F24_HVCB_WG_PC37.010_REV00 - Minutes of Meeting Working Group C37.010 - Application Guide for AC High-Voltage Circuit Breakers > 1000 VAC Rated on a Symmetrical Basis

Location: Omni Oklahoma City (Oklahoma City, OK)

Date: Tuesday October 15, 2024 (4:15PM - 6:00PM CST) **Quorum:** Membership Count: 41 Members Present: 31

<u>Agenda</u>

WG Chair Andy Keels called the meeting to order and presented the agenda.

Introduction of Members and Guests

Introductions and attendance gathered in-person 67 Total in Attendance (31 Members, 36 Guests)

Review of Attendance Logging via IEEE Attendance Tool

See meeting slides for details

Review of IEEE Patent and Copyright Policies

No Essential Patent Claims noted

Review of Schedule and Future Meetings

Quorum Check: 31 of 41 Members Present – Quorum Achieved

Review of Reference Documents loaded into IMeetCental

Motion: Approve April 2, 2024 In-Person Meeting Minutes: Albert Livshitz

2nd to the Motion: Carl Schuetz

<u>Vote:</u> Approved without objection/abstention

<u>Table 6 & Table 7 Presentation/Discussion</u>

- See slides in meeting minutes
- Review of updated cautionary note (Revision 3) related to Table 6 & 7:
- Motion: Adopt language as stated in the meeting agenda slides: Dan Benedict
- 2nd to the Motion: Dan Schiffbauer
- <u>Discussion:</u>
 - WG Member requested to amend the language to include an additional sentence that would have the equipment manufacturer identify the thermal limiting component and maximum total allowable temperature. Dan Benedict agreed to provide this in Rev. 4 to the task force draft document "PC37.010_Proposed".

- O WG Members made a comment to 4.5.4.4 subclause (b)
 - Provide a reference to the cautionary note in subclause 4.5.4. Additional discussion noted that there may be no need to provide a reference back to the cautionary note pending inclusion of identification of the thermal limiting component and maximum total allowable temperature within the cautionary note itself.
 - Comment: 15 degrees may not be appropriate for all components within the circuit breaker.
- WG Chair recommended Dan Benedict review with Cark Schuetz and Albert Livshitz and develop new wording for a planned February virtual meeting.

<u>Sub-Group presentation of Update on User-Specified 105% of Rated Maximum Voltage.</u>

- See slides in meeting minutes
- Review of proposed wording to Section 4.2 was presented:
 - Discussion:
 - The use of the word "margin" in the proposed wording was noted by WG Member as ambiguous. It was clarified that the word "margin" in this statement is intended to represent summary of the tolerances related to the values within the standard. It is also the same wording used within the current revision of C37.010.
 - WG Member recommended to remove the last sentence from the proposed Section 4.2 wording. No object was raised, so the subgroup agreed to remove "Some values used in the short circuit interrupting type tests include margins in order to accommodate aging and statistical behavior."
- Added informative note was presented:
 - o Discussion:
 - Intent is to provide a caution to users that nameplate voltage is related to current interruption performance and there is a risk that the circuit breaker may not interrupt as designed when operating at above rated maximum voltage.
 - Request to revise "if these" to "the operating voltages" was reviewed and approved.
 - Question was raised about whether the working group considered the application of open breakers with out of phase overvoltages. The subgroup commented that this was not considered specifically. Subgroup took an action to review a technical brochure from the T&I Committee that may address this concern and will return to the WG with revised wording.
 - Subgroup will take action to review TI 3.2.11 with respect to: expanding upon concerns when operating at above rated voltage and consideration of operation of a disconnect switch for an open breaker.
 - Capacitive switching power frequency voltage was noted as being within the scope of the proposed language.
 - Consideration of the operation of the utility system when in overvoltage conditions is outside the scope of this document. The scope of this document is the impact to the circuit breaker.

Subgroup presentation of Update on Inverter Based Resources and the Impact on Fault Currents

- See slides in meeting minutes
- Statement made by PSRC was presented
- Next steps proposal was presented
- Wording for request for information was presented
 - Sub-group made a request for comments/data to the WG:
 - Recommendation was made for the subgroup to contact power system relay committee to collaborate on data collection
- Additional work remaining was presented
 - Luke Collette, Marcus Young, Craig Polchinski and Andy Chovanec agreed to support subgroup with the remaining technical activities.
 - Recommended to ask for input from the Cigre A.3 committee

WG Chair Call for review of other areas of the guide before drafting of document prior to ballot.

- Permissible tripping delay in Section 4.9.1 and 4.9.2 needs to be reviewed for variable discrepancy. Assigned to Dan Benedict.
- Table 2 needs reviewed/revised to be consistent with C37.04. Assigned to Mike Skidmore
- Noted that Tables in Appendix A are accurate. Text that describes how to use the tables and figures that are to be used are not being read correctly by the users.

Schedule

Next Virtual Meeting: February 7, 2025 @ 1:00PM EST (10:00AM PST) Next in-person meeting: April $6^{th} - 11^{th}$, 2025 in Orlando FL

Meeting adjourned by the chair at 5:15PM (CST) on 10/15/2024 Reported by: Jeremy Hensberger, Lucas Collette & Andy Keels

Location:	Omni Oklahoma (City (Oklahoma City, OK)							
Date:	Tuesday October 15, 2024 (4:15PM - 6:00PM CST)								
Count	Breakout	Name	Affiliation	Status					
1	C37.010 WG	Weisker, Jan	Siemens Energy	Membe					
2	C37.010 WG	Aristizabal, Mauricio	Hitachi Energy USA	Guest					
3	C37.010 WG	Ashtekar, Koustubh	Siemens Industry inc	Guest					
4	C37.010 WG	Beecher, Zachary	Southern States LLC	Gues					
5	C37.010 WG	Benedict, Dan	PPL Corporation	Memb					
6	C37.010 WG	Bolar, Sanket	Oncor Electric	Gues					
7	C37.010 WG	Bronsveld, Arjan	Hitachi Energy Sweden	Gues					
8	C37.010 WG	Brooks, Adam	Duke Energy Corporation	Gues					
9	C37.010 WG	Chovanec, Andrew	Power Grid Components	Memb					
10	C37.010 WG	Christian, Michael	ABB	Memb					
11	C37.010 WG	Collette, Lucas	Duquesne Light Co.	Memb					
12	C37.010 WG	Cunningham, Jason	Southern States LLC	Gues					
13	C37.010 WG	Cuppett, Matthew	Hitachi Energy	Gues					
14	C37.010 WG	de Villiers, Henry	Arizona public Service,	Gues					
15	C37.010 WG	Diaz, Lissy	Florida Power and Light	Gues					
16	C37.010 WG	Flores, Sergio	Schneider Electric USA Inc.	Gues					
17	C37.010 WG	French, Christopher	Beta Engineering	Gues					
18	C37.010 WG	Hanna, Robert	JST Power Equipment Inc	Memb					
19	C37.010 WG	Heinrich, Christian	Siemens AG	Gues					
20	C37.010 WG	Hensberger, Jeremy	Mitsubishi Electric Power Products Inc	Memb					
21	C37.010 WG	Hermosillo, Victor	GE Grid Solutions	Memb					
22	C37.010 WG	Hunter, Jennifer	MEPPI-Warrendale Pa	Memb					
23	C37.010 WG	Irwin, Todd	GE Grid Solutions	Memb					
24	C37.010 WG	Jarnigan, Christopher	southern company/ southern nuclear	Memb					
25	C37.010 WG	Keating, Ryan	None	Gues					
26	C37.010 WG	Keels, Thomas	kEElectric Engineering, PLLC	Memb					
27	C37.010 WG	Krause, Dwight	Black and Veatch	Gues					
28	C37.010 WG	Kurinko, Carl	Hitachi Energy	Memb					
29	C37.010 WG	Livshitz, Albert	Schneider Electric	Memb					
30	C37.010 WG	Ma, Chunming	Burns & McDonnell	Gues					
31	C37.010 WG	Markham, Jesse	Electrical Consultants, Inc.	Gues					
32	C37.010 WG	Marshall, Vincent	southern company/ southern nuclear	Memb					
33	C37.010 WG	MARZEC, PETER	S and C Electric Co	Gues					
34	C37.010 WG	May, Steven	Southern Company Services	Memb					
35	C37.010 WG	Mc Cord, Neil	KEC Precision LLC	Gues					
36	C37.010 WG	Meekins, Gary	Southern States LLC	Gues					
37	C37.010 WG	Mitchell, David	Southern States LLC	Memb					
38	C37.010 WG	Natale, Anthony	HICO America	Gues					

39	C37.010 WG	Ordin, Fernando	Dominion Energy	Guest
40	C37.010 WG	Orosz, Miklos	Circuit Breaker Technology & Support LLC	Member
41	C37.010 WG	Palazzo, Mirko	Hitachi Energy	Member
42	C37.010 WG	Pedreros Ratmiroff, Javier	GE Grid Solutions	Guest
43	C37.010 WG	Peterson, Mark	Xcel Energy	Guest
44	C37.010 WG	Polchinski, Craig	Mitsubishi Electric Power	Member
45	C37.010 WG	Pounders, Isaac	Meiden America Switchgear	Guest
46	C37.010 WG	RAMIREZ-BETTONI, EDUARDO	Powell Industries	Guest
47	C37.010 WG	Rebovich, Justin	GE Vernova; General Electric Company (GE)	Guest
48	C37.010 WG	Ricciuti, Anthony	Eaton Corporation	Member
49	C37.010 WG	Roberts, Brian	Southern States LLC	Guest
50	C37.010 WG	Schiffbauer, Dan	Toshiba International Corporation	Member
51	C37.010 WG	Schuetz, Carl	ATC	Member
52	C37.010 WG	Scott, Jeffrey	Ameren Services	Member
53	C37.010 WG	Skidmore, Michael	American Electric Power (AEP)	Member
54	C37.010 WG	Steigerwalt, Donald	Duke Energy Corporation	Member
55	C37.010 WG	Tarleton, John	Southern States LLC	Guest
56	C37.010 WG	Toups, Vernon	Siemens Energy Inc	Member
57	C37.010 WG	Walgenbach, Jake	Siemens	Member
58	C37.010 WG	Webb, John	ABB Ltd.	Guest
59	C37.010 WG	Weeks, Casey	Siemens Energy, Inc.	Member
60	C37.010 WG	Wolfe, Daniel	MEPPI	Guest
61	C37.010 WG	Woodyard, Terry	Siemens Industry, Inc.	Guest
62	C37.010 WG	York, Richard	Mitsubishi Electric Corporation	Guest
63	C37.010 WG	Young, Marcus	Mitsubishi Electric Power Products, Inc.	Member
64	C37.010 WG	Zaharko, Samuel	Mitsubishi Electric Corporation	Member

Total in Attendance: 67
Members Present: 31

C37.010 Working Group

Application Guide for AC High-Voltage Circuit Breakers >1000Vac Rated on a Symmetrical Basis

Tuesday, October 15th, 2024 16:15 – 18:00 EDT

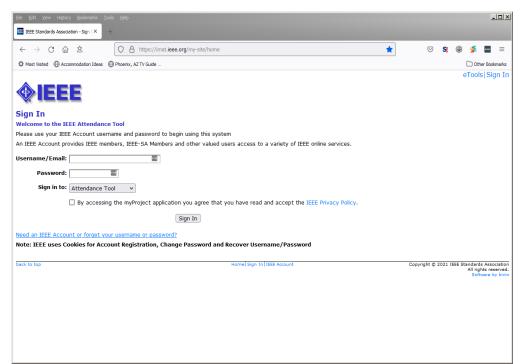
Chair: T. Andy Keels w/ kEElectric Engineering, PLLC

Secretary: Jeremy Hensberger w/ MEPPI

Vice-Chair: Lucas Collette w/ Duquesne Light Co.

Starting Document: IEEE Std C37.010-2016 (Revision of C37.010-1999)

Agenda


- 1. Chairman's call to order
- 2. Introduction of attendees:
 Please announce your *Name*, *Affiliation*, *Location*
- 3. Attendance Logging Instructions
- 4. Workgroup Required Reading
- 5. Anticipated Schedule (*Best laid plans*)
- 6. iMeet Central Workspace
- 7. Minutes Approval
- 8. Discussion of Table 6 & Table 7 (Dan Benedict w/ PPL Energy)
- 9. Report from Sub-group on "User-Specified 110% Voltage Duty" (Carl Schuetz w/ ATC)
- 10. Report from Sub-group on "Inverter-Based Resources" (Carl Schuetz w/ ATC)
- 11. Call for additional revisions to Section 4 or Section 5, or Annex A or B
- 12. Next meetings

There are three way to get there:

- 1. Go To: IEEE SA eTools, Then click on IEEE Attendance Tool
- 2. Google: IEEE Attendance Tool
- 3. Go directly to: https://imat.ieee.org/my-site/home

Type in the Email address & Password that you use for your IEEE activities

Don't forget to check the box acknowledging the IEEE Privacy Policy

Attendance | Reports | Events | Setup | Export

Home - Thomas Keels, SA PIN: 88780

Welcome to the IEEE Attendance Tracking system. This system provides on-site home tracking integrated with the IEEE myProject™ system. You can view your prior attendance on the Attendance History Report.

Active Meetings

Please select the meeting you are currently attending

IEEE PES Switchgear Spring 2024 Meeting	Ft. Lauderdale	02-Apr-2024
IEEE P802.3dj COM Implementation and Execution Ad Hoc meeting		02-Apr-2024
802 April/May/June Telecons		01-Apr-2024
IEEE 802.3 test meeting		29-Mar-2024
IEEE 802.18 teleconference call (24/03/24 to 09/05/24)		21-Mar-2024
802.11 Telecons (March 19-May 10)		19-Mar-2024
802.1 Telecons (Mar-May)		18-Mar-2024

Then select the Working Group

If it is a 'virtual meeting' the WG Chair should have the link listed here

Attendance | Reports | Events | Setup | Export

Home >> Attendance

IEEE PES Switchgear Spring 2024 Meeting (edit)

Ft. Lauderdale, FL

IEEE PES Switchgear Spring 2024 Committee Meetings

Westin Beach Resort

Ft. Lauderdale, FL

Select Working Group

PE/SWG/HVCB-WG_C37.010 Attendance

If the meeting is currently in progress then there should be a yellow box here.

Click the Yellow Box, The box will turn GREEN if your attendance is logged You then just click Sign Out in the upper right corner

Attendance | Reports | Events | Setup | Export

Home >> Attendance >> HVCB-WG_C37.010

PE/SWG/HVCB-WG_C37.010 Attendance Log

Attendee: Thomas Keels, SA-Pin: 88780

Affiliations: PE/SWG/HVCB-WG_C37.010 kEElectric Engineering, PLLC

Manage Attendee

TUE 2-Apr-2024 WED 3-Apr-2024

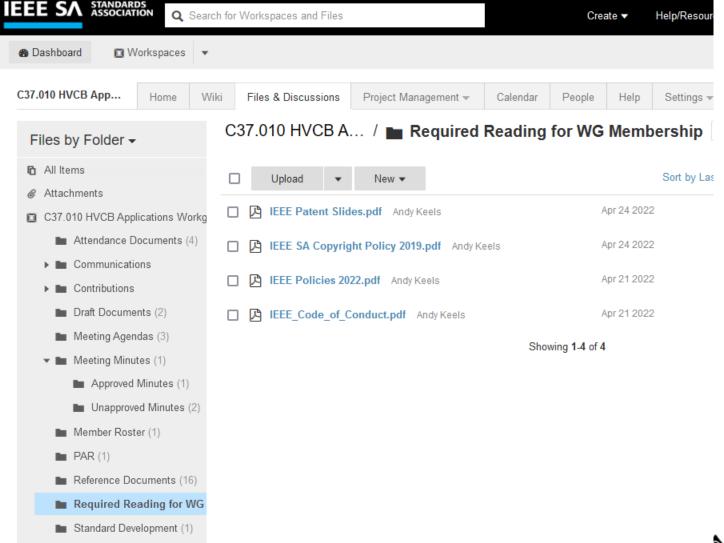
2024 3-Apr-202

Schedule

 $7:00 \quad 8:00 \quad 9:00 \ 10:00 \ 11:00 \ 12:00 \ 13:00 \ 14:00 \ 15:00 \ 16:00 \ 17:00 \ 18:00 \ 19:00 \ 20:00 \ 21:00 \ 22:00 \ 23:00 \ 20:00 \$

C37.010 HVCB Applications WG Meeting

Please record your attendance for an active breakout (denoted by yellow bar) by clicking on the yellow bar. Once your attendance has been recorded, the yellow bar changes to a green bar.


Submittal: As the person submitting this form, I certify that:

- 1. I am submitting this attendance record for myself and not someone else. DO NOT SUBMIT FOR OTHERS!
- 2. At the time of the submittal, I am currently in the Event above.

Workgroup Required Reading

Power & Energy Society®

Meeting Schedule

04/11/2022 1st working group meeting

10/17/2022 2nd working group meeting Burlington, VT

02/03/2023 3rd working group meeting VIRTUAL Google Meeting

04/26/2023 4th working group meeting Virtual WebEx

07/19/2023 5th working group meeting VIRTUAL WebEx

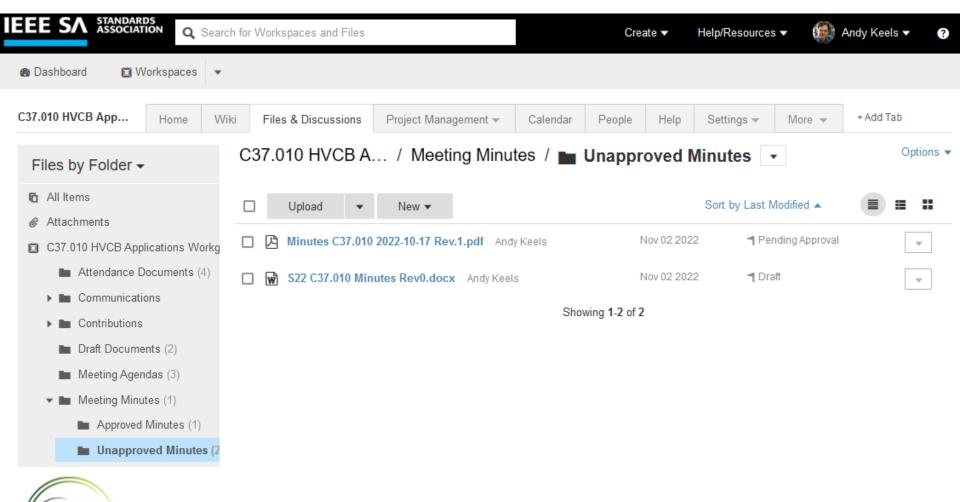
10/10/2023 6th working group meeting San Diego, CA

04/02/2024 7th working group meeting Ft. Lauderdale, FL

10/14/2024 8th working group meeting Oklahoma City, OK

02/07/2025 9th working group meeting VIRTUAL WebEx

04/07/2025 10thworking group meeting Orlando, FL


Current Member List For Quorum Check

1	Aaron Rexroad	21	Jeff Scott
2	Albert Livishitz	22	Jeff Ward
3	Andrew Chovanec	23	Jennifer Hunter
4	Anthony Ricciuti	24	Jeremy Hensberger
5	Arben Bufi*	25	Lucas Colette
6	Carl Kurinko	26	Marcus Young
7	Carl Schuetz	27	Matt Westerdale
8	Casey Weeks	28	Michael Christian
9	Chris Jarnigan	29	Michael Crawford
10	Craig Bryant	30	Michael Skidmore
11	Craig Polchinski*	31	Miklos Palazzo
12	Dan Benedict	32	R. Kirk Smith
13	Dan Shiffbauer	33	Robert Hanna
14	David Mitchell	34	Samuel Zaharko
15	Devki Sharma	35	Steven May
16	Don Steigerwalt	36	Thomas 'Andy' Keels
17	Mikos Orosz	37	Todd Irwin
18	George Becker	38	Vernon Toups
19	Jake Walgenbach	39	Victor Hermosillo
20	Jan Weisker	40	Vincent Marshall
		41	Wei Zhang

C37.010 Working Group Approval of previous meeting minutes

Power & Energy Society

Table 6—Emergency load current-carrying capability factor (I_{ea}/I_r) for various ambient temperatures for 4 h emergency period

Maximum ambient	Limiting temperature (°C) of different circuit breaker components								
temperature (°C)	θ_{max}	70	80	85	90	105	110	115	150
()	θ_r	30	40	45	50	65	70	75	110
60	0	.90	0.92	0.93	0.93	0.95	0.95	0.967	0.98
50	1.08		1.06	1.06	1.04	1.04	1.03	1.065	1.03
40	1.25		1.19	1.17	1.15	1.12	1.11	1.107	1.08
30	1.40		1.30	1.27	1.24	1.19	1.17	1.154	1.13
25	1.47		1.36	1.32	1.29	1.23	1.21	1.184	1.16
20	1.53		1.41	1.37	1.33	1.27	1.25	1.238	1.17
10	1.66		1.51	1.46	1.41	1.33	1.31	1.265	1.21
0	1.78		1.61	1.55	1.50	1.40	1.38	1.316	1.26
-10	1	.89	1.70	1.64	1.57	1.47	1.43	1.366	1.30
-20	2	.00	1.79	1.72	1.65	1.52	1.50	1.414	1.35
-30	2	.00	1.88	1.80	1.72	1.59	1.54	1.460	1.38

NOTE 1—For limiting current, where the factor is 1.0 or greater, use highest θ_n and θ_{max} .

NOTE 2—For limiting current, where the factor is less than 1.0, use lowest θ_n and θ_{max} .

Table 7—Emergency load current-carrying capability factor (I_{es}/I_r) for various ambient temperatures for 8 h emergency period

Maximum ambient		Limiting temperature (°C) of different circuit breaker components								
temperature (°C)	θ_{max}	70	80	85	90	105	110	115	150	
(*C)	θ_r	30	40	45	50	65	70	75	110	
60	0	.79	0.85	0.86	0.87	0.90	0.90	0.931	0.94	
50	0.99		1.00	0.99	0.99	1.00	0.99	1.000	1.00	
40	1.17		1.13	1.11	1.10	1.08	1.07	1.065	1.05	
30	1.32		1.25	1.21	1.19	1.16	1.14	1.126	1.10	
25	1.40		1.30	1.27	1.24	1.19	1.17	1.154	1.13	
20	1.46		1.36	1.31	1.29	1.23	1.21	1.183	1.15	
10	1.60		1.46	1.41	1.37	1.30	1.28	1.240	1.19	
0	1	.72	1.56	1.50	1.46	1.37	1.35	1.291	1.23	
-10	1	.81	1.66	1.60	1.54	1.43	1.41	1.341	1.28	
-20	1	1.95		1.68	1.61	1.51	1.46	1.390	1.32	
-30	2	.00	1.84	1.75	1.68	1.56	1.51	1.437	1.36	

NOTE 1—For limiting current, where the factor is 1.0 or greater, use highest θ_{ν} and θ_{max} .

NOTE 2—For limiting current, where the factor is less than 1.0, use lowest θ_r and θ_{max} .

Goal of subgroup

- Clarify Table 6 and Table 7 related to emergency load current-carrying capability
- Follow-up from Spring '24 meeting addressing concerns over the proposed cautionary statement

Proposed Changes

- Most previously reviewed and discussed during Spring '24 meeting
- Update to proposed cautionary statement:

Extreme care must Care should be exercised by the equipment operator when exceeding the total temperature limits for the circuit breaker.

The emergency load current-carrying capability factors specified in 5.4.4 consider NEMA research utilizing historic documents that focused on oil circuit breaker and oil-impregnated paper bushing technology (C37.04-1979, C76.1-1967, and C57.13-1978); newer circuit breaker technologies and designs could render the emergency load current-carrying factors obsolete.

The most limiting temperature of the circuit breaker components should be confirmed before applying temperature rise calculations, and the The manufacturer should be consulted prior to the total temperature limits being exceeded to determine if any components would not tolerate a higher temperature safe combination of current, temperature, and time.

Report of the Max Allowable
 Voltage Subgroup to C37.010
 Working Group

October 15, 2024, Oklahoma City

Summary

At the S24 meeting a modified proposal was recorded

Existing wording:

4.2 Maximum voltage for application

The operating voltage should not exceed the rated maximum voltage of the circuit breaker. The rated maximum voltage is the voltage on which all the corresponding type tests have been based. The type tests values include some margins in order to accommodate aging as well as statistical behavior.

Proposed wording:

The operating voltage should not exceed the rated maximum voltage of the circuit breaker. "The rated maximum voltage is the voltage on which all the corresponding type tests have been based. The type tests include current interruption, capacitive, inductive, load switching and other applicable switching duties.

Some values used in the short circuit interrupting type tests include margins in order to accommodate aging and statistical behavior."

Summary

Modified proposal continuation

Add the following informative note:

"NOTE:

If system voltage operation above rated maximum voltage are experienced, the system TRV must remain within the circuit breaker capability as demonstrated in the type test report. If these are planned values the system TRV should be confirmed to be within related circuit breaker TRV capability by system study, calculation, or some other means. For further details refer to document C37.011."

 Report of the IBR Fault Current Subgroup to C37.010 Working Group

October 15, 2024, Oklahoma City

Review of IBR fault current determination learnings to date

The stated goal is to determine how to calculate fault current contributions of an inverter based resource (IBR) to add their determination method to the existing method as described in Clause 5

- Prior literature searches concluded only transient simulation software could practically determine the peak current of an IBR
- Several calculation methods, including manual, can determine the rms fault current from an IBR

A meeting between Sub-Group members and PSRC liaisons was held to determine if the PSRC was actively seeking a method to practically determine IBR fault current peak amplitudes

The PSRC provided the following information:

- The PSRC presently has no intention of determining transient currents
- The transient period current for an IBR is best based on transient time domain simulations
- The accuracy of those simulations within the transient period is not known since the simulation performer does not typically have the manufacturers component data and algorithm
- The software companies have not expressed an interest in determining transient currents
- EPRI has a project to do so

Impact to the stated goal

- Learnings and next steps
- Reviewing all information from the previous slide IBR fault current transient currents need to be determined by transient analysis software
- In order to provide a point of reference for IBR transient currents the Study Group is proposing a data collection effort of obtaining oscillography traces from power system faults that have IBR fault current sources

Proposed request for information

Wording for the request

The IEEE Study Group for CB application (C37.010) is requesting fault current recordings from inverter based resources during a system fault. The intent is to obtain recordings that capture the first peak of the transient current output of the IBR for such faults.

Remote Source #1

Fault location 2A

Fault location 2B

Fault location 2B

Source #2

Fault location 2B

Fault location 2B

Fault location 2B

Fault location 1

BR substation

Additional work remaining

Include revised guidance on the determination of fault currents and the limitations of the various methods

Revise the breaker selection example of clause 5 to include a system that has IBR contributions

Any suggestions from the WG that have not been identified?

Open Call for Additional Suggestions for Revisions

Contents

l.	Overview	. 1
	1.1 Scope	. 1
	1.2 Pupose	. 1
2.	Normative references	. 1
2	General service conditions	1
٥.	3.1 Usual service conditions	
	3.2 Unusual service conditions.	
	3.3 Mechanical considerations for outdoor circuit breakers	
	5.5 Mechanical considerations for outdoor circuit breakers	- 4
4.	Application considerations	. 2
	4.1 General	
	4.2 Maximum voltage for application	. 2
	4.3 Voltage range factor	. 2
	4.4 Frequency	
	4.5 Continuous current	
	4.6 Rated dielectric withstand	
	4.7 Standard operating duty	. 3
	4.8 Interrupting time	
	4.9 Permissible tripping delay T (determined by short-time current test duration)	
	4.10 Reclosing time	
	4.11 Short-circuit current rating	
	4.12 Transient recovery voltage (TRV)	
	4.13 Load current switching capability and life (repetitive operation)	
	4.14 Capacitance current switching	
	4.15 Line closing (line-closing switching surge factor for circuit breakers 362 kV and above)	. 5
	4.16 Switching lines with series capacitors	
	4.17 Conditions of use with respect to the out-of-phase switching current rating	
	4.18 Shunt reactor current switching	
	4.19 Transformer current switching	
	4.20 Controlled switching	
	4.21 Transformer limited fault (TLF) duties	
	4.22 Mechanical endurance	
	4.23 Rated control voltage	
	4.24 Fluid operating pressure	
	4.25 Insulating oil for circuit breaker	
	4.26 Closed pressure system (gas-filled)	
	4.27 Circuit breakers limiting factors for associated equipment	
	4.28 Circuit breakers equipped with resistors	6
	4.29 Service capability	
5.	Short-circuit considerations	
	5.1 System short-circuit currents	
	5.2 Methods for calculating system short-circuit currents	
	5.3 Electrical quantities used	
	5.4 Selection of applicable circuit breaker ratings	. 9

Annex B (informative) Circuit breakers directly connected to motors

Next On-Line Meeting will be via IEEE WebEx

Friday, February 7, 2025 13:00pm EDT (10am PDT)

Our Next in-person meeting is scheduled to be at:

Wyndham Bonnet Creek Resort; Orlando, FL April 6 - 11, 2025

Would someone like to make a motion to adjourn?

