structure

Parameters
Tx-Flat 

Coil

Rx-Flat 

Coil

L 29.77 uH 29.11 uH

Q 2.07 2.14

Rs 0.899 0.851

DCR 0.48 0.41



Summary: Performance of Helix 195mm for Data Transfer

 Flat Coils show a linear Phase Delay response despite being within the new structure.

 Coil has good characteristics for data transfer and can support higher order communication 

schemes.

22

Phase Delay Comparison Best Case: R= 1 Ω



Arduino uC

ASK transceiver

 ASK modulation was the most efficient technique for this case.

 The performance of FSK and BPSK were considered.
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Data rate: 2.4 kbps

 Power and data signal do not interfere with each other.
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Data rate: 2.4 kbps

 Data signal successfully received and demodulated.
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SYSTEM INTEGRATION
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Coil Structure and Performance

 High PTE Stack coils together with large bandwidth Flat coils 

enable state of the art data transmission through metal.
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Stacked coils used for power 

transfer

Flat coils used for data transfer (a) Transmitting coil (b) 

Receiving coil

Output power is 

more than 5W 

and max. 

efficiency ~12%.

Stack coils PTE

Flat coils PTE

Materials Aluminum Steel Carbon

Peak efficiency (%) 2.68 6.25 34

Optimal frequency (Hz) 200 230 480

Barrier Thickness (mm) 3 5 12.7



Class-E power amplifier Power management circuit

Additional circuitry

ASK data transfer circuit
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Metal

 Precise circuits design is also important because of complex impedance matching due to 

transformer-like network.

 Power Amplifier of high conversion efficiency (~90%) matched with small impedance from stacked 

coil: ~3-6 Ω.

 Power Management Circuit capable of +/- 5V and 12V output. Supplies stable impedance to Coil-

Power Amplifier network.

 ASK transceiver enables bidirectional communication using only harvested power through metal 

barrier.



Current Record
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 More than 9% PTE efficiency is achieved through 3mm thick aluminum plate.

 Harvested power on the inside of the metal barrier is larger than 5W.

 Data transfer rate is 4800 bps free of errors.

4.8 kbps waveforms – Inside-Outside

System Integration



Conclusion

 Enclosed sensor inside meta box 

successfully communicates with external 

transceiver.

 3mm thick Aluminium.

 There is no mean of communication between 

transceivers.

 No cables, no opening, no contact, etc.

 Power is limited: no batteries allowed.

 5W harvested power.

 High data rate enables high throughput 

applications.

 4800 bps (highest known).

 System can work in different scenarios 

without changes of structure.

 Stainless steel, carbon composite, etc.
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No contact



MOBILE COIL
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 Requirement of miniature WPT system:

 Solution proposed: 

Mobile Application Coil

Parameter Objectives

Peak efficiency (η) ≤ 1.0%

Metal Thickness (t) Al, 1 mm

Height of coil (h) ≤ 2 mm 

Diameter of coil (d) ≤ 15 mm

Power handling ≥ 10 mW received
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24AWG wire

n= 12 turns

2 stacks

Ferrite µr=220



Performance

 Enough harvested power from mini coils to power up any ultra-low power system:

 Prx=20 mW.

 PTE=2% with max. Pin=1W when f=6 kHz and RL=0.2 Ω
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Coil-to-coil efficiency for RLoad = 0.200 Ω Coil-to-coil efficiency and output power versus varying input 

power at f = 6 kHz, RLoad = 0.2 Ω.
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