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REVEALS Program and What We Do…

• NASA SSERVI Overview

• REVEALS Research Center

• Research Into Volatile Formation

• Motivating Risk Factors of Space

• Active Dosimetry
• Existing Technology

• New Design

• Radiation Attenuation

• Radiation Shielding Material 
Design Considerations

• Development of New Composite 
Materials 
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Finckernor, NASA Tech. Rep., 2017, 2003



K. Fiege
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https://sservi.nasa.gov/
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Radiation Effects on Volatiles and Exploration of Asteroids and 

Lunar Surfaces  (REVEALS) Research Mission: To understand 

radiation effects on the chemical evolution of volatiles and develop 

human protection technologies that enable the long-term exploration 

and habitation of airless bodies within our solar system. 
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Solar wind proton interactions with regolith 
and water formation mechanisms

+ H2O

Mg, Fe, Ti
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Radiation Monitoring and Shielding - Risk 
Factors of Space
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Finckernor, NASA Tech. Rep., 2017, 2003
NASA, Types of Radiation, 2018



Risk Factors of Space: Static Charging
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• Examples:
• Galaxy 15 – telecommunications satellite – 1 year 

delay

• Advanced Earth Observing Satellite 2 (ADEOS-II) -
destroyed

• EURECA STS-57 – Solar cell damage

• Effects:
• Electric shock

• Instrument error

• Equipment failure

https://www.nasa.gov/

EURECA STS-57 

ADEOS-II

Commercial anti-static coatings ≈100 MΩ



Personal Dosimeters

9/21/2016 Martin Leitgab, NASA Space Radiation Analysis Group

..maybe new materials/devices are required?. 
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Key Benefits:

• Small in size

• Cumulative and real-time dose 

measurements

• Only requires power during 

resistance measurement

• Mission-scale lifetimes

Operation: Changes in local electric fields arising from neutron capture impair e-

mobility in graphene layer allowing neutron flux to be observed by monitoring 
changes in resistance across the graphene layer.

New Dosimetry Approach: 
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Radiation Attenuation

2) Maximize H content
• Best at slowing particle-based radiation

• Limit degradation through robust 
chemistry

• Best long-term approach

• Water, polyethylene, LH2

Wiki Commons

1) Absorb radiation
• Radiation-induced radical formation

• Quench or stabilize through resonance

• Short-term approach

• Heavy metals, polysulfones
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Multi-Functional Composites: Design 
Considerations
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• Most polymers are insulating, which builds 
static charge!

• Must withstand micrometeoroid impact

• Provide mechanical reinforcement

• Radiation Effects
• UV exposure in the presence of atomic O is 

devastating to polymer fibers (and most 
organic materials)

• Solar Particle Events and Neutrons can initiate 
degradation through more sophisticated 
pathways due to radical generation.

• Galactic Cosmic Rays are extremely difficult to 
stop but aren’t the leading cause of damage 
due to small size and low frequency

Wilson et al., NASA 20040065987, 2003



Ultimate Goal – Multilayer Composite

1) Surface Layer
• Dissipate static charge
• Radiation attenuation
• Impact resistance
• UV resistance

3) Radiation Attenuation Layer
• Maximize Radiation attenuation
• Tunable thickness

2) Fiber Reinforcement
• Mechanical Properties
• Radiation attenuation
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Polyethylene

Realizing Conductive Radiation Shielding 
Materials

• Scalable chemistry

• Range of performance tunability

• Radiation attenuators

• Versatile fabrication

• Not generally conductive

Thermoplastics Graphene

• Simple chemistry

• High conductivity

• Excellent mechanical properties

• Not readily miscible

Reduced graphene oxide

14

Polysulfone



Melt Compounding HDPE-rGO Composites

Unmodified rGO after 
melt pressing at 0.1% by 
wt. in HDPE
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7
.5

 cm

15 cm

Batch size ≈ 5.5 g
Mix: 190 ᵒC and 200 rpm

Approach: Synthesize chemically modified reduced graphene 
oxides to enhance miscibility in a polyethylene matrix to confer 

electrical conductivity and enhanced mechanical properties.



Composite Formation Process

Step 2: Premix modified 
graphenes (powder) into 
molten polymer 

Step 3: Melt Compounding 
and sample casting

Well mixed graphene Nanocomposite

Thermoplastic Polymer
HDPE, PSU
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Reduced Graphene 
Oxide

Functionalizing Agent

+

Functionalized rGO



Synthesis & Properties of Modified rGO
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Material t [mm] ρ [Ω-m] σ [S cm-1]

Graphite 0.20 3.4 x 10-6 2940

GO Insulator

rGO 0.14 1.3 x 10-5 750

A-rGO 0.17 3.0 x 10-5 340



Melt Compounding 
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Step 1: Master batch

+
Matrix PolymerrGO-dd

Step 2: Melt compounding
Step 3: Melt press to form

Homogeneous composite

10 wt % of 
rGO in HDPE 10 wt % of A-rGO in HDPE

RS ≈1-10 MΩ
Not Conductive



Dispersion and Failure Mode
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rGO

A-rGO

Seibers, PES, 2019



Melt Lamination
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Step 1: Disperse A-rGO Step 2: Cast A-rGO layer Step 4: Melt press laminate

rGO-dd

+ Solvent

Step 3: Affix polymer matrix

+

A-rGO/polymer laminate

Melt Lamination

Material t [mm] ρ [Ω-m] σ [S cm-1]

Graphite 0.20 3.4 x 10-6 2940

GO Insulator

rGO 0.14 1.3 x 10-5 750

A-rGO 0.17 3.0 x 10-5 340

Laminate -- 2.6 x 101

10% in HDPE 1-10 x 106



Simulating Space Radiation at NSRL

• Galactic Cosmic Ray at low and acute dose rates to 80 cGy

• Solar Particle Event 80 cGy
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Key Takeaways
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• Developed facile synthetic strategy to increase the 

miscibility and processability of rGOs

• Demonstrated multiple manufacturing methods to suit 

different application-specific needs

• Simulated radiation exposure appears to have no 

significant effect on graphene material

RS ≈10 Ω

Moving Forward

• Continue exploring the durability of composite 

materials to space hazards including radiation 

exposure and micrometeoroid impact

• Incorporate graphenes into fiber-reinforced multi-

layer composites

• Implant active dosimetry devices directly into 

composite
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Simulating Micrometeorite Impact Events

Xie et al. Sci. Rep. 2017, 7, Article number: 5073.

523 nm light source
Pulse ≈ 1 ps
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