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The “Data Mining” discussed in this tutorial

Historical view of the works included
What to be expected
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Data Mining

Data | ®» = Patterns

> Data mining is the process of extracting (statistically significant)
“patterns” from the data

> “Pattern” — Something that does not appear just once
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Two Questions

- How to represent a pattern?

Data | ®» = Patterns > Whatis it for?

> How “patterns” are represented (learning model)?
¢ Equations (linear, non-linear)
* Decision trees (rules)
* Collection of samples (SVM)
¢ etc.

> What patterns are for (application of learning model)?
¢ Prediction (inference)
* Description (explanation)
— Probably the first question you would ask is “what is it for?”
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Let’s Begin With A Story

RUIECE (for illustration)

Yield

Lots in time

> An automotive SoC product
Yield fluctuated over time
> Product engineer had studied the problem for months but could not
find a solution to fix it
— The design had gone through one revision of fix but did not solve
the problem
> Data: all the test data and e-test measurements

v

> Question: can you do better?

Tutorial - Li-C. Wang, 2013

Six Months Later

L]

Density

E=
Before

Yield Before  ADJ#1 ADJ #2 Both

> After 6-7 weeks of analysis and several meetings
— We recommended two process parameter changes

> Changes were accepted by the product team and foundry to do a split-lot experiment

> Result shows significant improvement in yield and reduction of the fluctuation

Tutorial - Li-C. Wang, 2013
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Data Mining In Our Domain = “Knowledge Discovery”

Knowledge
Discovery

Perceived
Interpretable
Knowledge

///W//////quwwww%

Actionable

Meeting
Discussion

Investigate
additional questions

Collect additional data

Implementation

Knowledge Discovery

Domain .
Statistical Knowledge Perceived
justifiable Interpretable
g Data Data Knowledge
Preparation Mining

1 i

Adjust Perspective

> In practice, data mining is an iterative Knowledge Discovery process
— Finding interpretable and actionable knowledge

> Knowledge is used to support “optimal” decision making

Tutorial - Li-C. Wang, 2013

The Need For “Domain Knowledge”

Domain Knowledge

Learning
Algorithms

N
r a

Data Preparation | |

Test Design
Data Data
N Relevance
<_ Analysis
Action
Domain Knowledge

(=3 Question

> For optimal decision making, domain knowledge is almost necessary
— Keep in mind that a learning algorithm is just one software toolbox
in the entire knowledge discovery flow
— Nevertheless, we still need to begin the journey by understanding
various learning algorithms

Tutorial - Li-C. Wang, 2013
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Four Stages In A Knowledge Discovery Process

4
S )G CE S S ==
£ o § Data Exploration
- £ 5
€ g g é =
g1 8 -
g ga s 8
=] T o g =
3| 5% =
a a
o
> Time
| J
[
Most time spent
> 1. Understand the constraints and preparing the data
> 2. Data exploration — search for the “right” perspective
> 3. Validation with either data or domain knowledge
> 4. Result optimization for applicability
— This step is where a sophisticated learning algorithm may
make a difference
Tutorial - Li-C. Wang, 2013 9

Disclaimer and Students

> Disclaimer
— This tutorial is largely based on research works done by my students since 2006
— Itis not intended to be a survey of the field

> PhD Students (2006 — current)
— Ben Lee (Startup) - 2006
— Charles Wen (NCTU, Taiwan)
— Pouria Bastani (Intel)
— Onur Guzey (Intel -> MIT)
— Sean Wu (TPK, Taiwan)
— Nick Callegari (nVidia)
— Hui Lee (Intel)
— Janine Chen (AMD)
— Po-Hsien Chang (Oracle)
— Gagi Drmanac (Intel)
— Nik Sumikawa (Freescale) - 2013

— Jeff Tikkanen (TBD)
— Wen Chen (TBD)
— Vinayak Kamath (TBD)

Tutorial - Li-C. Wang, 2013 10
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Tutorial -

Three Phases Of R&D

Ben Lee (06-07) Mag (05-06)
«is Algorithm
oo Exploration | e

Feature-based rule | ; i naIysns)

Which algorithms
are useful?
How to apply them?

Unctional test selection
(OpenSparc))
Nick Calleg 09)
(Feature-based rul earnlng,
Similarity search, path selecti

Hui Li(08-10) App||cat|on )hen(08-

(Analog Modeling)

., Exploration "5

In D&T, how data
learning can be
applied?

(Delay testing, analog modeling,
Layout hotspot, test co’duction)
Nik Sumikawa (11-13)

(Cui

== Realization | , O

Jefrrrrarrer (IZ715]

In practice, how to
realize a data
mining flow?
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Plan For The Tutorial (6 hours = 360 minutes)

> Opening (20 minutes)
> An introduction to data mining in design and test (120 minutes)
— Basic learning concepts and intuitions to algorithms
— Example problem formulations and application contexts
> Learning theory, SVM and Kernel Method (60 minutes)
> Application examples, working principals and findings (60 minutes)
> Knowledge discovery — Application examples in Tests (60 minutes)

> Knowledge discovery — Application examples in Verification (30 minutes)

> Final Remark and Questions (10 minutes)

Tutorial - Li-C. Wang, 2013 12
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Plan For The Short-Version Tutorial (2.5 hours = 150 minutes)

> Opening (10 minutes)
> An introduction to data mining in design and test (120->60 minutes)
— Basic learning concepts and intuitions to algorithms
— Example problem formulations and application contexts
> Learning theory, SVM and Kernel Method (60->15 minutes)
> Application examples, working principals and findings (60->40 minutes)
> Knowledge discovery — Application examples in Tests (60->30 minutes)

> Knowledge discovery — Application examples in Verification (if have time)

> Final Remark and Questions (10->5 minutes)

Tutorial - Li-C. Wang, 2013 13

Quick Overview

Supervised learning Unsupervised learning

\ A

[

| |

Classification ‘ ‘ Regression ‘ ‘Transformation ‘ ‘ Clustering ‘ ‘ Outlier ‘ ‘ Rule Learning

‘ How to apply

Delay test Emax

Layout Selective tests for cost reduction

hotspot
Functional g Customer return
Vabinealon e Selective burn-in

Design-silicon timing correlation
Pre-silicon Post-silicon Post-shipping
Practical Academic Uncertain
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An introduction to data mining and
some applications in design & test

(120->60 minutes)

Tutorial - Li-C. Wang, 2013 15

Data Mining 101

features— f, f, .. f, vectors
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> A learning algorithm usually sees the dataset as above
— Samples: examples to be reasoned on
— Features: aspects to describe a sample
— Vectors: resulting vector representing a sample
— Labels: care behavior to be learned from (optional)

Tutorial - Li-C. Wang, 2013
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Data Mining Approaches

> Classification

> Regression

> Clustering

> Transformation

> Outlier Detection
> Density Estimation
> Rule Learning

Tutorial - Li-C. Wang, 2013 17

Data Mining Approaches

> Classification
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Data Mining 101 — Supervised Learning - Classification

(features) f, f, ... f, )
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o Class labels
> Classification
— There are labels y’s
— Each y’s represents a class
> For example, in binary classification, y=-1ory=+1
Tutorial - Li-C. Wang, 2013 19

Example Learning Algorithms For Classification

> Nearest Neighbors
> Linear Discriminant Analysis (LDA)
— Quadratic Discriminant Analysis (QDA)
> Naive Bayes
> Decision Tree
— Random Forest
> Support Vector Machine
— Linear
— Radius Based Function (RBF)

Tutorial - Li-C. Wang, 2013 20
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Example Learning Algorithms For Classification

> Nearest Neighbors
> Linear Discriminant Analysis (LDA)
— Quadratic Discriminant Analysis (QDA)
> Naive Bayes
> Decision Tree
— Random Forest
(discussed later)

Tutorial - Li-C. Wang, 2013 21

Nearest Neighbors

y = f(x) = average of the k nearest neighbors to x

Uniform average or l
weighted by inverse of distance

a given distance function
Userchoose | 3 gjven space

3-Class classification (k = 15, weights = ‘uniform’) 3-Class classification (k = 15, weights = "distance’)

Tutorial - Li-C. Wang, 2013 22
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Linear Discriminant Analysis (LDA)

Class 1

— Model it as a Gaussian Distribution N (uq, COV;)

. Model it as another Gaussian Distribution
N(u, COV,)

Class 2

Prob(x in class 1 | given x)
Prob(x in class 2 | given x)

Decision function: f(x) = log

» For each class, the mean and covariance are estimated based on the data
> In LDA, the two covariances are assumed to be the same

— Otherwise, it is called Quadratic Discriminant Analysis (QDA)
> In many cases, the difference between LDA and QDA is small

Tutorial - Li-C. Wang, 2013 23

LDA vs. QDA

Linear Discriminant Analysis  Quadratic Discriminant Analysis

Data with fixed covariance

Data with varying covariances

Source: http://scikit-learn.org/stable/auto _examples/plot Ida gda.html

Tutorial - Li-C. Wang, 2013 24
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Bayesian Inference — Naive Bayes Classifier

_ p(class) p(x,,...,X, | class)  prior xlikelihood
P(X,--X,) evidence

p(class|X,,..., X,)

p(class | X,,..., X,) o p(class) p(x,...., X, | class) 0% p(class) p(x, | class)--- p(x, | class)

Independent assumptions

> The naive Bayes classifier uses the assumption that features are
mutually independent

— This is not usually not true as we have seen in the test data

> Also, if each xi is a continuous variable, we either need to estimate the
probability density, or we need to discretize the value into ranges

Tutorial - Li-C. Wang, 2013 25

Decision Tree Classifier

Find the best feature f and the
decision rule f>c to split the dataset
into 2 dataset with more purity

Recursively Recursively
find the best split find the best split

> An easy and popular learning algorithm CART (1984 Breiman et al.)
> Of course, the key question is how to measure “purity”

Tutorial - Li-C. Wang, 2013 26
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CART Approach

> Randomly select m?/2 [ ] Class 1
variable to be tried at B Class 2
each split node

> Find the variable that
split the data the best
(purity meas.)

> Stop Criterion

1. The split has fully
separated the subset

2. None of the variable can

subset anymore.

Tutorial - Li-C. Wang, 2013

further separated the Class 2 Class 1

27

Gini Index — impurity measure

measure of impurity

— Itis calculated

node split # of +1 samples: /,
# of -1 samples: /,

calculated
H

Gini(sz)=1 —(

Tutorial - Li-C. Wang, 2013

» Giniindex -a # of +1 samples: h,

# of -1 samples: h,

of a dataset

before and after a st L=l Aoplit \Sw R=r1tr,
# of +1 samples: r,
# of -1 samples: r,

> From Gini index the Gim‘(s,):l—{hl h
Gini importance I e
impot(s;) can be Gim‘(sﬂ:l-[lT'l

1 2

nth

impot(s;) = Gini(s;) — Gini(s,)* Y Gini(sg)* =

28
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Random Forests

> Ensemble learning: If you have n weak learners, together they can be
strong — each tree is a weak learner (over-fitting the data)

— Build a collection of trees

> Select a random set of (training) samples (2/3 subset)
> Grow a tree based on only the selected samples (in-bag data)

> Use the unselected samples (out-of-bag data) to validate the tree
performance, i.e. prediction accuracy

> Grow many trees until the average accuracy saturates
> The prediction is based on votes from all trees (votes = confidence)

TR Y &%

Tutorial - Li-C. Wang, 2013 29

A Comparison of Classifiers

Newrest Neighbors LinearsyM RAF SV L gt Haive Bayes

tiearest Ne -v"nnn

hisors --  fureat Narve Bayes
FaRrer . g
Tt 3 —-
J:a:“‘ “ i # “ I
o T 3 E ' {

Source: http://scikit-learn.org/stable/

Algorithms are comparable on the 15t and 3™ examples
Performance on the 2" example varies
In practical application, a more complex algorithm is not necessarily better

YV V V V

Results also largely depend on the “space” the data is projected onto

Tutorial - Li-C. Wang, 2013 30

Tutorial - Li-C. Wang 2013 15



Data Mining in Desng & Test - P&P November 2013

An Application Example

(N+M) sample parts » |:| D eee |:| Class 1

An complex and

DD cee D » expensive test flow »DD cee D Class 2

DD see |:| » A much cheaper »

test flow involving

DD see |:| » K tests

Parts in production » |:| D 500 |:| Class 1

Learning

.. ess - » Model »DD vee ‘:l Class 2

> Learning model tries to replace the expensive flow with the cheaper one

Tutorial - Li-C. Wang, 2013 31

Specific Example — Parametric Delay Test

(past) (current)

Less uncertainty
Testing is deterministic
Decision is binary

A lot more uncertainty
Statistical testing
Decision is probabilistic

good

good
defective defective?

Delay Delay

# of chips

> In the past, good and bad behavior can be clearly separated in a one-

dimensional view
— Consider what being shown is the delay based on a pattern

> Variations blur the boundary between good and bad
— Making it hard to separate in a one-dimensional view

32
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Turning Delay Test Into Parametric Measurement

D i : : +1
I:l cee D elay test with [a . ]
» one or more ' N1 NK .
D I:I faster-than-Spec B eeny
e ‘ test clocks : : -1
byi - byg
> Each measured value is an integer depending on the # of clocks applied
94 -
()
&D 92 -+ w4
9 90
o
o
4+ 88 -
o
Q
Q 86 -
o
Y
O 84 -
X
82 #oftrainingsamples
RERRRCROIEOIE P OSSN

Ben Lee et al. (ITC 2006)
“Issues on Test Optimization with Known Good Dies and Known Defective Dies —A Statistical Perspective”

Tutorial - Li-C. Wang, 2013 33

Data Mining Approaches

> Regression

Tutorial - Li-C. Wang, 2013 34

Tutorial - Li-C. Wang 2013 17



Data Mining in Desng & Test - P&P November 2013

Data Mining 101 — Supervised Learning - Regression

(features) f, f, .. f,

~ K
1 X X e Xy, / Vi
_ ; '
1
X, Xy Xppo e Xl (2]
X= = Y+ !
1
! 1
|\ 1
—_— 1
\
xm xml me 000 xmn * ym /
A ’

Numerical output values
> Regression
— There are outputs y’s
— Each y’s is a numerical output value of some sort

> For example, y is a frequency

Tutorial - Li-C. Wang, 2013 35

Example Learning Algorithms For Regression

LSF method K-NN method
Improve on the (linear model, (distance-based,
over-fitting iss over-fitting the over-fitting the
training dataset) training dataset)
RG method Improve on the
(linear model, over-fitting issue GP_ methqd
provide a way to (Bayesian version of
avoid the over-fitting) SVR method the SVR method
(distance-based, with the ability
Replace linear model use kernel k() to / to estimate the
with a model in the form calculate the distance, | Combined | prediction confidence)
of a linear combination provide a way to with
of kernel basis functions avoid the over-fitting) = Bayesian
inference
> See Janine Chen et al. (ITC 2009)
— “Data Learning Techniques and Methodology for Fmax Prediction”
Tutorial - Li-C. Wang, 2013 36
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» Assume a model

Least Square Fit

X P X o Xy, M

x2 x21 x22 x2n —- y2
X = = y =

xm xml me xmn ym

Assume model:

f(x) = wixg + woxy + -+ wypx, +b

min SE = Z:(f(x?) —yi)?

— Minimize the sum of squares to find values for the coefficients

Tutorial - Li-C. Wang, 2013
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>

Ridge Regression

min SE = Y72, (F (%) — y)? + @ Y% (w;)? —— Regularization term

Ridge coefficients as a function of the regularization

100

weights

107 w? ot 10* 108 107 w*  w* ™
alpha

Source: http://scikit-learn.org/stable/modules/linear_model.html

Adding a regularization term makes the model more robust
— Avoid over-fitting the data

Tutorial - Li-C. Wang, 2013
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An Application Example — Fmax Prediction

X=X X, - X, (anew chipc)
n delay measurements Dataset
AL
- ™

M, M, .. m, Fmax
(72)
X | |*u X2 o Xy ! S
- (7p)
X X Xpo . X Y, D
X = 2| — 21 22 2n y = =3
IS
=
—_ w
Xm Xml Xm2 an ym =

Fmax of c?
> Delay measurements can be
— FF based, pattern based, path based, or RO based
Tutorial - Li-C. Wang, 2013 39

Example Fmax Data

>

# of samples

Frequency

See Janine Chen et al. (ITC 2009)
— “Data Learning Techniques and Methodology for Fmax Prediction
— Consider FF based, pattern based and path based data

”

Tutorial - Li-C. Wang, 2013 40
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Experiment Setup

Training dataset

A

Test dataset

\

\[

|

| 5/6 of total samples

1/6 of total samples |

@ Train

Prediction

Apply

]

Test
MSE %

> Training MSE% - Show how well the model fits the data
> Test MSE% - Show how well the model generalizes

— Test MSE% is what an application cares about

Tutorial - Li-C. Wang, 2013
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6.00%
5.00%
4.00%
3.00%
2.00%
1.00%
0.00%

8.00% T+
7.00% +

Training MSE
NN (k=5)

T Ridge

Least Square

1 8 15 22 29

Least Square

36 43 50

Some Result

90.00%
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L
T

|

Test MSE

Least Square

Ridge

NN (k=5)

y 4 4 '

8

15 22 29 36 43

— With a small dataset and a high dimensional space, the model tends to over-fit

the data
Ridge

— Regularization helps to alleviate the over-fitting situation

Nearest Neighbors

— Although simple, show best result

— More complex algorithm is not always better!

Tutorial - Li-C. Wang, 2013
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Data Mining Approaches

> Clustering

Tutorial - Li-C. Wang, 2013

43

Data Mining 101 — Unsupervised Learning

(features) f 1

xl xl 1
_ x2 _ x2 1
xm xml

> Popular approaches
Clustering
Transformation (dimension reduction)
Novelty Detection (Outlier analysis)
Density Estimation

le xln
x22 x2 n
me xmn

Tutorial - Li-C. Wang, 2013

Noy’s

44
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Clustering Algorithms

MiniBatchKMeans AffinityPropagation MeansShift SpectralClustering
T S S

|

Source: http://scikit-learn.org/stable/auto_examples/cluster/plot_cluster comparison.html

> Clustering largely depends on
— The space the samples are projected onto
— The definition of the concept “similarity”

Tutorial - Li-C. Wang, 2013 45

Clustering: K-Mean

» K-Means
— User gives the number of clusters k
— The algorithm follows simple 3 steps
* 1. Randomly start with k samples as cluster centers
* Loop until centroids coverage
— A. Assign the rest of points to its nearest center
— B. For each cluster, create a new centroid by taking the mean of all points in the cluster

> Mini Batch K-Means (for speed reason)
— In each iteration, randomly sample b points and assign them to centroids
— Centroids are updated based on all points currently and previously assigned to them

KMeans MiniBatchKMeans Difference

train time: 0.058 * ,
inertia: 2476

train time: 0.
47

http://scikit-learn.org/stable/modules/clustering.html

Tutorial - Li-C. Wang, 2013 46
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K-Means Is Not Robust

é
2 3 »i3, + »7 3o,
. 0 . P e .
+ o @ R .y
' 4 g ® ® -r
oe o L
b ] e @ ®
L] * 8+ 4 3 sf *E ¥ - LYy *o §G
o DR . ¥
+ +
e »t s, ’t o,
" ot > .1 P LR O
'y -a" . 0y a.' ST e.f %
-, - "% w ™%
http://en.wikipedia.org/wiki/K-means_clustering
> The result depends on the initial points selected
> Final solution may converge to a local minimum
Tutorial - Li-C. Wang, 2013 47

Clustering — Mean Shift

> Mean shifts intends to find the “modes” in a distribution
> The algorithm follows simple 3 steps
— 1. Fix a “window” around each point

— Loop until coverage
* A. Compute the mean of the data within a window
* B. Shift the window to the mean

Estimated number of clusters: 3

Center points for the clusters

: l i,

T ] -1 [} 1 E3 3 4

http://scikit-learn.org/stable/auto_examples/cluster/plot_mean_shift.html

Tutorial - Li-C. Wang, 2013 48
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Clustering — Affinity Propagation

Sending responsibilities

Candidate :
Soparle  Compatng
@) exemplar &
ri.k) /a(i.k')

Data point {

> Initially, a(i, k) =0

> Iterate to find “exemplar”

r(i, k) : how strong k should be the exemplar for i 7(i.k) < s(i.k) _k.l?:?}(?ﬁfk{d(i,k') +s(i,k)}

a(i, k) : how strong i should use k as the examplar ,(;z) mm{(), ke k) +Z max {(),,-(g"k)}}

istiefik}

Sending availabilities

Candidate
exemplar k

rii’ k)

. '\
@
Supporting
data point i’
©)

alik)
O

Data point §

— s(i, k) = similarity measure between i and k — e.g. always €[0,1]
— When r(k,k) becomes negative, it is no longer a candidate for exemplar

Tutorial - Li-C. Wang, 2013 49

Clustering — Affinity Propagation

r(i, k) : how strong k should be the exemplar for i

A rk

A
INITIALIZATION ITERATION #1 ITERATION #2 ITERATION #3
., s, ., s,
._\ —— Pey E = Sy : ,‘/ Aoen ” ‘/
s N , L7
{ 1&_ N i f -,. Y\ L= ', °;,L~1 H ). 5
S pree boans St L LS —a
L L ; pere ‘ =
T..\ ° s R
o ® o p > r// -
. . . y
el o o el
A A
ITERATION #4 ITERATION #5 ITERATION #6 CONVERGENCE

> See Brendan J. Frey and Delbert Dueck
— “Clustering by Passing Messages Between Data Points”
— SCIENCE www.sciencemag.org, Vol 315, Feb 16, 2007

Tutorial - Li-C. Wang, 2013 50
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Clustering — Other Algorithms

> Spectral clustering
— Perform a low-dimensional data projection first
— Operate the K-Means in the reduced dimensional space

> Hierarchical clustering (Ward)
— Following a tree-like structure
* Leaves are individual samples
— Work bottom-up to the root of the tree
— Merge similar samples into the same parent when moving up
— Decide a level to output (# of nodes at the level = # of clusters)

> DBSCAN
— User defines two parameters: min_samples and eps

— A core sample
* There are at least min_samples points within eps distance

— A cluster = defined by a set of core samples close to each other
— The algorithm tries to identify “dense” region in the space

Tutorial - Li-C. Wang, 2013 51

Recall: Clustering Algorithms

MiniBatchKMeans AffinityPropagation MeanShift SpectralClustering
S, h SN

Source: http://scikit-learn.org/stable/auto_examples/cluster/plot _cluster_comparison.html
> Clustering largely depends on

— Input parameter(s) chosen

— The space the samples are projected onto

— The definition of the concept “similarity”

Tutorial - Li-C. Wang, 2013 52

Tos

Tutorial - Li-C. Wang 2013
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An Example Application — Functional Test Selection

> However, many tests do not seem to capture anything

> Simulation for functional verification is time and resources consuming

> What if we can select “representative tests” before simulation?

November 2013

A less
expensive, Select Test
easier to Representative - application
implement Alarge tests Selective
TPG scheme | pool of tests \ tests
Clustering is a natural fit
AN o The real challenge is
) | i Qo |
-0 0. 9 ' ) .O /17 How to define a metric space that make sense?
(' ® R: i O— A metric space is where the similarity
i @) R (or distance) of two tests can be calculated
Tutorial - Li-C. Wang, 2013 53

Some Result

e metric tests (168)
' i1 7:_:,7 Statements 57.5 85.8 85.2
e L— Branches 60.6 84.4 84.1

1w | Expressions 76.9  92.3 92.3

I/ Conditions 630 783 78.2

U] Toggle 524  76.6 76.6

Plasma (MIPS) core

> See Po-Hsien Chang et al. (ITC 2010)
— “A Kernel-Based Approach for Functional Test Program Generation”

> Findings
— The real challenge is not the learning algorithm, but to define a “kernel”
function that measures the similarity between two assembly programs

— Even though clustering seems to be a natural fit, a better way is to employ
the “novelty detection” approach (discussed later)

Tutorial - Li-C. Wang, 2013 54
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Data Mining Approaches

> Transformation

Tutorial - Li-C. Wang, 2013 55

Transformation — Principal Component Analysis

fl fZ fN
Q5 r, = 11 12 N Re-Projection
= .
g : E> ’:> of data in a
“ —>
S Sm ry =0d, d Dum 1 PCA space

> Principal Component Analysis (PCA) — find directions where the data
spread out with large variance

— 15t PC — data spread out with the most variance

— 2n PC - data spread out with the 2"d most variance
> PCAis good for

— Dimension reduction — feature selection

— Visualization of high-dimensional data

— Outlier analysis

Tutorial - Li-C. Wang, 2013 56
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PCA for Outlier Analysis in Test

| This outliers are not
screened by the two
tests individually

Test 2

> Each test is used to screen with a test limit

— Two tests essentially define a bounding box

> Multivariate outliers are not screened by applying tests individually

Tutorial - Li-C. Wang, 2013 57

Multivariate Outlier Analysis

Test Limits in 2" PC
A\ N
~N
% o
) a
Test Limits in 27 PC Test Limits in 1%t PC
Test 1 PC1

This is what we desire

PCA helps achieve that

> Use PCA to re-project the data into a PCA space
— then define the test limits in the PCA space
— Each PC becomes just another test individually

> See Peter O’Neil (ITC2008)

— “Production Multivariate Outlier Detection Using Principal Components”
> Also see Nik Sumikawa et al. (ITC 2012)

— “Screening Customer Returns With Multivariate Test Analysis”

Tutorial - Li-C. Wang, 2013 58
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Data Mining Approaches

> Outlier Detection

Tutorial - Li-C. Wang, 2013

59

Novelty Detection — Outlier Analysis

Principal Component Analysis
Covariance based

— Mabhalanobis distances
Density based

— Support Vector Machine one class
Tree based

— Random Forest

Not the same as clustering
— We only care about finding outliers

Tutorial - Li-C. Wang, 2013
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Covariance Based Outlier Detection

Mahalanobis distance MD(¥) = (X — ) X7 1(#% — i)

learned decision function
true inliers
true outliers

> Assume data follows a multivariate Gaussian distribution
> Essentially, find one oval shaped model to fit most of the data

Tutorial - Li-C. Wang, 2013

61

Covariance Based vs. Density Based

Outlier detection Outlier detection

- = learned decision function
ooo true inliers
e _true outliers

— learned decision function
ooo true inliers
ees true outliers

6 4 -2

-4 -2 0 2 4 - - 0 2 4 6
1. One-Class SVM (errors: 8) 2. robust covariance estimator (errors: 14)

Source: http://scikit-learn.org/stable/auto_examples/covariance/plot_outlier detection.html

If the data does not follow the Gaussian distribution assumption, then a
density based approach would be better

— 1-class SVM is a density based approach (discussed later)
Otherwise, variance based approach would probably be sufficient

Tutorial - Li-C. Wang, 2013
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An Application — Customer Return Analysis

> A customer return passes all tests
— But fail at customer site
— Itis mostly due to latent defect
> In this particular example
— SOC controller for automotive
— Start to fail after driving 15000 miles
— Show failure only under -40°C
* Failure is also frequency dependent
— Determined to be a latent defect

Tutorial - Li-C. Wang, 2013 63

Outlier Model For Customer Return

2nd Principal Component

-6

Y -2 ] 2
1st Principal Component

» In this case, we start with 3 tests
— Apply PCA first — use the first two PCs
— Apply variance based outlier model
> The return is the 33" outlier in the entire lot
> See Jeff Tikkanen et al. (IRPS 2013)
— “Statistical Outlier Screening For Latent Defects”

Tutorial - Li-C. Wang, 2013 64
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Data Mining Approaches

> Density Estimation

Tutorial - Li-C. Wang, 2013 65

Density Estimation

> For density estimation, several non-parametric methods were proposed
in 1960s

— Non-parametric because no fixed functional is given
> One famous example is the Parzen’s window

— Requires the definition of a kernel function that is a symmetric
unimodal density function

xX—X,

k(o) = k(M) xeR" P(x)= %Zf_lk(x,x,-,y)
. i

(x_xi)2

k(x,x,.1)= L ~~_Ti7 1 Gaussian kernel

exp{—
o2 pi 202

\J

-21 -13 -04 1.9 541 6.2

Tutorial - Li-C. Wang, 2013 66
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Density Estimation for Visualization

= Abnormal Wafers
= \Wafer Containg Customer Retumn
— Remaining Wafers in the Lot

45 50 55 ~to 3 70 75
> In the previous example, the customer return is located on a wafer whose distribution
of the test is different from majority of the wafers
> One can use Kolmogorov-Smirnov test (for estimating the similarity between two
distributions) to identify similar wafers
— Hence, the outlier model is applied only to the abnormal wafers
— This dramatically reduce the overkill rate
> See Jeff Tikkanen et al. (IRPS 2013)
— “Statistical Outlier Screening For Latent Defects”

Tutorial - Li-C. Wang, 2013 67

Data Mining Approaches

> Rule Learning

68

Tutorial - Li-C. Wang, 2013
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Data Mining 101 — Rule Learning

(features) f, f, .. f,

X X X e Xy, Vi
X, Xy Xy e Xyl (W
X = = y =
xm xml me oo xmn ym
Binary label

> With y’s label (binary class)
— Classification rule learning

> Without y’s label (unsupervised)
— Association rule mining

Tutorial - Li-C. Wang, 2013 69

Associate Rule Mining — An Application Example

> Rule mining follows a Support-Confidence Framework

> The basic principle is simple and intuitive
— From data, form a hypothesis space of candidates
— If a candidate appears “frequently” in a dataset, the candidate must have

some meaning

> The evaluation of this frequency is a 2-step process — Support and then

Confidence

Form

Define all ;
Candidates Candidates

hypotheses --

High freq.

High freq.
1 Eval. I ‘ Eval. (confidence)

(support)

‘ Dataset

70

Tutorial - Li-C. Wang, 2013
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Example — Sequential Episode Mining

A hypothesis is
a string of
length =2

!

‘ EFYSABHJICDKLABVCDKKABUUCDLABCDOPWE ’

Tutorial - Li-C. Wang, 2013 71

Example — Sequential Episode Mining

EFYSABHJICDKLABVCDKKABUUCDLABCDOPWE

A hypothesis is
a string of {AB,CD}
length =2

1 t Support
=4

‘ EFYSABHJICDKLABVCDKKABUUCDLABCDOPWE

Tutorial - Li-C. Wang, 2013 72
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Example — Sequential Episode Mining

EFYSABHJICDKLABVCDKKABUUCDLABCDOPWE

AB AB &4 AB AB¢y
N CD CD b ChD CD

A hypothesis is

Form
a string of {AB,CD} mp ( AB=CD AB = CD

length =2 i
Confidence
1 I Sufpfrt l Eval. = 4/4 = 100%

‘ EFYSABHJICDKLABVCDKKABUUCDLABCDOPWE

Tutorial - Li-C. Wang, 2013 73

An Application — Simulation Trace Abstraction

> Analyze a simulation trace symbolically for better understanding
> Possibly extract sequential patterns in the trace

Simulation environment

Unit under_test
\

Constrained random
Test-bench

Input constraints

Tutorial - Li-C. Wang, 2013 74
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A Simple Example

sacom |
woncara | Siave
PRDATA Le
sacom |

i | AMBA 2.0
(AHB)

Messages
DOlo1 NI DO 1001 NCIEDI Kag1 JEDG o0t IO
I U T

“ /ahb_to/aht_mst_0_outhburst JOXOL 0 01 RN
“ fahb_th/ahb_mst_0_outhirans TSN 0T 2 O T8 T 0O A0 )RR N 20 28 TN T 2 T N I

“ _ fahb_tbvahb_mst_0_out hbusreq
# _ fahb_tt/ahb_mst_0_out hvaite
T EERIIDT TN INITOON 0 MEDCUN 00 DI TENEC(X NN TN T T NN AT O N T TR AT T T

-#  /ahb_to/anb_mst_0_out haddr

¢ {ahb_tb/ahb_mst_0_out hprot 111 i
-“  /ahb_tb/ahb_mst_0_out iwdata L OO T MO I s IO 7 IO TN B X )N I TN I AR TN RN T [T ST KN

“ 7ahb_tovahb_mst_0_in hgrant
“ zahb_to/ahb_mst_0_in hready

X Mo |11 e

> See Po-Hsien Chang et al. (ASP-DAC 2009)
— “Automatic assertion extraction via sequential data mining of simulation traces”

Tutorial - Li-C. Wang, 2013

An Example Rule

#  ahb_ms1_0_outhsize
hpeat

Episode A Episode B

<>

A (request/wait) = B (transfer)

> The separation in between A and B can be with an arbitrary number
of cycles

Tutorial - Li-C. Wang, 2013 76

Tutorial - Li-C. Wang 2013
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Summary — Supervised Learning

Weighting features

X

<l

Weighting samples

> Supervised learning learns in 2 directions:
— Weighting the features

* Tree learning, feature selection algorithms, Gaussian Process

— Weighting the samples

* SVM, Gaussian Process (discussed later)

> Supervised learning includes
— Classification —y are class labels
— Regression —y are numerical values
— Classification rule learning

Tutorial - Li-C. Wang, 2013

77

Unsupervised Learning

Reduce dimension

X

Grouping samples

> Unsupervised learning also learns in 2 directions:
— Reduce feature dimension

* Principal Component Analysis (PCA), Association Rule Mining

— Grouping samples or finding outliers

* Clustering algorithms, Outlier detection algorithms

> Unsupervised learning includes
— Clustering
— Transformation (PCA, multi-dimensional scaling)
— Novelty detection (outlier analysis)
— Density estimation
— Association rule mining (explore feature relationship)

Tutorial - Li-C. Wang, 2013
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Learning Theory, SVM and
Kernel Method
(60->15 minutes)

Tutorial - Li-C. Wang, 2013 79

Classification, Machine Learning, Pattern Recognition

Perceptron (1958 Rosenblatt — 2-level neural network)

Kernel trick (1964 Aizerman et al.)

Back propagation (1975 Werbos — NN with hidden layer)

Support Vector Machine (1995 Vapnik et al.)

Gaussian Process for Regression (1996 Williams&Rasmussen)

SVM one-class (1999 Scholkopf et al.)

l Gaussian Process for Classification (1998 Williams&Barber)

T Rule learning (2002 CN2-Subgroup Discovery)

Random Forests (2001 Breiman)

Rule learning (1993 C4.5)
Rule learning (1989 CN2)

Decision tree learning (1986 1D3)
Decision tree learning (1984 CART)

In machine learning, Perceptron is widely considered as one of the earliest
examples to show that a machine can actually “learn”

SVM is based on statistical learning theory that provides the necessary and
sufficient conditions where a machine is guaranteed to “learn”

Tutorial - Li-C. Wang, 2013 80
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A Popular Dataset For Machine Learning Research

¥5L1%9

7
4
p,
]
/

7
: 7
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¢ 7
L 9

Source: Hastie, et al. “The Elements of Statistical Learning” 2" edition 2008 (very good introduction book)
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> One of the most popular datasets used in ML research was the USPS dataset
for hand-written postal code recognition

— e.g. When SVM was introduced, it substantially outperformed others
based on this dataset

> Question: What is the difference between this problem and yours?

Tutorial - Li-C. Wang, 2013 81

Binary Classification

Orange space Grey area
/ —
: Blue space
1 -

Source: Hastie, et al. “The Elements of Statistical Learning” 2" edit 2008 (very good introduction book)

> There are subspaces that are easy to classify (all algorithms agree)

> One algorithm differs from another on how each partitions the
subspace in the “grey area”

— What'’s the “best way” to define the “orange-blue” boundary?

Tutorial - Li-C. Wang, 2013 82
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Model Complexity

Source: Hastie, et al. “The Elements of Statistical Learning” 2"d edition 2008 (very good introduction book)
/ Fibi
| |
J’/. o \-’ AT \".I I:"\_
Hiighey \‘ :\‘ //ﬁ R ,fl \"\
N /J i A \
n 5 i N
/
Nearest neighbor model
Complex — rough edge Complex — fragmented Smooth
> You can always find a model that perfectly classifies the two classes of
training samples (middle picture — based on nearest neighbor strategy)
— The model is usually complex
> However, this may not be what you want
— Because your model is highly biased by the training data
Tutorial - Li-C. Wang, 2013 83

Model Complexity Vs. Prediction Error

Error on the validation (future) samples

Prediction error

Over-fitting

Error on the training (historical) samples

low Model Complexity high

> Inlearning, an algorithm tries to explore this tradeoff to avoid over-fitting
> There are two fundamental approaches
— Fixing a model complexity
* Find the best fit model to the train data
* e.g. Neural Network, equation based models
— Fixing a training error
* Find the low-complexity model (given ALL possible functional choices in a space)
* e.g. SVM

Tutorial - Li-C. Wang, 2013 84
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Neural Network (Fixed Complexity)

Y % - X Kclasses

Y, =b,Z, +b,Z, +...+Dby,,Z,, +by,

Q- - M hidden variables
Z, =0(ay X, +a, X, +...+ 85 X +23y)
2 /
a(x) :; = |
o @3 o 1rexp(-x) | __.7

Source: Hastie, et al. “The Elements of Statistical Learning” 2"d edition

> A neural network model complexity is fixed by fixing the number of Z
variables

> Learning is by finding the best-fit values for the parameters
— (M+1)K parameters
— (P+1)M parameters
> e.g. Use the back propagation algorithm (1975 Werbos)
Tutorial - Li-C. Wang, 2013 85

Support Vector Machine

> Fix the training error, minimize the model complexity
— Find the “simplest model” to fit the data
— Occam'’s razor (William of Ockham 1287-1347)
* The simplest is the best

* The razor states that one should proceed to simpler theories until
simplicity can be traded for greater explanatory power.

> What is the complexity of a learning model?
— What is the model like?

Tutorial - Li-C. Wang, 2013 86
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What Is The Model Like?

> Suppose we have a similarity function that measures the similarity
between any two sample vectors

k (X )_(> ) measures the similarity between two vectors
LA

> An SVM model always take the following form:

f(X)=b+Zak(X,X)

Weighted average of similarity measures

87

Tutorial - Li-C. Wang, 2013

Model Complexity

1 A X X1n a,
Xol X X T B [ 25
X = = a =
xm xml me xmn am

Model complexity o« (¢} +...+ ¢, )

> In SVM theory, model complexity is measured by the sum of alpha’s

Tutorial - Li-C. Wang, 2013 88
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Complexity
of the function
to be learned

Robustness and Efficiency

Complexity of the
learned function

Data Size

Modern learning algorithms such as SVM improve the consistency,
robustness and efficiency for converging to the “truth”

— Consistency: As data size approaches infinity, it guarantees to learn
the truth

— Robustness: The more data, the better learning model is
— Efficiency: The best algorithm has the highest rate of convergence

In contrast, a traditional fixed-model-complexity approach does not
guarantee this consistency and robustness

Tutorial - Li-C. Wang, 2013

89

SVM Is a Form Of Kernel-Based Learning

‘ Learned model ‘
@

Optimization
engine (SVM)

Query for Similarity Measure
pair (x;,x;) for (x,%,)

Kernel evaluation k() ‘

» SVM engine and kernel are separated entities
> SVM always builds a “linear” model in the space defined by the kernel

— to build a non-linear model, we just use a non-learning kernel

> A well-defined kernel k(x,y) = <¢(x), ¢(y)> for some mapping ¢( )

dot product : < X,y >= X, Y, +...+ X, Y,

Tutorial - Li-C. Wang, 2013
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Kernel Function — Turn Non-Linear Into Linear

Input space
o f
2

Feature space

v

\
(%), 4(x))
= (X1X'1+X2X|2 )2 where ¢(X) = (|X1|2 J |X2|2 J \/E|X1”X2|)
B(x)= (" x[ V2l

> The points are not linearly separable in the input space
After mapping, they are linearly separable in the mapped feature space

> With a complex enough feature mapping, the two classes of data points are always linearly
separable

Tutorial - Li-C. Wang, 2013 91

\4

Bayesian SVM

In SVM, a given kernel is a prior

— That gives our belief on how the data points are distributed in the
kernel-induced learning space

— This prior may not be optimal

If we have a perfect kernel, separation of two classes will become
extremely easy

Bayesian inference can be combined to estimate a best kernel
— Learning includes finding the best kernel for the prediction

The overall framework is called Gaussian Process (or GP, see the
book, Gaussian Process for Machine Learning,
http://www.gaussianprocess.org/)

— Very successful in regression
— Not yet applicable in unsupervised learning

Tutorial - Li-C. Wang, 2013 92
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Application examples, working
principals and findings
(60->40 minutes)

Fmax Prediction

Layout hotspot detection

Design-silicon timing correlation

Outlier delay test

Novel functional test program selection
Selective test for parametric test cost reduction

O e ®P

Practical Academic Uncertain

Tutorial - Li-C. Wang, 2013

93

Application Examples

e

2. Layout hotspot detection

oe LERSE R

Practical Academic Uncertain

Tutorial - Li-C. Wang, 2013
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Binary Classification — Layout Hotspot Detection

Good SGOOT

ample
Layout » Litho jSampIesl Image —|—>Vectors Learning
Samples Simulation j Encoding Algorithm
e e (svm)

Samples
Sample
Vectors

Simulated M | E
= =
|

Predicted

o]

S i

00 00

— But it is much faster
> See Gagi Drmanac et al. (DAC 2009)

Tutorial - Li-C. Wang, 2013

— “Predicting Variability in Nanoscale Lithography Processes”

> After learning, the SVM model becomes a surrogate for the Litho simulator

95

Two Fundamental Issues

> How layout is represented

> How big is a layout sample?

» The choices have non-trivial influence to the result

Tutorial - Li-C. Wang, 2013

— So that similarity between two layout samples can be captured?

96

Tutorial - Li-C. Wang 2013
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Layout Representation

Target

i

N

Log Nu

-

OO

60
Grayscale Intensity Values

N
Histogram‘ Transform (HDT)

Tutorial - Li-C. Wang, 2013 97

Kernel Function - Similarity Measure

> Histogram Intersection Kernel

— KHI(x, y) = Smin(xi, yi)

— Xi yi correspond to the contents of histogram bins.
> The larger the intersection the more similar the histograms are
> This kernel is proved positive semi-definite

123456 7 1234567

Tutorial - Li-C. Wang, 2013 98
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Extracting Layout Samples

> Start with a 100 x 100 pixel window
> Scan image with 50 pixels step for 50% overlap

> 1image pixel = 32 nm target area Generate
SVM
Dataset

-11:3.42:3.43.5.2
+11:1.1 2:6.8 3:0.3
-11:3.22:1.7 3:0.9
+11:4.12:1.43:1.0
-11:1.82:2.23:2.3
+11:5.9 2:3.7 3:4.3
+11:2.7 2:0.9 3:7.2
-11:1.6 2:3.7 3:9.1
-11:1.7 2:5.33:4.0
+11:3.7 2:4.6 3:0.3
-11:1.32:2.23:2.2
+11:2.12:1.7 3:0.1

Tutorial - Li-C. Wang, 2013 99

Challenges

> The work was discontinued because

— Not sure if it provide either accuracy and/or speed benefit to
the rule-based approach

— Or, learning should be used to extract rules, not just a
prediction model

— It should be applicable to the next technology node —
difficult to obtain data

Tutorial - Li-C. Wang, 2013 100
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3.

Practi

Application Examples

Lavn clion

Design-silicon timing correlation

ARt s CRRien

cal Academic

Tutorial - Li-C. Wang, 2013

Uncertain

101

3 o
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[
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Normalized Measured Slack

Fast Paths

A Practical Application

_ Slow Paths

|‘_A ";igﬁ‘:;
Ve .
T . 5 | ¢ ]
..‘. . e

25 3 35
Normalized Expected Slack

> Application to explain this example of timing abnormality

Tutorial - Li-C. Wang, 2013

|
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Summary Of The Methodology

Tests = BECEEIEY =w!  Path 3
Vectors |= Classifier

ATPG t Feature Ranking
N |
e L
% ©| = paths =
a 9
[
(7]

M) Design features
Temperature map Cell models

Sl Switching | LEF/DEF | Timing report
model | activity " .
. Verilog netlist
Design database

> The learning does not have to be for feature ranking

> Once setup, we can also apply classification rule learning to extract rules

Tutorial - Li-C. Wang, 2013 103

Binary Classification — Tree Learning

[Count of Single Via 5 0
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o
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I - 15 2 25 3 35 45
w FneLENEN Normalized Expected Slack

Validation of the tree model
> Design features extracted from timing reports and GDSII

> Tree model: There are > 14 single vias between layers 4/5 and > 70 double
vias between layers 5/6

> One can validate a tree model by visualizing the colored scatter plot

Tutorial - Li-C. Wang, 2013 104
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Application Examples

avol ciion

4. Outlier delay test

Practical Academic Uncertain

Tutorial - Li-C. Wang, 2013 105

Application Examples

Finax Pr

by il i

5. Novel functional test program selection

2LLil LESt COSE T2t

Practical Academic Uncertain

Tutorial - Li-C. Wang, 2013 106
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Novel Functional Test Program Selection

Space to be covered

*
“ @ * : filtered test programs
Y : novel test programs
€39 *

@ : applied test programs

*

Experiment”

Boundary captured by a novelty detection learning model

> In SoC/Processor verification, tremendous amounts of test programs (e.g. assembly
programs, instruction sequences) are simulated

> We applied novelty detection to identify “novel test programs” before simulation — to
avoid simulation of ineffective sequences

> See Wen Chen el at. (ICCAD 2012)
— “Novel Test Detection to Improve Simulation Efficiency —~A Commercial

Tutorial - Li-C. Wang, 2013

107

The Methodology for Reducing Simulation Cost

Test Test | Simulation/
generation | pjuge: | Filtering |selected | Application
pool of ; Novel Tests
e.g. RTPG tests i
¢ Building <
: Novelty Simulation results
Detection
: Model

> Novelty detection is used to identify novel tests for simulation/application
— Avoid applying ineffective tests

> The key question: How to measure similarity between two tests?

Tutorial - Li-C. Wang, 2013
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Challenge
Test 1 Test t,
= 1;/." 13

7=
hi imilarity measure

> ldeally, two tests are more similar if their covered spaces are more similar
— How to define such a kernel function?

coverage space

> See Wen Chen el at. (ICCAD 2012)
— “Novel Test Detection to Improve Simulation Efficiency —~A Commercial Experiment”
— Idea: Using single-instruction simulation coverage to estimate the similarity

Tutorial - Li-C. Wang, 2013

109

A Typical Result — 95% Simulation Saving

19+ hours simulation

N |
(] 1
& |1 1
()] 1 |
3 |1 I
< || 1 ]
o 1 |
X 1 I
: With novelty detection : Without novelty detection
1 => Require only 310 tests 1 => Require 6010 tests
| |
| / | /
I |
10 1510 3010 4510 6010 7510 9010

# of applied tests

> Each test is a 50-instruction assembly program (PowerPC ISA)
— Low-power dual-core design

> Test programs target on Complex FPU (33 instruction types)

> 95% of the test programs automatically filtered — this is a typical result
— Simulation is carried out in parallel in a server farm

Tutorial - Li-C. Wang, 2013
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Application Examples

o
g
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6. Selective test for parametric test cost reduction

Practical Academic

Tutorial - Li-C. Wang, 2013

111

Failing Die Count

Parametric Test Set Reduction

Soft Bin Number
90% of the failing dies are captured by 10% of the tests
Many tests do not capture anything

See Gagi Drmanac et al. (ITC 2011)

— “Wafer Probe Test Cost Reduction of an RF/A Device by Automatic Testset Minimization”

Tutorial - Li-C. Wang, 2013

—% Total Fails
BPareto of Fails

% Total Fails
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>

>

General Idea — Test Importance Selection

Passing dies

. . . [> Learn a ’f‘> Test
classifier Ranking
N BN

{

Failing dies

Given the test data (say based on 100K dies that are already tested to
decide pass and fail), learn a classifier to separate the pass and fail

From the classifier, extract test importance measures
— Rank tests for potential test removal

Tutorial - Li-C. Wang, 2013
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\4

Some Result

Based on a data set
— 700+ parametric wafer probe tests
— RF/A device (Qualcomm)
— 1.5M samples

Result
— Learn from 10K-100K samples
— Drop 30% of the tests
— 0.4% escape (capture in final test stage)
— 0.28% overkill

Test team demands less than 50 DPPM impact — result not acceptable

See Gagi Drmanac et al. (ITC 2011)

— “Wafer Probe Test Cost Reduction of an RF/A Device by Automatic
Testset Minimization”

Tutorial - Li-C. Wang, 2013
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What If We Have Large Enough Data?

First 1M Dies Last 500K
Training Set Validation Set

» Test Escapes

Covering Reduced
Heuristic Testset

> Don’t apply any learning — simply solve a covering problem to get a
baseline result

> Solve a covering Problem — Find the minimum test set that cover ALL
defective dies saw in the 1M sample set

Tutorial - Li-C. Wang, 2013 115

Result Of Covering Based Approach

300 /-Test Escapes -m=-Number of Tests 400
- 350
250 A AA—n
" /.-_./l"-' - 300 4
8 200 " |50 B
8 ././ “6
g 130 16 Test Escapes 200w
] r - 150 2
3 100 /A £
= o 2\ \ - 100 3
50
A A - 50
) At p .
0 200 400 600 800 1000
Training Set Size Thousands

> Using 1M dies,
— 16 test escapes and 336 tests kept
— 77 Derived Tests
— 259 Measuring Tests

> Roughly 55% reduction in the number of tests with only 32DPPM impact

Tutorial - Li-C. Wang, 2013 116
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Covered Test 2

Test - P&P

Question: Can Statistical Learning Improve Result Further

—v—| Test Escape ® fail
Test A Fails
~
®
®
moTTTTTTTh
: 1
1 L
I Rd 1 «— Test Limits
i ‘/ 1
I 1
e ——— ]

® pass I—v—.—
L ]

Covered Test 1

> Results based on 1M dies seem perfect

TestA 1 0.97 0.96
Test 1 0.97 1 0.92
Test 2 0.96 0.92

Correlation Matrix

> 3 test escapes occur in the remaining 0.5M dies
— How to statistically predict these?
— The idea of building a “better” outlier model won’t help

Tutorial - Li-C. Wang, 2013
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Covered Test 4

Question: Can Statistical Learning Improve Result Further?

Test Escape e fail

I

L&

* :' e . A
1l . Test Limits
I. o .
o TN
I-.: Test C Fails
o /c

e pass }—v—

Coveréd Teét 3

Test C 1 0.98 0.99
Test 3 0.98 1 0.98
Test 4 0.99 0.98 1

Correlation Matrix

> Similarly, tests 3 and 4 are highly correlated to test C

— Based on the passing dies
> 1M dies show perfect screening

— 1 test escape in the remaining 0.5M dies

Tutorial - Li-C. Wang, 2013
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Lessons Learned

>

A statistical learning approach tries to generalize beyond what it
sees in a given dataset

— That should be why a statistical approach is better than a simple
covering approach that only tries to fit the given data

However, even though a statistical approach gives good result, the
approach may not make sense

— Need to be better than the simple approach
— Need to make the comparison with large dataset

We are intrigued by a complex algorithm with beautiful math

— In practice, with enough data, perhaps a naive simple approach
will work just fine

In data mining, data is more important than algorithm

Tutorial - Li-C. Wang, 2013 119

Knowledge Discovery
in Test Applications
(60->30 minutes)

Tutorial - Li-C. Wang, 2013 120

Tutorial - Li-C. Wang 2013
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The Beginning Of A Knowledge Discovery Task

Here is the data. Hmmm ...
Canyou...? Where should | start?

> Yield scenario
— There is a yield fluctuation that sometime the yield drops significantly.

— Can you find the relevant process parameters that | can adjust to reduce
this yield loss?

> Burn-In scenario
— Here are 30 chips that fail at the burn-in step.
— Can you find out if we can screen these fails with wafer probe tests?
> Customer return scenario
— Here are the 15 customer returns this year.
— Can you find test rules to screen any of them?
Tutorial - Li-C. Wang, 2013 121

The Basic Form Of The Question — Why is “It” “Abnormal?”

Search for
» Abnormalities ‘

Tests or class probes

Target (low-yield wafer(s), burn-in fail(s), or return(s))

> Spatial aspect for the search

— Does an abnormality appear on the die, the wafer, or the lot?
> Test aspect for the search

— Is the abnormality exposed based on one test, multiple tests, or all tests?
> Data aspect for the search

— Is the abnormality parametric or pass/fail?

Tutorial - Li-C. Wang, 2013 122

Tutorial - Li-C. Wang 2013 61



Data Mining in Desng & Test - P&P November 2013

First Important Note — Outlier Does Not Imply Abnormality

Accumulated # of dies

60

Number of Die
Percentage (%)

40

20

R L e T T e T T T T =t
e o o o o 1 ok £ P T P g Y PP P o 7 o VA e S P G
P M E

# of tests the die is outlying on (top 20)

> Picture based on 1000 good dies and 1000+ parametric tests
— Most dies are outlying in one or more tests (among top 20 dies)
> What happen
— With variability and a high dimensional space, everyone can be an outlier

Tutorial - Li-C. Wang, 2013 123

Limiting The Dimensionality

All the outlying .
Target A » Properties we Less meaningful

Can find

With limited dimensionalities
that we deem “relevance”

All the outlyin
Target A » UL

Properties we
Can find

@

More meaningful

> If we know which dimensionalities are relevant to the matter of
analysis and limit finding outliers only to those

— The outlying properties become more meaningful

Tutorial - Li-C. Wang, 2013 124
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Turning Outlier Into Abnormality

All the outlying Domain
Target A » Properties we knowledge
\/ Can find ‘
Shared outlying e
broperties B Abnormalities
All the outlying
Target B » Properties we
\/ Can find

(at a later time, or
from a different product line)

> There are two ways to turn an outlier into abnormality
— The relevance of the outlier is validated through domain knowledge

— The outlying property is shared by another target at a later time or
from a different product line

125

Tutorial - Li-C. Wang, 2013

Abnormality Is “Relative” and Depends On “Perspective”

Wafer Perspective Good Wafer Lot Perspective

1/ H m— Customer Return Lot
- Customer Return Location
T

= Customer Return Wafer \
Customer Return Location fi

# of dies
# of dies

Measured (same) test value

> Die perspective
— The customer return does not reside among the top 20 outliers of the lot

> Wafer perspective
— The customer return wafer is not an outlier within the lot

> Lot perspective
— The customer return lot is biased

— The die is at the tail of the biased lot
126

Tutorial - Li-C. Wang, 2013

Tutorial - Li-C. Wang 2013



Data Mining in Desng & Test - P&P November 2013

Abnormality Depends On Perspective — Test Aspect

Combined
lot-based
fail patterns

Fail test
Group A

Fail test
Group B

> Abnormal patterns depend on the group of tests we look at
> Search for Abnormality includes search for the Test Perspective

Tutorial - Li-C. Wang, 2013 127

Variability Can Cause Misleading Result

Test 2

Test 2

Keys

© Site 1 Fails
@ Site 2 Fails
O Site 3 Fails
@ Site 4 Fails
@ Passing

et L Test 1

i ? . . . .
Linear tend? ‘ Site-to-site variation normalized

> In the top-left figure, site-to-site
variation causes a strong correlation
between Test 1 and Test 2

— Look like a linear trend
> In the top-right, burn-in failing dies do

bt

« |Keys
O site 1 Fails

Test 2

not look like an outlier ¢ itar
> In the bottom-right, after the s g Maine

normalization to remove site-to-site

variation, they look like outliers et

See Sumikawa et al. “An Experiment of Burn-In Time Reduction Based On Parametric Test Analysis” at ITC 2012

Tutorial - Li-C. Wang, 2013 128
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What Abnormalities Are For — Knowledge For Decision Making

Knowledge .
Abnormalities <&
Target (die, wafer, lot)
@ Perceived ) Investigate
Interpretable Actionable additional questions
Knowledge | Knowledge ~/Meeting &\ /7099 Collect additional data
Discovery Discussion

Implementation

i

> Every action has a cost

> Knowledge Discovery (KD) extracts “perceived” interpretable knowledge
— Meeting may involves design, product, test and process engineers
— In the meeting, interpretable knowledge translates into actionable

knowledge
> Most of time, actions lead to another KD process

Tutorial - Li-C. Wang, 2013 129

What'’s Difference Between Two Complex Learning Algorithms?

L) S ———
2 w S Data Exploration
1] £ B c
A S o =] g
g| ¢ s =
Q CILJ a = ©
S T w© o
a c £
S5 ® £
= 5
o
> Time

\ J
I

In these stages, we prefer simple and quick learning methods
allowing efficient exploration of a large number of perspectives

> In data exploration, simple algorithms (tree learning, naive Bayes,
simple rule learning, 1-dimensional outlier, correlation calculation, etc.)
are often used to check the data

> Fine-tuning of a model happens in the Optimization stage
— Where complex algorithms with best parameter setting are applied

Tutorial - Li-C. Wang, 2013 130
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We Found Three Categories Of Tools That Are Useful

Unsupervised

Abnormalities

# of abnormalities to be reported =
A set of perspectives =

Abnormality

— or .:;.
on 1 23\

Detecti
Data @ =

Distribution based  Pattern based

Target
@ = Perspective

A set of perspectives = Search

lf. -~
—> Abnormalities @'
—) Perspectives to define them

Data @ =

l.’._"
@ = | Similarity

; Search
Supervised Data @ (=1

- s
—) Similar abnormalities @ a

—> Same or different test perspectives

> For more detail, see Sumikawa et al. ITC 2013
— “A pattern mining framework for inter-wafer abnormality analysis”

Tutorial - Li-C. Wang, 2013 131

Yield Scenario — Starting Point

Problem:

vield (for illustration)

Lots in time

— Low-yield wafers

— low-yield lots

— Yield loss due to different test steps

— Based on probe measured at differe
> The best correlation found is < |0.35|

— Can we do better?

n Class probe
parameters

pl

Correlate?
p2 &>
wafers or

pn
i locations
On each wafer

> Used a standard statistical package to analyze based on different perspectives

nt and combined locations

Tutorial - Li-C. Wang, 2013 132
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First Milestone — Establish The Target To Focus

(for illustration)

Wafer-to-wafer
Yield fluctuation

Fails due to a particular group of tests

> The first milestone was establishing a target for focused analysis
— Found a group of tests
— Yield fluctuation is 0.866 correlated to the fail fluctuation

> Decision: Focus analysis based on only those fails

Tutorial - Li-C. Wang, 2013 133

Second Milestone — Found Two Separate Perspectives For Analysis

Perspective A: Perspective B:
Fails with range [a,b] Fails with range [b,c

g

All fails

A

Found no correlation

> Although an interesting pattern is identified, we found no strong
correlation of those fails to any class probe measurements

> We found that the fails can be partitioned with two perspectives
— based on how they fail
> Decision: Analyze based on each perspective separately

Tutorial - Li-C. Wang, 2013 134
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Third Milestone — Recognize The Importance Of Temporal Effect

> Analysis based on perspective A

— 0.62 correlation to parameter P1 based on lot-to-lot yield fluctuation
— 0.56 correlation to parameter P1 based on wafer-to-wafer fluctuation

""" "yTrend 2

# of Lots
Manufactured

TV Trend 1

> Decision: Analyze two periods separately
— Improved correlation to 0.79 for period 1
— Improved correlation to 0.75 for period 2

> Systematic shifts mask the correlation in the
original analysis

Tutorial - Li-C. Wang, 2013

\

I

I

I

I

I

I

I L)

135

Separate Analysis Based On Perspective B

Tutorial - Li-C. Wang, 2013

P2 has 0.85 correlation to P2 has 0.79 correlation to
Lot-to-lot fluctuation Wafer-to-wafer fluctuation

P2 does not correlate
based on fails
using Perspective A

> This result demonstrates why if we did not separate into Perspective A
and Perspective B, we would not find strong correlation

136
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More To Do Before Implementing A Process Change

> Made a recommendation for process parameter changes

> Need to answer additional questions before implementation

— There was a suspected weak component — evaluated potential impact
from the recommendation based on specific devices in the component

— There was an earlier unsuccessful split lot experiment — made sure the
recommendation do not cause the same problems

— Made sure no evidence that the recommendation would not cause more
fails due to other types of tests

> After all those questions were cleared => Implemented the changes

Tutorial - Li-C. Wang, 2013 137

Recall: Six Months Later

5 0 5

before  RMD#1 RMD#2 Both

> After 6-7 weeks of analysis and several meetings
— We recommended two process parameter changes

> Changes were accepted by the product team and foundry to do a split-lot experiment

> Result shows significant improvement in yield and reduction of the fluctuation

Tutorial - Li-C. Wang, 2013 138
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Burn-In Scenario — Starting Point

Wafer Burn Final
Sorts In Test
Fails Failures that did not
fail the same

test in wafer sorts

> High yield production — candidate for burn-in reduction
> ldentify 48 known burn-in failing parts for study
> Constraints
— Need to find ways to screen ALL fails in wafer sorts
* Escape is not acceptable
* Overkill by the screen is acceptable as long as not excessively high

— For any recommended screen, it can be implemented and evaluated
with additional production data
* |t is easier for people to accept a recommended screen

Tutorial - Li-C. Wang, 2013 139

After Validation and Revised Model — Selective Burn-In

45% "
i  Final
i Test
>

> Result from pure statistical analysis needs to be validated through
domain knowledge

55%

> Further, in order to guarantee that all potential fails go through the
burn-in process
— We have to be conservative in our models

> Finally, apply three advanced outlier models to select parts for burn-in
— Result in a saving of 45% cost
— With zero DPPM impact!

Tutorial - Li-C. Wang, 2013 140
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Customer Return Analysis — A Different Problem From Burn-In Fails

Can’t have escape
Burn-in: | can have large kill rate
Sc-reen can.be evaluated ] return 4
with experiment

Can’t have high | ﬁ
kill rate (eg. 1%) 1
L

C-Return:

May not have future data .
to justify a screen — 3 e

Need to consider —
customer’s acceptance An outlier model

> The study

— Focus on a family of products — Automotive SoCs (zero DPPM target)
— Not aiming for all returns — just do the best we could but did it well
> Starting point
— Found a good outlier model (see last review) — Then what?
— Two fundamental questions follows
* What is your TOTAL kill rate over all models?
* How do | know your model is not accidental?

Tutorial - Li-C. Wang, 2013 141

Uncover Abnormalities To Be Associated With An Outlier Model

Wafer map Abnormal pattern Unusual fail stats.

> For each test used in an outlier model, search for abnormalities
— 1. Identify an abnormal pattern, novel relative to other wafer maps
— 2. Identify unusual failing statistics on the wafer map

> This also provides a hierarchical screen rule for the return

Tutorial - Li-C. Wang, 2013 142
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Knowledge (Abnormal Pattern) Reuse Over Time

Original return

New return Original return .
r | New return e
I -
. - *
= | Similarity 2 l
Search = IH |
Data @ = 1 s
(ITC13) = =
(Same product) B

> Apply extracted abnormalities to monitor future return activities
— Found a new return in a later time

> In atypical analysis task, many interesting abnormalities are extracted
— Some can be interpreted at the time, and others may not

> To perform this monitoring efficiently, we need to keep track of all
interesting abnormalities extracted (knowledge accumulation)

Tutorial - Li-C. Wang, 2013 143

Knowledge (Test Perspective) Reuse Across Products

Test Perspectives learned 3 New returns 3 new rfeturns in the same
from the 15t product ; outlier model space
= Abnorm.allty = s
Data @ — | Detection

® . |

(2nd product) (ITc13) l'\ y % @
1
|

> Once we learned the importance of the test perspectives based on the 1 product
line, the knowledge is reapplied to the 2" product line

— Discover abnormalities for 3 returns in the 2" product line
— They can all be captured with the same outlier model
— Two products are more than one-year apart
> This demonstrates the usefulness of knowledge accumulation/reuse

Tutorial - Li-C. Wang, 2013 144
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Knowledge Discovery
in Functional Verification
(15 minutes)

Tutorial - Li-C. Wang, 2013 145

Application Context

Focus on simulation based functional verification
— Based on constrained random verification environment

Functional verification is an iterative process
— Design changes over time
— Verification restarts when a new version is released

Two assets are kept from one iteration to the next
— 1. Important (NOVEL) tests collected through simulation
* For example, tests activating assertions of interest or capturing bugs
— 2. Test templates that produce those NOVEL tests

These two assets embed the knowledge accumulated the iterations of
verification effort

Tutorial - Li-C. Wang, 2013 146
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The Existence of Novel Tests

LSU LMQ

Coverage of
assertion A
=
o

o u
= o

101 201 301 401 501 601 701 801 901
# of simulated tests

> For processor verification, a test is an assembly program
— For SoC, a test can be a sequence of transactions
> In constrained random verification
— A test template is instantiated into multiple tests
— Based on given constraints and biases
> In this example
— Observe activation on an assertion A
— Only three tests activate the assertion

Tutorial - Li-C. Wang, 2013 147

Two Fundamental Questions

Can we identify
A large pool . .
the non-novel tests Simulation
of tests )
and filter them out?

This helps find novel tests faster (ICCAD 2012 — discussed above)

S NN EmL EEN EmI EIN BN B B B S B S EE S S EE S .,

/ This enables effective \
[ utilization of the knowledge |
A large set :

| embedded in the novel tests |
of non-novel tests :

[
| —> Understand why I
A small set :
I\ of novel tests We will discuss this next /

W o e e e e e mm mm Ew Em Em E Ew Ew Em Ew Ew

Tutorial - Li-C. Wang, 2013 - 148
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Motivation for Knowledge Extraction

Constrained
Random Test
Program
Generator

Simulation Novel

Test '
programs Design » tests

Uncovered area

Knowledge
extraction <

e Extract knowledge from the novel tests as feedback to the
constrained test generation

— Refine test templates

> See Chen et al. “Simulation Knowledge Extraction and Reuse in Constrained
Random Processor Verification” at DAC 2013

Tutorial - Li-C. Wang, 2013 149

Knowledge Extraction Flow

Features
(Known) Novel Tests 3

- ' - » Rule |mp  Rules
L .
D D °e B » = Rezed Constrained New

(Known) Non-Novel Tests Constrained ®| Random |mp Novel
Test Template TPG Tests

> Novel tests are special (e.g. activating an assertion)
> Learn rules to describe their special properties (rule learning)

> Analyze a novel test against a large population of other non-novel tests
— Extract properties (rules) to explain its novelty

> Use them to refine the test template
— Produce additional tests likely to be novel tests

> The learning can be applied iteratively on newly-generated novel tests

Tutorial - Li-C. Wang, 2013 150
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Two-level of Features

Instruction sequence Arch. feature vector Instr. feature vector

> Architecture features (A-features)
— Based on architecture states from architectural simulation
— Based on micro-architecture states from the workbook

> Instruction features (I-features)
— Describe important characteristics of an instruction

> See Wen Chen et al. (DAC 2013)
— “Simulation Knowledge Extraction and Reuse for Processor Verification”

— Also “A Two-level Learning Framework for Knowledge Discovery in Constrained
Random Processor Verication” Manuscript 2013

Tutorial - Li-C. Wang, 2013 151

A-Features

STQFWD enable (- Store => Load A address collision A no more than i instruction in between
1,1i);i=0,1, ...10 the store load pair

LMQ enable Load A Cachelnhibited=1
Load A Cachelnhibited=0 A folding=0
waitrsv

Cflush enable Multiply A result overflow A XER[0]=0
Mispredicted branch
isync

TLB invalid tlbivax

ST queue full Stmw ~ RT<23

> Each feature corresponds to a state variable described in the workbook

— Rules to activate the feature are recorded in the tool, and used to
check if a test program activates the feature

Tutorial - Li-C. Wang, 2013 152
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RT, EA, RA, misaligned, address collision

stmw RT, EA, RA, misaligned, address collision

mulld RA, RB, execution result, overflow, data dependency

divd RA, RB, execution result, divide-by-zero, data dependency
add RA, RB, execution result, overflow, data dependency

Sub RA, RB, execution result, underflow, data dependency
branch mispredicted

> Features are to describe the important characteristics of an instruction

— These features are used for refining the learning result based on A-
features

Tutorial - Li-C. Wang, 2013 153

Example 1

Design i
Block of interest
LM queue
L[ - ||
|
v v
Events A[O] Al7]

> We are interested in activating a family of events A[0]-A[7]

> We know how to constrain the PRTP to produce tests likely to cause
activities in the block

> Initially, we observe some coverage on A[0] and A[1], but not other
events in the family

Tutorial - Li-C. Wang, 2013 154
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restee | il | ltertons | sterionz |
100 50

# of tests 400
A[0] 10 3 72
All] 17 11 59
Al2] 0 10 71
Al3] 0 10 83
Al4] 0 4 79
A[5] 0 2 97
A[6] 0 1 96
A[7] 0 1 87

> Iteration 1:
— Learning rules based on the tests activating A[0] and A[1]
— Applying rules to generate 100 new tests
> Iteration 2:
— Learning rules based on good tests found in iteration 1
— Applying refined rules to generate 50 new tests

Tutorial - Li-C. Wang, 2013 155

\4

. Event C
Design i
Events D[0] —> —+—> Events B[0]
‘| 6 signals ;
D[5] — —+—>B[5]
Block of interest

We are interested in activating a family of events B[0]-B[5]
— Corresponding to six signals in the block

— We know how to constrain the PRTP to produce tests likely to cause
activities in the block

Initially, no tests activate B[0]-B[5]
Identify relevant events C and D[0]-D[5] to be observed and learned on

C is an architecture feature, so just need to learn about how to activate the
predecessor events D[0]-D[5]

Tutorial - Li-C. Wang, 2013 156
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B T Y

# of tests >30k 1200
B[0] 0 1
B[1] 0 0
B[2] 0 0
B[3] 0 16
B[4] 0 25
B[5] 0 26

> Similarly, Iteration 1:
— Learning rules based on the tests activating D[0] to D[5]
— Applying rules to generate 1200 new tests to target on D[0] to D[5]
— Fortuitously, some tests now activate B[0], B[3] to B[5]
> Iteration 2:
— Learning rules based on these good tests found in iteration 1
— Applying refined rules to generate 100 new tests

56
61
77

Tutorial - Li-C. Wang, 2013 157
Final Remark and Questions
(10->5 Minutes)
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Final Remarks — BIG Data (Medium Data)

> Collection of data sets (Big)

— Extremely large and complex

— Difficult for traditional database and/or data processing tools
> Challenges in multi-fronts (Big/Medium)

— Capture

— Storage

— Search

— Sharing

— Transfer

— Model/analysis

— Visualization

> Let’s focus on the Model/Analysis aspect
— Do Design and Test have the “BIG data” problems?

Tutorial - Li-C. Wang, 2013 159

Model and Analysis With “Big” Data

\4

Modeling consumer behavior
— The underlying “function” is rather steady
— We have time to accumulate enough data

\4

Medical diagnosis
— The underlying “function” is rather steady
— We have time to accumulate enough data

\4

Social network mining
— The underlying “function” is rather steady
— We have time to accumulate enough data

\4

Other examples?

Tutorial - Li-C. Wang, 2013 160
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Y Vv

Y V V V

v

What Are Our Problems Like?

Why silicon timing does not match my predicted timing?
— Very much case dependent — underlying reasons can be many
— There is a time limit for the answer to be valuable
— Data is limited (additional data may be costly or prohibited)

Are my defects caused by DFM issues? Which?
Can we find actions to contain these 15 customer returns?

Can we find way to screen these 50 burn-in fails so that we don’t need to

run burn-in?

Can we find a recipe to adjust the process for improving yield?
Can we learn how to effectively activate this functional state?
Can we optimize the functional tests for silicon power worsening?

We have a “Small” Data Model and Analysis Problem!!

Tutorial - Li-C. Wang, 2013
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>

Something To Think About ...

Small (Specific) Big (Asymptotic)

The underlying “function” to learn is very
case-dependent

The underlying “function” to learn is
rather steady

Getting new data can be costly or
prohibited

If data is not enough, wait and get more

While we may large amounts of data, we
have little information on the care space

Data can be accumulated over time —
hence the data is almost “unlimited”

Look for novelty (specialty, abnormality)

Look for trends (frequent patterns)

Trends are often obvious to the domain
experts

Trends are new knowledge

There is a strict time constraint for the
answer to be valuable

These is less time constraint to solve the
problem

Research focuses on ???

Much research focuses on optimizing the
learning algorithms

... There can be other angles to differentiate the two paradigms
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Data Mining in Desng & Test - P&P

Five Key Messages To Take Away

A\

5. A complex algorithm may not perform better in a specific scenario — in
most of the cases a simple algorithm (like CART) may be enough

> 4. Data mining in design and test is a Knowledge Discovery process —
uncover Interpretable and Actionable knowledge

> 3.In aKnowledge Discovery process, data preparation and data
exploration consumes most of the time

> 2. Before you try learning, try some simple non-learning based heuristic
first — that may give you the best result already

> 1. We can only declare a success when people accept the result, action is
taken, and improvement is observed over the existing flow
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The End
THANK YOU!
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