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Evolution (Revolution)

nScrypt DPAM system Femtosecond Laser (10W)
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3D Printing Technologes
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DDM - Introduction

« Direct Digtd Manufacturing (DDM): Combination of additive
and subtractive processes,
« This work: combination of FDM, micro-dispensing and laser
machining.
- Multiple materids, multiple layers.
- Low temperature.
- Match performance of Cu-clad microwave laminates.
- BEmbed/integrate/package microelectronics.
-Volumetric control of materids.




DDM Process. FDM

Video:

Filament
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Filament
Feeding
Systemn
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Typicd nozzle temperature 200°C —350°C

Minimum layer thickness ~50 microns



DDM Process. Micro-Dispensng

- Pastes such asAg particle dloys used for S o Tip inner
conductors. . ]
- Pressure, speed, etc. adjusted for desired N diameters:
feat ure Slzes Dlspensmg Direction — : 250um
- Conforma printing using laser mapping. 125um
Conductive l J oo 75um

Printed Substrate
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Heated Print Bed 25' | I I |

125-um

ceramic tip




Multilayer RF Hectronics

2.45 GHz phased array antenna unit cell
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Fig. 24, Measured radiation pattems of the 2.43 GHz phased array unit cell.
The vertical and horizontal gain pattern plots are shown.
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Losses & Frequency Limits
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Laser Enhanced DDM

CO2
Wavelength of different lasers e 2:106um
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vaporization
| “ | * Therma damage
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« Cold ablation
* Greatly reduced
therma damage

CO2 (top) vs
— Nd:YAG (bottom)
RF Applications LPKF - 25um cut cut on Kapton




Laser Enhanced DDM

Femtosecond Laser Machining
Lumera Nd:YAG

Laser machining process:

Ak




Laser Enhanced DDM

Micro-Dispensing Micro-Dispensing + Laser Machining
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Coplanar Waveguide Digitaly Manufactured using Pulsed Ficosecond Laser Machining of Thick-Film Conductive Paste;” in IEEE Transactions on Microwave Theory and
Techniques, vol. 65, no. 9, pp. 3180-3187, Sept. 2017.




Laser Enhanced DDM

Loss of CPW with slot size of 50 um Loss of CPW with slot size of 20 um
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Micro-dispensed CB028: 6 4 < 1e6 Im
Laser machined CB028: 64 > 167 Im
Attenuation comparable to Cu cladding
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Techniques, vol. 65, no. 9, pp. 3180-3187, Sept. 2017.




Smulated & Measured Data
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T-Line Attenuation —  Meas.Package

5 GHz - 0.125 dB/mm
20 GHz - 0.2 dB/mm

Return loss
10 dB — within frequency band of interest




DDM Multi-Layer Interconnects

Vias 12 uym wide slots

SU70 15.0kV 24.9mm x30 SE(M)

Simulated Structure Fabricated Structure

- Dielectric layers are ABSwith a thickness of 50 um.
- CB028 micro-dispensed with atypicd layer thickness of 25 um
- Traces are machined using picosecond laser, achieving 12 um wide slots.



DDM Multi-Layer Interconnects

Vias 12 uym wide slots
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DDM Multi-Layer Interconnects

0.0 N Vias 12 pm wide slots
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- Test structure that includes two CPW verticd transitions
shows 4.25 dB/cm of loss at 40 GHz



Novel Sensing Mechanisms

Sensor developed by Daewon Kim and Srish Namilae
* Objective

Develop an MMOD impact detection system that can be incorporated into the inflatable
structure. An integrated SHM system should provide existence and location of
damage, depth of penetration, and damage extent.

« Approach
SENnsor array

= Develop flexible piezoresistive sensors panels
composed of carbon nanotubes sheet and
coarse graphene platelets.

Piezoresistive
CNT-graphene patch

» Perform static and dynamic impact testing to
measure sensor performance. = _

3D printed

= Perform multi-sensors and multi-layers impact electrode

testing to prove MMOD detection capabilities.



Design of the Wireless Passive Sensor

Overdl system based on RAD technology
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Sensor - Satic Puncture Testing

Sensor developed by Daewon Kim and Srish Namilae

* Resistivity with multiple holes

= 2.5in x 2.5 In nanocomposites covered with Kapton tape;
six holes are successively added.

= Change in resistance when subject to static damage
induced by drilling 3 mm holes.

= Resistance remains constant with added holes - stable
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Design of the Wireless Passive Sensor

Basic block diagram of the IC sensory tag
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Design of the Wireless Passive Sensor

Features of the IC sensory tag

Antenna pad impedance 123-j303 Q
Antenna pad sensitivity -6.9 dBm
Antenna pad sensitivity (Battery assisted) -15dBm
Carrier frequency 860 MHz to 960 MHz
Externd sensor interface pads resistance 200 Q



Design of the Wireless Passive Sensor

Hectricdly smal antenna (ESA) based on a PIFA design
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Design of the Wireless Passive Sensor

Fabricated Sensor




Design of the Wireless Passive Sensor

Hfect of Kapton wrapping on S11
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Results - Wireless Passive Sensor

S11 response measurement

Measuring fixture:
 Gap:04 mm

« Width:0.2 mm
* Length:0.4 mm




Results - Wireless Passive Sensor
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Design of the Wireless Passive Sensor

Set-up for measuring the range of the passive wireless

| | AMS 3. 900A
4 Designed antenna - Demo Board

Nanocomposite sheet (DUT)

S T [

\
S



Results - Wireless Passive Sensor
Sensor range for AMS demo board and the designed antenna

Detection Sensing (m)

(m)

AMS Demo Board 3.8 14
AMS Demo Board (Battery assisted) 124 2.6
Designed antenna 3.2 1.9



Results - Wireless Passive Sensor

Resistance sensing using the wireless passive sensor
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Results - Wireless Passive Sensor

Resistance change of the nanocomposite sheet — Satic damage
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4200 sq. ft of
RF Labs




Capabilities -
Hardware

g8 - - eyl ETSAMS 8500 Anechoic Chamber
Keysight PNA (67 GHz) (12t x 12 ft x 24 ft)

nScrypt DPAM system Femtosecond Laser (10W)



Capabilities — Test
Beds

Gulfstream G|
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